Steiner Minimal Trees:
Their Computational Past, Present, and Future

Frederick C. Harris, Jr.
Department of Computer Science
University of Nevada
Reno, Nevada 89557
fredh@cs.unr.edu

Abstract: Given a set of N cities, construct a connected network
which has minimum length. The problem is simple enough, but the
catch is that you are allowed to add junctions in your network. There-
fore the problem becomes how many extra junctions should be added,
and where should they be placed so as to minimize the overall net-
work length.

This intriguing optimization problem is known as the Steiner Minimal
Tree Problem (SMT), where the junctions that are added to the
network are called Steiner Points.

The focus of this paper is twofold. First we look at the computational
history of the problem, up through and including a new method to
computer SMT’s in parallel. Secondly we look at future work in the
computation of Steiner Minimal Trees.

keywords: Steiner Minimal Trees

1 Introduction

Minimizing a network’s length is one of the oldest optimization problems
in mathematics and, consequently, it has been worked on by many of the
leading mathematicians in history. In the mid-seventeenth century a simple
problem was posed: Find the point P that minimizes the sum of the dis-
tances from P to each of three given points in the plane. Solutions to this
problem were derived independently by Fermat, Torricelli, and Cavalieri.
They all deduced that either P is inside the triangle formed by the given
points and that the angles at P formed by the lines joining P to the three
points are all 120°, or P is one of the three vertices and the angle at P
formed by the lines joining P to the other two points is greater than or
equal to 120°.

In the nineteenth century a mathematician at the University of Berlin,
named Jakob Steiner, studied this problem and generalized it to include an
arbitrarily large set of points in the plane. This generalization created a

JCMCC 30 (1999), pp. 195-220

star when P was connected to all the given points in the plane, and is a
geometric approach to the 9-dimensional center of mass problem.

In 1934 Jarnik and Kossler generahzed the network minimization prob-
lem even further [27]: Given n points in the plane find the shortest possi-
ble connected network containing these points. This generalized problem,
however, did not become popular until the book, What is Mathematics, by
Courant and Robbins [12], appeared in 1941. Courant and Robbins linked
the name Steiner with this form of the problem proposed by Jarnik and
Kossler, and it became known as the Steiner Minimal Tree problem. The
general solution to this problem allows multiple points to be added, each
of which is called a Steiner Point, creating a tree instead of a star.

Much is known about the exact solution to the Steiner Minimal Tree
problem. Those who wish to learn about some of the spin-off problems
are invited to read the introductory article by Bern and Graham [3], the
excellent survey paper on this problem by Hwang and Richards [23], or the
recent volume in The Annals of Discrete Mathematics devoted completely
to Steiner Tree problems [24]. Some of the basic pieces of information about
the Steiner Minimal Tree problem that can be gleaned from these articles
are: (i) the fact that all of the original n points will be of degree 1, 2, or
3, (ii) the Steiner Points are all of degree 3, (iii) any two edges meet at an
angle of at least 120° in the Steiner Minimal Tree, and (iv) at most n — 2
Steiner Points will be added to the network.

This paper concentrates on the Steiner Minimal Tree problem, hence-
forth referred to as the SMT problem. We present several algorithms for
calculating Steiner Minimal Trees, including the first parallel algorithm for
doing so. Several implementation issues are discussed, some new results are
presented, and several ideas for future work are proposed.

In Section 2 we review the first fundamental algorithm for calculating
SMT’s. In Section 3 problem decomposition for SMT’s is outlined. In
Section 4 we present Winter’s sequential algorithm which has been the
basis for all computation of SMT’s to the present day. In Section 5 we
present a parallel algorithm for SMT’s. Extraction of the correct answer is
discussed in Section 6. Computational Results are presented in Section 7
and Future Work and open problems are presented in Section 8.

2 The First Solution

A typical problem-solving approach is to begin with the simple cases and
expand to a general solution. As we saw in Section 1, the trivial three point
problem had already been solved in the 1600’s, so all that remained was the
work toward a general solution. As with many interesting problems this is
harder than it appears on the surface.

196

The method proposed by the mathematicians of the mid-seventeenth cen-
tury for the three point problem is illustrated in Figure 1. This method
stated that in order to calculate the Steiner Point given points A, B, and
C, you first construct an equilateral triangle (AC X) using the longest edge
between two of the points (AC) such that the third (B) lies outside the
triangle. A circle is circumscribed around the triangle, and a line is con-
structed from the third point (B) to the far vertex of the triangle (X). The
location of the Steiner Point (P) is the intersection of this line (BX) with
the circle.

Figure 1: AP + CP = PX.

The next logical extension of the problem, going to four points, is at-
tributed to Gauss. His son, who was a railroad engineer, was apparently
designing the layout for tracks between four major cities in Germany and
was trying to minimize the length of these tracks. It is interesting to note
at this point that a general solution to the SMT problem has recently been
uncovered in the archives of a school in Germany [17].

For the next thirty years after Kossler and Jarnik presented the general
form of the SMT problem, only heuristics were known to exist. The heuris-
tics were typically based upon the Minimum-Length Spanning Tree (MST),
which is a tree that spans or connects all vertices whose sum of the edge
lengths is as small as possible, and tried in various ways to join three ver-
tices with a Steiner Point. In 1968 Gilbert and Pollak [16] linked the length
of the SMT to the length of a MST. It was already known that the length
of an MST is an upper bound for the length of an SMT, but their conjec-
ture stated that the length of an SMT would never be any shorter than 5@

197

times the length of an MST. This conjecture, was recently proved [13], and
has led to the MST being the starting point for most of the heuristics that
have been proposed in the last 20 years including a recent one that achieves
some very good results [19].

In 1961 Melzak developed the first known algorithm for calculating an
SMT [29]. Melzak’s Algorithm was geometric in nature and was based upon
some simple extensions to Figure 1. The insight that Melzak offered was
the fact that you can reduce an n point problem to a set of n — 1 point
problems. This reduction in size is accomplished by taking every pair of
points, A and C in our example, calculating where the two possible points,
X; and X,, would be that form an equilateral triangle with them, and
creating two smaller problems, one where X; replaces A and C, and the
other where X3 replaces A and C. Both Melzak and Cockayne pointed out
however that some of these sub-problems are invalid. Melzak’s algorithm
can then be run on the two smaller problems. This recursion, based upon
replacing two points with one point, finally terminates when you reduce
the problem from three to two vertices. At this termination the length
of the tree will be the length of the line segment connecting the final two
points. This is due to the fact that BP + AP + CP = BP 4+ PX. This
is straightforward to prove using the law of cosines, for when P is on the
circle, ZAPX = LCPX = 60°. This allows the calculation of the last
Steiner Point (P) and allows you to back up the recursive call stack to
calculate where each Steiner Point in that particular tree is located.

This reduction is important in the calculation of an SMT, but the algo-
rithm still has exponential order, since it requires looking at every possible
reduction of a pair of points to a single point. The recurrence relation for
an n-point problem is stated quite simply in the following formula:

T(n) = 2% (’2‘)*T(n—l).

This yields what is obviously a non-polynomial time algorithm. In fact
Garey, Graham, and Johnson [14] have shown that the Steiner Minimal
Tree problem is NP-Hard (NP-Complete if the distances are rounded up to
discrete values).

In 1967, just a few years after Melzak’s paper, Cockayne [7] clarified some
of the details from Melzak’s proof. This clarified algorithm proved to be
the basis for the first computer program to calculate SMTs. The program
was developed by Cockayne and Schiller [11] and could compute an SMT
for any placement of up to 7 vertices.

198

3 Problem Decomposition

After the early work by Melzak [29], many people began to work on the
Steiner Minimal Tree problem. The first major effort was to find some
kind of geometric bound for the problem. In 1968 Gilbert and Pollak [16]
showed that the SMT for a set of points, S, must lie within the Convex Hull
of S. This bound has since served as the starting point of every bounds
enhancement for SMT’s.

As a brief review, the Convex Hull is defined as follows: Given a set of
points S in the plane, the Convex Hull is the convex polygon of smallest area
containing all the points of S. A polygon is defined to be convex if a line
segment connecting any two points inside the polygon lies entirely within
the polygon. An example of the Convex Hull for a set of 100 randomly
generated points is shown in Figure 2.

Figure 2: The Convex Hull for a random set of points.

Shamos in his PhD thesis [31] proposed a Divide and Conquer Algorithm
which has served as the basis for many parallel algorithms calculating the
Convex Hull. One of the first such approaches appeared in the PhD the-
sis by Chow [6]. This approach was refined and made to run in optimal
O(log n) time by Aggarwal et.al. [1], and Attalah and Goodrich [2].

The next major work on the SMT problem was in the area of problem
decomposition. As with any non-polynomial algorithm, the most impor-
tant theorems are those that say “If property P exists, then the problem
may be split into the following sub-problems.” For the Steiner Minimal
Tree Problem property P will probably be geometric in nature. Unfortu-

199

nately, decomposition theorems have been few and far between for the SMT
problem. In fact, at this writing there have been only three such theorems.

The first decomposition theorem, known as the Double Wedge Theorem,
was proposed by Gilbert and Pollak [16]. The next decomposition theorem
is due to Cockayne [8] and is based upon what he termed the Steiner Hull.
The final decomposition belongs to Hwang, Song, Ting, and Du [25]. They
proposed an extension to the Steiner Hull as defined by Cockayne. These
three decomposition theorems were combined into a parallel algorithm for
decomposition presented in [18)

4 Winter’s Sequential Algorithm

4.1 Overview and Significance

The development of the first working implementation of Melzak’s algo-
rithm sparked a move into the computerized arena for the calculation of
SMT’s. As we saw in Section 2, Cockayne and Schiller [11] had implemented
Melzak’s Algorithm and could calculate the SMT for all arrangements of 7
points. This was followed almost immediately by Boyce and Seery’s pro-
gram which they called STEINERT72 [4]. Their work, done at Bell Labs
could calculate the SMT for all 10 point problems. They continued to work
on the problem and in personal communication with Cockayne said they
could solve 12 point problems with STEINER73. Yet even with quite a few
people working on the problem, the number of points that any program
could handle was still very small.

As mentioned towards the end of Section 2, Melzak’s algorithm yields
invalid answers and invalid tree structures for quite a few combinations of
points. It was not until 1981 that anyone was able to characterize a few of
these invalid tree structures. These characterizations were accomplished
by Pawel Winter and were based upon several geometric constructions
which enable one to eliminate many of the possible combinations previ-
ously generated. He implemented these improvements in a program called
GeoSteiner [35]. In his work he was able to calculate in under 30 seconds
SMT'’s for problems having up to 15 vertices and stated that “with further
improvements, it is reasonable to assert that point sets up to 30 V-points
could be solved in less than an hour [35].”

4.2 Winter’s Algorithm

Winter’s breakthrough was based upon two things: the use of extended
binary trees, and what he termed pushing. Winter proposed an extended
binary tree as a means of constructing trees only once and easily identifying

200

a Full Steiner Tree (FST: trees with n vertices and n — 2 Steiner Points) on
the same set of vertices readily.

Pushing came from the geometric nature of the problem and is illustrated
in Figure 3. It was previously known that the Steiner Point for a pair of
points, a and b, would lie on the circle that circumscribed that pair and
their equilateral third point. Winter set out to limit this region even further.
This limitation was accomplished by placing a pair of points, a’ and %', on
the circle at a and b respectively, and attempting to push them closer and
closer together. In his work Winter proposed and proved various geometric
properties that would allow you to push a’ towards b and b’ towards a. If
the two points ever crossed then it was impossible for the current branch
of the sample space tree to contain a valid answer.

b
@’
a, b

Figure 3: An illustration of Winter’s pushing,.

Unfortunately, the description of Winter’s algorithm is not as clear as
one would hope, since the presence of goto statements rapidly makes his
program difficult to understand, and almost impossible to modify. Winter’s
goal is to build a list of FST’s which are candidates for inclusion in the final
answer. This list, called T _list, is primed with the edges of the MST, thereby
guaranteeing that the length of the SMT does not exceed the length of the
MST.

The rest of the algorithm sets about to expand what Winter termed as
Q-list, which is a list of partial trees that the algorithm attempts to com-
bine until no combinations are possible. Q_list is primed with the original
input points. The legality of a combination is determined in the Construct
procedure, which uses pushing to eliminate cases. While this combination

201

proceeds, the algorithm also attempts to take newly created members of
Q.list and create valid FST’s out of them. These FST’s are then placed
onto T.list.

This algorithm was a turning point in the calculation of SMT’s. It
sparked renewed interest into the calculation of SMT’s in general. This
renewed interest has produced new algorithms such as the Negative Edge
Algorithm [34] and the Luminary Algorithm [22]. Winter’s algorithm has
also served as the foundation for most computerized computation for cal-
culating SMT’s and is the foundation for the parallel algorithm we present
next.

5 A Parallel Algorithm

5.1 A Introduction to Parallelism

Parallel computation is allowing us to look at problems that have previously
been impossible to calculate, as well as allowing us to calculate faster than
ever before problems we have looked at for a long time. It is with this in
mind that we begin to look at a parallel algorithm for the Steiner Minimal
Tree problem.

There have been volumes written on parallel computation and parallel
algorithms; therefore, we will not rehash the material that has already been
so excellently covered by many others more knowledgeable on the topic, but
will refer the interested readers to various books currently available. For
a thorough description of parallel algorithms, and the PRAM Model the
reader is referred to the book by Joseph J4Ja [26], and for a more practical
approach to implementation on a parallel machine the reader is referred to
the book by Vipin Kumar et.al. [28] or the book by Justin Smith [32].

5.2 Overview and Proper Structure

When attempting to construct a parallel algorithm for a problem the se-
quential code for that problem is often the starting point. In examining
sequential code, major levels of parallelism may become self-evident. There-
fore for this problem the first thing to do is to look at Winter’s algorithm
and convert it into structured code without gotos. The Initialization (Step
1) does not change, and the translation of steps 2 through 7 appears in
Figure 4.

Notice that the code in Figure 4 lies within a for loop. In a first attempt
to parallelize anything you typically look at loops that can be split across
multiple processors. Unfortunately, upon further inspection, the loop con-
tinues while p<q and, in the large if statement in the body of the loop, is the

202

/* Step 2 */
1 for(p=0; p<q; p++){

AP = A(p);

/* Step 3 */

for(r=0; ((H(p) > H(r)) AND (r!=q)); r++){
if((H(p) == H(r)) AND (r<p))

r = p;
if(Subset(V(r), AP)){
pstar = p;
rstar = r;
for(Label = PLUS; Label <= MINUS; Label++){
/* Step 4 */
AQ = A(q);
if(Construct(p.star,rstar,&(E(q)))){
L(a) = p;
R{q) =
LBL(q) = Label;
LF(q) = LF(p);
H(q) = H(p) + 1;
/* next line is different */
Min(q) = max(Min(p)-1,H(r));
if(Lsp(p) != 0)
Lsp(q) = Lsp(p)
else
Lsp(q) = Lsp(r)
if(Rsp(r) '= 0)
Rsp(q) = Rsp(r)
else
Rsp(a) = Rsp(p)
qstar = q;
at++;
/* Step 5 */
if(Properto_Add_Tree_to_Tlist(qstar)){

forall(j in AP with Lf(R(gstar)) < j){

SRoot(t) = j;
Root(t) = q.star;
t++;

}

/* Step 6 */
pstar =1;
rstar = p;

Figure 4: The main loop properly structured.

203

statement g++. This means that the number of iterations is data dependent
and is not fixed at the outset. This loop cannot be easily parallelized.

Since the sequential version of the code does not lend itself to easy par-
allelization, the next thing to do is back up and develop an understanding
of how the algorithm works. The first thing that is obvious from the code
is that you select a left subtree and then try to mate it with possible right
subtrees. Upon further examination we come to the conclusion that a left
tree will mate with all trees that are shorter than it, and all trees of the
same height that appear after it on Q.list, but it will never mate with any
tree that is taller.

5.3 First Approach

The description of this parallel algorithm is in a master—slave perspective.
This perspective was taken due to the structure of most parallel architec-
tures, as well as the fact that all nodes on the Q.list need a sequencing
number assigned to them. The master will therefore be responsible for
numbering the nodes and maintaining the main Q_list and T _list.

The description from the slave’s perspective is quite simple. A process is
spawned off for each member of Q.ist that is a proper left subtree (Win-
ter’s algorithm allows members of Q.list that are not proper left subtrees).
Each new process is then given all the current nodes on Q.ist. With this
information the slave then can determine with which nodes its left subtree
could mate. This mating creates new nodes that are sent back to the mas-
ter, assigned a number and added to the master’s Qlist. The slave also
attempts to create an FST out of the new Q_list member, and if it is suc-
cessful, this FST is sent to the master to be added to the T.list. When a
process runs out of Q_list nodes to check it sends a request for more nodes
to the master.

The master also has a simple job description. It has to start a process
for each initial member of the Q.list, send them all the current members of
the Q.list and wait for their messages.

This structure worked quite well for smaller problems (up to about 15
points), but for larger problems it reached a grinding halt quite rapidly.
This was due to various reasons such as the fact that for each slave started
the entire Q_list had to be sent. This excessive message passing quickly
bogged down the network. Secondly in their work on 100 point problems
Cockayne and Hewgill [10] made the comment that T_list has an average
length of 220, but made no comment about the size of Q_list, which is
the number of slaves that would be started. From our work on 100 point
problems this number easily exceeds 1,000 which means that over 1,000
processes are starting, each being sent the current Q.list. From these few
problems, it is quite easy to see that some major changes needed to be

204

made in order to facilitate the calculation of SMT’s for large problems.

5.4 Current Approach

The idea for a modification to this approach came from a paper by Quinn
and Deo [30], on parallel algorithms for Branch-and-Bound problems. Their
idea was to let the master have a list of work that needs to be done. Each
slave is assigned to a processor. Each slave requests work, is given some,
and during its processing creates more work to be done. This new work
is placed in the master’s work list, which is sorted in some fashion. When
a slave runs out of work to do, it requests more from the master. They
noted that this leaves some processors idle at times (particularly when the
problem was starting and stopping), but this approach provides the best
utilization if all branches are independent.

This description almost perfectly matches the problem at hand. First, we
will probably have a fixed number of processors which can be determined
at runtime. Secondly we have a list of work that needs to be done. The
hard part is implementing a sorted work list in order to obtain a better
utilization. This was implemented in what we term the Proc_list, which
is a list of the processes that either are currently running or have not yet
started. This list is primed with the information about the initial members
of Q.list, and for every new node put on the Q_list, a node which contains
information about the Q.list node, is placed on the Proc_list in a sorted
order.

The results for this approach are quite exciting, and the timings are
discussed in Section 7.

6 Extraction of the Correct Answer

6.1 Introduction and Overview

Once the T_list discussed in Section 4 is formed, the next step is to extract
the proper answer from it. Winter described this in step 7 of his algorithm.
His description stated that unions of FST’s saved in T_list were to be formed
subject to constraints described in his paper. The shortest union is the SMT
for the original points.

The constraints he described were quite obvious considering the definition
of an SMT. First, the answer had to cover all the original points. Second,
the union of FST’s could not contain a cycle. Third, the answer is bounded
in length by the length of the MST.

This led Winter to implement a simple exhaustive search algorithm over
the FST’s in T.list. This approach yields a sample space of size O(2™)

205

(where m is the number of trees in T list) that has to be searched. This
exponentiality is born out in his work where he stated that for problems
with more than 15 points “the computation time needed to form the union
of FST’s dominates the computation time needed for the construction of the
FST’s [35].” An example of the input the last step of Winter’s algorithm
receives (T.list) is given in Figure 5. The answer it extracts (the SMT) is
shown in Figure 6.

Figure 5: T list for a random set of points.

6.2 Incompatibility Matrix

Once Cockayne published the clarification of Melzak’s proof in 1967 [7] and
Gilbert and Pollak published their paper giving an upper bound the the
SMT length [16] many people were attracted to this problem. From this
time until Winter’s work was published in 1985 [35] quite a few papers
were published dealing with various aspects of the SMT Problem, but the
attempt to computerize the solution of the SMT problem bogged down
around 12 vertices. It wasn’t until Winter’s algorithm was published that
the research community received the spark it needed to work on this as-
pect of the SMT problem with renewed vigor. With the insight Winter
provided into the problem, an attempt to computerize the solution of the
SMT problem began anew.

Enhancement of this algorithm was first attempted by Cockayne and
Hewgill at the University of Victoria. For this implementation Cockayne
and Hewgill spent most of their work on the back end of the problem, or

206

Figure 6: SMT extracted from T list for a random set of points.

the extraction from T_list, and used Winter’s algorithm to generate T._list.
This work on the extraction focused on what they termed an incompatibility
mairiz. This matrix had one row and one column for each member of
Tist. The entries in this matrix were flags corresponding to one of three
possibilities: compatible, incompatible, or don’t know. The rationale behind
the construction of this matrix is the fact that it is faster to look up the
value in a matrix than it is to check for the creation of cycles and improper
angles during the union of FST’s.

The first value calculations for this matrix were straightforward. If two
trees do not have any points in common then we don’t know if they are
incompatible or not. If they have two or more points in common then they
form a cycle and are incompatible. If they have only one point in common
and the angle at the intersection point is less than 120° then they are also
incompatible. In all other cases they are compatible.

This simple enhancement to the extraction process enabled Cockayne and
Hewgill to solve all randomly generated problems of size up to 17 vertices
in a little over three minutes [9].

6.3 Decomposition

The next focus of Cockayne and Hewgill’s work was in the area of the de-
composition of the problem. As was discussed earlier in Section 3, the best
theorems for any problem, especially non-polynomial problems, are those
of the form “If property P exists then the problem can be decomposed.”

207

Since the formation of unions of FST’s is exponential in nature any theorem
of this type is important.

Cockayne and Hewgill’s theorem states: “Let A; and A» be subsets of A
satisfying (i) A1 |JA2 = A (ii) |A1[)A2| = 1 and (iii) the leaf set of each
FST in T.ist is entirely contained in A; or As. Then any SMT on A is
the union of separate SMT’s on A; and A; [9].” This means that if you
break T_list into biconnected components,-the SMT will be the union of
the SMT’s on those components.

Their next decomposition theorem allowed further improvements in the
calculation of SMT’s. This theorem stated that if you had a component
of T_list left from the previous theorem and if the T list members of that
component form a cycle, then it might be possible to break that cycle and
apply the previous algorithm again. The cycle could be broken if there
existed a vertex v whose removal would change that component from one
biconnected component to more than one.

With these two decomposition theorems, Cockayne and Hewgill were able
to calculate the SMT for 79 of 100 randomly generated 30 point problems.
The remaining 21 would not decompose into blocks of size 17 or smaller,
and thus would have taken too much computation time [9]. This calculation
was implemented in the program they called EDSTEINERS6.

6.4 Forest Management

Their next work focused on improvements to the incompatibility matriz
previously described and was implemented in a program called
EDSTEINERS9, Their goal was to reduce the number of don’t know'’s in
the matrix and possibly remove some FST’s from T_list altogether.

They proposed two refinements for calculating the entry into the in-
compatibility matriz and one Tree Deletion Theorem. The Tree Deletion
Theorem stated that if there exists an FST in T list that is incompatible
with all FST’s containing a certain point a then the original FST can be
deleted since at least one FST containing a will be in the SMT.

This simple change allowed Cockayne and Hewgill to calculate the SMT
for 77 of 100 randomly generated 100 point problems [10). The other 23
problems could not be calculated in less than 12 hours and were therefore
terminated. For those that did complete, the computation time to generate
Tlist had become the dominate factor in the overall computation time.

So the pendulum had swung back from the extraction of the correct
answer from T.ist to the generation of T list dominating the computation
time. In Section 7 we will look at the results of the parallel algorithm
presented in Section 8 to see if the pendulum can be pushed back the other
way one more time.

208

7 Computational Results

7.1 Previous Computation Times

Before presenting the results for the parallel algorithm presented in Sec-
tion 5, it is worthwhile to review the computation times that have preceded
this algorithm in the literature. The first algorithm for calculating FST’s
was discussed in a paper by Cockayne [8] where he mentioned that prelim-
inary results indicated his code could solve any problem up to 30 points
that could be decomposed with the Steiner Hull into regions of 6 points or
less.

As we saw in Section 2, the next computational results were presented by
Cockayne and Schiller {11). Their program, called STEINER, was written
in FORTRAN on an IBM 360/50 at the University of Victoria. STEINER
could calculate the SMT for any 7 point problem in less than 5 minutes of
cpu time. When the problem size was increased to 8 it could solve them
if 7 of the vertices were on the Steiner Hull. When this condition held it
could calculate the SMT in under 10 minutes, but if this condition did not
hold it would take an unreasonable amount of time.

Cockayne called STEINER a prototype for calculating SMT’s and allowed
Boyce and Serry of Bell Labs to obtain a copy of his code to improve the
work. They improved the code, renamed it STEINER72, were able to
calculate the FST for all 9 point problems and most 10 point problems in
a reasonable amount of time [4]. Boyce and Serry continued their work
and developed another version of the code that they thought could solve
problems of size up to 12 points, but no computation times were given.

The breakthrough we saw in Section 4 was by Pawel Winter. His program
called GEOSTEINER [35] was written in SIMULA 67 on a UNIVAC-1100.
GEOSTEINER could calculate SMT’s for for all randomly generated sets
with 15 points in under 30 seconds. This improvement was put into focus
when he mentioned that all previous implementations took more than an
hour for non-degenerate problems of size 10 or more. In his work, Winter
tried randomly generated 20 point problems but did not give results since
some of them did not finish in his cpu time limit of 30 seconds. The only
comment he made for problems bigger than size 15 was that the extraction
discussed in Section 6 was dominating the overall computation time.

The next major program, EDSTEINERS86, was developed in FORTRAN
on an IBM 4381 by Cockayne and Hewgill [9]. This implementation was
based upon Winter’s results, but had enhancements in the extraction pro-
cess. EDSTEINERS86 was able to calculate the FST for 79 out of 100
randomly generated 32 point problems. For these problems the cpu time
for T_list varied from 1 to 5 minutes, while for the 79 problems that finished
the extraction time never exceeded 70 seconds.

209

Cockayne and Hewgill subsequently improved their SM'T program and re-
named it EDSTEINERS9 [10]. This improvement was completely focused
on the extraction process. EDSTEINERS9 was still written in FORTRAN,
but was run on a SUN 3/60 workstation. They randomly generated 200
32-point problems to solve and found that the generation of T.list domi-
nated the computation time for problems of this size. The average time for
T.ist generation was 438 seconds while the average time for forest man-
agement and extraction averaged only 43 seconds. They then focused on
100 point problems and set a cpu limit of 12 hours. The average cpu time
to generate T list was 209 minutes for these problems, but only 77 finished
the extraction in the cpu time limit. These programs and their results are
summarized in Table 1.

Table 1: SMT Programs, authors, and results.

Program Author(s) Points

STEINER Cockayne & Schiller | 7
Univ of Victoria

STEINERT72 Boyce & Serry 10
ATT Bell Labs

STEINER73 Boyce & Serry 12
ATT Bell Labs

GEOSTEINER Winter 15

Univ of Copenhagen
EDSTEINER86 | Cockayne & Hewgill | 30
Univ of Victoria
EDSTEINER89 [Cockayne & Hewgill | 100
Univ of Victoria
PARSTEINERY4 | Harris 100
Univ of Nevada

7.2 The Implementation
7.2.1 The Significance of the Implementation

The parallel algorithm we presented has been implemented in a program
called PARSTEINER94 [18, 20]. This implementation is only the second
SMT program since Winter’s GEOSTEINER in 1981 and is the first parallel
code. The major reason that the number of SMT programs is so small is
due to the fact that any implementation is necessarily complex.

210

PARSTEINERY4 currently has over 13,000 lines of C code. While there
is a bit of code dealing with the parallel implementation, certain sections of
Winter’s Algorithm have a great deal of code buried beneath the simplest
statements. For example line 13 of Figure 4 is the following:

if(Construct(p_star,r_star,&(E(q)))){.

To implement the function Construct() over 4,000 lines of code were nec-
essary, and this does not include the geometry library with functions such
as equilateral third point(), center of equilateral triangle(),
line_circle_intersect(), and a host more.

Another important aspect of this implementation is the fact that there
can now be comparisons made between the two current SMT programs.
This would allow verification checks to be made between EDSTEINERS9
and PARSTEINER94. This verification is important since with any com-
plex program it is quite probable that there are a few errors hiding in the
code. This implementation would also allow other SMT problems, such as
those we will discuss in Section 8, to be explored independently, thereby
broadening the knowledge base for SM'T’s even faster.

7.2.2 The Platform

In the design and implementation of parallel algorithms you are faced with
many decisions. One such decision is what will your target architecture
be? There are times when this decision is quite easy due to the machines
at hand or the size of the problem. In our case we decided not to target a
specific machine, but an architectural platform called PVM [15].

PVM, which stands for Parallel Virtual Machine, is a software pack-
age available from Oak Ridge National Laboratory. This package allows
a collection of parallel or serial machines to appear as a large distributed
memory computational machine (MIMD model). This is implemented via
two major pieces of software, a library of PVM interface routines, and a
PVM demon that runs on every machine that you wish to use.

The library interface comes in two languages, C and Fortran. The func-
tions in this library are the same no matter which architectural platform
you are running on. This library has functions to spawn off (start) many
copies of a particular program on the parallel machine, as well as functions
to allow message passing to transfer data from one process to another.
Application programs must be linked with this library to use PVM.

The demon process, called pymd in the user’s guide, can be considered
the back end of PVM. As with any back end, such as the back end of a
compiler, when it is ported to a new machine the front end can interface
to it without change. The back end of PVM has been ported to a variety
of machines, such as a few versions of Crays, various Unix machines such

211

as Sun workstations, HP machines, Data General workstations, and DEC
Alpha machines. It has also been ported to a variety of true parallel ma-
chines such as the iPSC/2, iPSC/860, CM2, CM5, BBN Butterfly and the
Intel Paragon.

With this information it is easy to see why PVM was picked as the
target platform. Once a piece of code is implemented under PVM it can
be re-compiled on the goal machine, linked with the PVM interface library
on that machine, and run without modification. In our case we designed
PARSTEINERY4 on a network of SUN workstations, but, as just discussed,
moving to a large parallel machine should be trivial.

7.2.3 Errors Encountered

When attempting to implement any large program from another person’s
description you often reach a point where you don’t understand something.
At first you always question yourself, but as you gain an understanding of
the problem you learn that there are times when the description you were
given is wrong. Such was the case with the SMT problem. Therefore, to
help some of those that may come along and attempt to implement this
problem after us we recommend that you look at the list of errors we found
while implementing Winter’s Algorithm [18].

7.3 Random Problems
7.3.1 100 Point Random Problems

From the literature it is obvious that the current standard for calculat-
ing SMT’s has been established by Cockayne and Hewgill. Their work on
SMT’s has pushed the boundary of computation out from the 15 point
problems of Winter to being able to calculate SMT’s for a large percentage
of 100 point problems.

Cockayne and Hewgill, in their investigation of the effectiveness of ED-
STEINERS89, randomly generated 100 problems with 100 points inside the
unit square. They set up a CPU limit of 12 hours, and 77 of 100 problems
finished within that limit. They described the average execution times
as follows: T list construction averaged 209 minutes, Forest Management
averaged 27 minutes, and Extraction averaged 10.8 minutes.

While preparing the code for this project, Cockayne and Hewgill were
kind enough to supply us with 40 of the problems generated for [10] along
with their execution times. These data sets were given as input to the
parallel code PARSTEINER94, and the calculation timed. The Wall Clock
time necessary to generate T list for the two programs appear in Table 2.
For all 40 cases, the average time to generate T_list was less than 20 minutes.

212

Table 2: Comparison of T_list times.

Test Case | PARSTEINER94 | EDSTEINERS89

1 650 8597
2 1031 13466
3 1047 15872
4 1687 17061
5 874 13258
6 1033 15226
7 1164 12976
8 1109 16697
9 975 15354
10 554 8650
11 660 9894
12 946 13057
13 858 13687
14 978 17132
15 819 11333
16 752 12766
17 896 13815
18 788 10508
19 618 10550
20 724 11193
21 983 11357
22 889 12999
23 1449 15028
24 890 14417
25 912 17562
26 1125 12395
27 943 15721
28 583 10014
29 1527 18656
30 681 10033
31 873 16401
32 791 10217
33 1132 18635
34 1097 18305
35 1198 19657
36 803 11174
37 923 15256
38 824 12920
39 826 12538
40 972 15570
Avg. | 939 | 13748 |

213

This is exciting because we have been able to generate T list properly, while
cutting an order of magnitude off the time.

These results are quite promising for various reasons. First, the paral-
lel implementation presented in this work is quite scalable, and therefore
could be run with many more processors, thereby enhancing the speedup
provided. Secondly, with the PVM platform used, we can in the future
port this work to a real parallel MIMD machine, which will have much less
communication overhead, or to a shared memory machine, where the com-
munication could all but be eliminated, and expect the speedup to improve
much more.

It is also worth noting that proper implementation of the Cycle Breaking
which Cockayne and Hewgill presented in [9], is important if extraction
of the proper answer is to be accomplished. In their work, Cockayne and
Hewgill mentioned that 58% of the problems they generated were solvable
without the Cycle Breaking being implemented, which is approximately
what we have found with the data sets they provided. An example of such
a T list that would need cycles broken (possibly multiple times) is provided
in Figure 7.

Figure 7: T list with more than 1 cycle.

7.3.2 Larger Random Problems

Once the 100 point problems supplied by Cockayne and Hewgill had been
successfully completed, the next step was to try a few larger problems. This
was done with the hope of gaining an insight into the changes that would

214

be brought about from the addition of more data points.

For this attempt we generated several random sets of 110 points each.
The length of T_list increased by approximately 38%, from an average of
210 trees to an average of 292 trees. The time to compute T.ist also
increased, but the growth more than doubled, going from an average of 15
minutes to an average of more than 40 minutes.)

The interesting thing that jumped out the most was the increase in the
number of large bi-connected components. Since the extraction process
must do a complete search of all possibilities, the larger the component the
longer it will take. This is a classic example of an exponential problem,
where when the problem size increases by 1 the time doubles. With this
increased component size, none of the random problems generated finished
inside a 12 hour cut off time.

This rapid growth puts into perspective the importance of the work pre-
viously done by Cockayne and Hewgill. Continuation of their work with
incompatibility matrices as well as decomposition of T_list components ap-
pears at this point to be very important for the future of SMT calculations.

8 Future Work
8.1 Further Parallelization

There remains a great deal of work that can be done on the Steiner Minimal
Tree problem in the parallel arena. The first thing to consider is whether
there are other ways to approach the parallel generation of T list that would
be more efficient. Improvement in this area would push the computation
pendulum even further away from T.list generation and towards SMT ex-
traction.

The next thing to consider is the entire extraction process. The initial
generation of the incompatibility matriz has the appearance of easy paral-
lelization. The forest management technique introduced by Cockayne and
Hewgill could also be put into a parallel framework, thereby speeding up
the preparation for extraction quite a bit.

With this initialization out of the way, decomposition could then be con-
sidered. The best possible enhancement here might be the addition of
thresholds. As with most parallel algorithms, for any problem smaller than
a particular size it is usually faster to solve it sequentially. These thresholds
could come into play in determining whether to call a further decomposi-
tion, such as the cycle decomposition introduced by Cockayne and Hewgill
that was discussed in Section 6.

The final option for parallelization is one that may yield the best results,
and that is in the extraction itself. Extraction is basically a branch and

215

bound process, using the incompatibility matriz. This branch and bound is
primed with the length of the MST as the initial bound, and continues until
all possible combinations have been considered. The easiest implementation
here would probably be the idea presented in the paper by Quinn and
Deo [30] that served as the basis for the parallel algorithm in Section 5.

8.2 Additional Problems
8.2.1 1-Reliable Steiner Tree Problem

If we would like to be able to sustain a single failure of any vertex, without
interrupting communication among remaining vertices, the minimum length
network problem takes on a decidedly different structure. For example, in
any FST all of the original vertices are of degree 1, and hence any one can
be disconnected from the network by a single failure of the adjacent Steiner
Point.

We would clearly like a minimum length 2-connected network. The an-
swer can be the minimum length Hamiltonian cycle (consider the vertices
of the unit square), but it need not be, as shown in the © graph given in
Figure 8.

Here we can add Steiner points near the vertices of degree 3, and reduce
the network length without sacrificing 2-connectivity. This is not just a
single graph, but is a member of a family of graphs that look like ladders,
where the © graph has only one internal rung. We hope to extend earlier
work providing constructions on 2-connected graphs [21] to allow effective
application of an Annealing Algorithm that could walk through graphs
within the 2-connected class.

8.2.2 Augmenting Existing Plane Networks

In practical applications, it frequently happens that new points must be
joined to an existing Steiner Minimal Tree. Although a new and larger
SMT can, in principle, be constructed which connects both the new and
the existing points, this is typically impractical. eg. in cases where a fiber
optic network has already been constructed. Thus the only acceptable
approach is to add the new points to the network as cheaply as possible.
Cockayne has presented this problem which we can state as follows:
Augmented Steiner Network: Given a connected plane graph G =
(V, E) (i.e. an embedding of a connected planar graph in £2) and a set V’ of
points in the plane which are not on edges of G, construct a connected plane
supergraph G” = (V”, E”), such that V” contains V |JV’, E” contains E,
and the sum of the Euclidean lengths of the set of edges in E” — E is a
minimum. In constructing the plane graph G” it is permitted to add an
edge connecting a point in V' to an interior point of an edge in G. It is

216

Figure 8: Theta graph.

also permitted to add Steiner points. Thus, strictly speaking, G” need not
be a supergraph of G.

The Augmented Steiner Network Problem clearly has applicationsin such
diverse areas as canal systems, rail systems, housing subdivisions, irrigation
networks and computer networks. For example, given a (plane) fiber optic
computer network G = (V, E) and a new set V' of nodes to be added to
the network, the problem is to construct a set F’ of fiber optic links with
minimum total length that connects V' to G. The set F’ of new links is
easily seen to form a forest in the plane, because the minimum total length
requirement ensures that there cannot be cycles in F'.

As an example, consider the situation in Figure 9 where G consists of
a single, long edge and V' = vy,...,vs. The optimal forest F' consists of
three trees joining G at fi, f2 and fs. It is necessary that extra Steiner
points sy, s2 and s3 be added so that F' has minimum length.

8
3
5
1 5§11 52 e 4 83
[2 6 7
f fa fa

Figure 9: An Optimal Forest.

217

While we are aware of several algorithms for solving special cases of the
Augmented Existing Plane Network Problem, such as those by Chen [5] and
Trietsch [33] or the special case where the graph G consists of a single vertex,
in which case the problem is equivalent to the classical Steiner Minimal
Tree Problem, we are not aware of any algorithms or computer programs
available for exact solutions to the general form of this problem. Here,
“exact” means provably optimal except for round-off error and machine
representation of real numbers. Non-exact (i.e. heuristic) solutions are
sub-optimal although they may often be found considerably faster.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. Yap.
Parallel computational geometry. Algorithmica, 3(3):293-327, 1988.

[2] M.J. Atallah and M.T. Goodrich. Parallel algorithms for some func-
tions of two convex polygons. Algorithmica, 3(4):535-548, 1988.

[3] M.W. Bern and R.L. Graham. The shortest-network problem. Sci.
Am., 260(1):84-89, January 1989.

[4] W.M. Boyce and J.R. Seery. STEINER 72 - an improved version of
Cockayne and Schiller’s program STEINER. for the minimal network
problem. Technical Report 35, Bell Labs., Dept. of Computer Science,
1975.

[6] G. X. Chen. The shortest path between two points with a (linear)
constraint [in Chinese]. Knowledge and Appl. of Math., 4:1-8, 1980.

(6] A. Chow. Parallel Algorithms for Geometric Problems. PhD thesis,
University of Illinois, Urbana-Champaign, IL, 1980.

[7] EJ. Cockayne. On the Steiner problem. Canad. Math. Bull.,
10(3):431-450, 1967.

[8] E.J. Cockayne. On the efficiency of the algorithm for Steiner minimal
trees. SIAM J. Appl. Math., 18(1):150-159, January 1970.

[9] E.J. Cockayne and D.E. Hewgill. Exact computation of Steiner min-
imal trees in the plane. Info. Proccess. Lett., 22(3):151-156, March
1986.

[10] E.J. Cockayne and D.E. Hewgill. Improved computation of plane
Steiner minimal trees. Algorithmica, 7(2/3):219-229, 1992.

[11]) E.J. Cockayne and D.G. Schiller. Computation of Steiner minimal
trees” In D.J.A. Welsh and D.R. Woodall, editors, Combinatorics,
pages 52-71, Maitland House, Warrior Square, Southend-on-Sea, Essex
SS1 2J4, 1972. Mathematical Institute, Oxford, Inst. Math. Appl.

[12] R. Courant and H. Robbins. What is Mathematics? an elementary
approach to ideas and methods. Oxford University Press, London, 1941.

218

[13] D.Z. Du and F.H. Hwang. A proof of the Gilbert-Pollak conjecture on
the Steiner ratio. Algorithmica, 7(2/3):121-135, 1992.

[14] M.R. Garey, R.L. Graham, and D.S Johnson. The complexity of com-
puting Steiner minimal trees. SIAM J. Appl. Math., 32(4):835-859,
June 1977.

[15] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert
Manchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine - A
User’s guide and tutorial for networked parallel computing. MIT Press,
Cambridge, MA, 1994.

[16] E.N. Gilbert and H.O. Pollak. Steiner minimal trees. SIAM J. Appl.
Math., 16(1):1-29, January 1968.

[17) R.L. Graham. Private Communication.

[18] F.C. Harris, Jr. Parallel Computation of Sieiner Minimal Trees. PhD
thesis, Clemson, University, Clemson, SC 29634, May 1994.

[19] F.C. Harris, Jr. A stochastic optimization algorithm for steiner mini-
mal trees. Congr. Numer., 105:54-64, 1994.

[20] F.C. Harris, Jr. Parallel computation of steiner minimal trees. In
David H. Bailey, Petter E. Bjorstad, John R. Gilbert, Michael V.
Mascagni, Robert S. Schreiber, Horst D. Simon, Virgia J. Torczan,
and Layne T. Watson, editors, Proc. of the Tth SIAM Conf. on Paral-
lel Process. for Sci. Compul., pages 267-272, San Francisco, California,
February 1995. SIAM.

[21] S. Hedetniemi. Characterizations and constructions of minimally
9-connected graphs and minimally strong digraphs. In Proc. 2™4
Louisiana Conf. on Combinatorics, Graph Theory, and Compuling,
pages 257-282, Louisiana State Univ., Baton Rouge, Louisiana, March
1971.

[22] F. K. Hwang and J. F. Weng. The shortest network under a given
topology. J. Algorithms, 13(3):468-488, Sept. 1992.

[23] F.K. Hwang and D.S. Richards. Steiner tree problems. Networks,
22(1):55-89, January 1992.

[24] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem,
volume 53 of Ann. Discrete Math. North-Holland, Amsterdam, 1992.

[25] F.K. Hwang, G.D. Song, G.Y. Ting, and D.Z. Du. A decomposition
theorem on Euclidian Steiner minimal trees. Disc. Comput. Geom.,
3(4):367-382, 1988.

[26] J.J4J4. An Introduction to Parallel Algorithms. Addison-Wesley Pub-
lishing Company, Reading, MA, 1992.

[27] V. Jarnik and O. Késsler. O minimélnich gratech obsahujicich n
danych bodu [in Czech]. Casopis Pesk. Mat. Fyr., 63:223-235, 1934.

[28] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to
Parallel Computing: Design and Analysis of Algorithms. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.

219

[29] Z.A. Melzak. On the problem of Steiner. Canad. Math. Bull., 4(2):143-
150, 1961.

[30] M.J. Quinn and N. Deo. An upper bound for the speedup of parallel
best-bound branch-and-bound algorithms. BIT, 26(1):35-43, 1986.

[31] M.I. Shamos. Computational Geometry. PhD thesis, Department of
Computer Science, Yale University, New Haven, CT, 1978.

[32] Justin R. Smith. The Design and Analysis of Parallel Algorithms.
Oxford University Press, Inc., New York, NY, 1993.

[33] D. Trietsch. Augmenting Euclidean networks — the Steiner case. SIAM
J. Appl. Math., 45:855-860, 1985.

[34] D. Trietsch and F. K. Hwang. An improved algorithm for Steiner trees.
SIAM J. Appl. Math., 50:244-263, 1990.

[35] P. Winter. An algorithm for the Steiner problem in the Euclidian
plane. Networks, 15(3):323-345, Fall 1985.

220

