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ABSTRACT. It is well-known that if D is any finite set of integers
then there is an n large enough so that there exists a 2-coloring
of the positive integers that avoids any monochromatic n-term
arithmetic progressions whose common differences belong to D.
Ifd= (d1,...,ds) and 7t = (n1,... ,ni) are k-tuples of positive
integers, denote by f(7) the least positive integer N, if it exists,
such that for every 2-coloring of [1, N] there is, for some i, a
monochromatic n;-term arithmetic progression with common
difference d;. This paper looks at the problem of determining
when fz(fi) exists, and it’s value when it does exist, for k < 3.
A complete answer is given for k = 2. A partial answer is
given for k = 3, including the fact that for all ordered triples d,
f4(4,4,4) does not exist.

1 Introduction and Terminology

Van der Waerden’s theorem on arithmetic progressions [11] tells us that for
each positive integer n, there is a least positive integer N = w(n), such that
whenever [1, N] = {1, ..., N} is 2-colored, there must be a monochromatic
n-term arithmetic progression. Analogues of van der Waerden’s theorem
have been considered, where the collection of all arithmetic progressions, A,
is replaced by some other collection of sequences B. If, for a given collection
B, w'(n) exists for all n, then B is said to have the Ramsey property. When,
for a given n, w’(n) does not exist, we write w’(n) = oco.

Of course if B is a superset of A, then by van der Waerden’s theorem
B has the Ramsey property. The associated Ramsey functions w/(n) have
been studied for a variety of such B; examples can be found in [2,5-7]. In
[4,8-10] the authors considered certain analogues of van der Waerden’s the-
orem involving arithmetic progressions (mod m), i.e., increasing sequences
{zi:1<i<n}where forsomed, 1 <d<m-—1, wehave z; —z;—1 =d
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(mod m) for all 4, 2 < ¢ < n. One interesting result is that, for every
m 2> 2, the collection of all arithmetic progressions (mod m) does not have
the Ramsey property; in fact, in [4] it was proven that for this collection of
sequences,

w'(n) = co whenever n > [m/2]. 1)

For an arithmetic progression S = {z +id: 0 <i <n—1}, we call d the
common difference of S. For convenience, we will sometimes refer to S as
a d-a.p. of length n. In a recent article, Brown, Graham, and Landman (3]
determined whether certain subcollections of A have the Ramsey property.
Specifically, let D be a set of positive integers, and let N = f(D,n) be
the least positive integer such that for every 2-coloring of [1, N] there is
a monochromatic n-term arithmetic progression whose common difference
belongs to D. Certain conditions on D were shown to be sufficient for the
Ramsey property. For example, if D is a set of positive integers containing
k-cubes for arbitrarily large k, then f(D,n) < oo for all n (in fact, the
Ramsey property is satisfied not only for two colors, but for = colors, for all
7). A deep paper of Bergelson and Leibman [1] contains a theorem which
implies, in particular, that if D is the range of any polynomial p with integer
coefficients such that the leading coefficient is positive and p(0) = 0, then
f(D,n) < oo for all n.

On the other hand if D is too sparse, then the corresponding collection
of arithmetic progressions will not have the Ramsey property [3]. In partic-
ular, this is the case for any finite set D. The main purpose of this article
is to introduce a related problem that, apparently, has not been studied
before. Namely, we look at the situation in which D is a given finite set,
and ask: for which »n does f(D,n) exist?

Although we can be sure that, for a given finite set D, f(D,n) does
not exist if n is large enough, it is not clear how large n must be. The
answer seems to depend not only on the size of the set D, but also on the
specific elements of D. For example, the third van der Waerden number,
w(3), is known to equal nine. Obviously, any 3-term arithmetic progression
that is contained in [1, 9] will have its common difference belonging to D =
{1,2,3,4}. Hence, for this choice of D, f(D,3) = 9. Meanwhile, if E =
{1,3,5,7}, then the 2-coloring of the positive integers 101010... clearly
avoids any monochromatic pair of elements whose difference belongs to E;
hence, f(E,2) = oco. In fact, this coloring shows shows that f(E,2) = oo
for any set E consisting only of odd numbers.

In this note, we look at the function f(D,n) for the cases in which |D| <
3. We can examine the problem in more detail by using the following
definition.

Definition 1. Let n,,...,n; be positive integers,_'and let di,...,dy be
distinct positive integers. Let i = (ny,... ,nx) and d = (dy, ... ,dx). Then
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fgR) is the least positive integer N, if it exists, such that for every 2-
coloring of [1,N] there will be, for some i, & monochromatic d;-a.p. of
length n;. If no such N exists, we write f{7) = oo.
Thus if D = {d, ... ,dx}, then f{7) < f(D, maxi<i<kn:).

If x is a coloring of [1, M| such that, for each i, there is no monochromatic
di-a.p. of length n;, we say that x is f(#i)-valid on [1, M]; or, when it is
clear what d and 7 are, we simply say that x is valid on (1, M].

2 Results

The case in which |D| =1 is easy. In [9] it was noted that, in this case,
f(D,?2) = oo (any 2-coloring x of Z* having the property that for all z,
x(z) # x(z + d), avoids 2-term monochromatic d-a.p.’s).

We next examine what happens when |D| = 2. We begin with a lemma
that enables us to assume ged (dy,...,dx) =1.

Lemma 1 Letd and % be as in Definition 1, and let v be a positive integer.
Then f,{7) = r[f£R) — 1] +1 (if f{7) = oo, then f_{7) = co).

Proof: Assume f7i) < co and let M = fi7i). Let x be any 2-coloring of
[1,7(M — 1) + 1]. Define x’ on [1, M] as follows:
X' (@) = x(r(z—1) +1).

By the definition of M, for some i, 1 < 7 < k, there is a d;-a.p.,, § =
{s1,... ,5n;} C [1, M], that is monochromatic under x’. Then {r(s; —1)+
1:1 < j < n;} is monochromatic under x and is an n;-term rd;-a.p. Thus,
fog@) <r(M-1)+1.

To obtain the reverse inequality, we know that there exists an f(7i)-valid
2-coloring ¢ of [1, M — 1]. Define ¢’ on [1,r(M — 1)] as follows:

¢lrG-1)+1,7j]=¢(j) foreach j=1,... M -1,

Then ¢’ is f, i()-valid on [1, (M —1)]. Hence f {7) > (M —1)+1. Itis
clear that this argument also takes care of the case in which fi{(7) = co. D

For | D| = 2 we have a complete answer. For convenience, if d = (a, b) we
will write f7as fop.

Theorem 1 Let a and b be distinct positive integers with g = ged(a,b),
and assume m < n. Then f,(m,n) = oo unless all of the following are
true:

(i) a/g and b/g are not both odd

(iiy m=2

(iii) a=g or n=2.

Furthermore, if fqp(m,n) < 0o, then fop(m,n)=(n-1)(a+b—-g)+1.
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Proof: We shall assume that g = 1 because, by Lemma 1, if the theorem
is true when g = 1, then if d; = a/g, d3 = b/g, we have f, y(m,n) =
glfaa(myn) =1 +1=(n-1)fa+b—g]+1.

We begin with the cases in which f, y(m,n) is finite. First assume a and
b are not both odd, and m = n = 2. By way of contradiction, let x be an
fa,5(2,2)-valid coloring of [1,a+b]. Let @ represent addition modulo a+b.
Then x(%) # x(i® a) for all i € [1,a+ b] because | i® a—i |=a or b. Thus

x(1+b) = x(1® (a+b—1)a) = x(1)

because a + b — 1 is even, a contradiction. Hence no such valid coloring
exists and f,5(2,2) <a+b.
To show the reverse inequality, define x on [1,a+ b — 1] by

() = 1 if { = ea(mod(a + b)) with e even
XHW=10 ifi= ua(mod(a + b)) with » odd

Since g = 1, x is a well-defined coloring of [1,a+b—1]. Now assume y, z €
(1, e+b—1] with 2z = y+a. Then z # a( mod (a+b)). Therefore x(y) # x(z).
Also, if y,z € [1,a+ b — 1] with z =y +b, then y = 2® a(mod(a + b)), so
that y = ta(mod(a + b)) where ¢ # 0, ¢ # 1. It follows that x(y) # x(z).
Hence x is an f55(2, 2)-valid coloring of [1,a + b —1].

Now assume a =1, b is even, and m = 2. For each i € [1,b(n — 1)), let

() = 1 ifiodd
TW=10 ifieven

Under +y there is no 2-term monochromatic 1-a.p. and no n-term monochro-
matic b-a.p. So f15(2,n) > b(n — 1) + 1. On the other hand if ¢ is
any 2-coloring of [1,b(n — 1) + 1] with no monochromatic 2-term 1-a.p.,
then ¢(i) = (i) for each i € [1,b(n — 1)]. Now if ¢(b(n — 1) +1) =
#(b(n — 1)), then we have a 2-term monochromatic 1-a.p., while otherwise
{14+i(n—1):i=0,...,n—1} is a monochromatic n-term b-a.p. Thus,
fip(2,m) =b(n—-1)+1.

We now do the cases in which f, is infinite. The case in which a and b
are both odd was mentioned in the introduction. The only case remaining
is that in which m > 2, n > 3, a # 1, and @ and b are not both odd
(notice that this covers the case of a = 1, m > 3, b even). To prove that
fa,p(m,n) = oo, we will exhibit an f, 3(m, n)-valid 2-coloring x of Z* that
is periodic with period 2a. Note that if b = i(mod2a) where a < i < 2a,
then if X = {z,z + b,z + 2b} were monochromatic under x, then for any
t > 0 satisfying 2ta > b, the set

Y = {z +4ta,z + 2ta + b,z + 2b}
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would be a monochromatic arithmetic progression with common difference
2ta — b = —i(mod2a). Hence we may assume b = i(mod2a) with 1 <17 <
a. Also, since x has period 2a, we may assume 1 < b < a.

We consider 3 subcases:
(i) @ even, bodd, 1 < b < a/2.
(ii) a odd, beven, 1 < b < a/2.
(iii) a/2 < b < a.
Subcase (i). For each i < a, let x(i) = 1 if ¢ is odd, and x(i) = 0 if ¢
is even; and for each ¢ > a, let x(i) # x(¢ — a). Then there is no 2-term
monochromatic a-a.p., and x has period 2a. Let B; denote the interval
[(4 - 1)a+1,ja]. If {z,z + b} is monochromatic with z € B;, then by the
way x is defined, since b is odd, + b € Bj1. Since 2+ b < ja + (a/2), we
have z 4+ 2b € By, so that x(z + 2b) # x(z + b). Thus there is no 3-term
monochromatic b-a.p. in Z+, and x is fo5(2,3)-valid on Z*.
Subcase (ii). Define x as follows:
x(1))=1for1<i<b
x(1)#x(E—-b)forb<i<a
x(3) # x(i — a) for i > a.

It is clear that there is no 2-term monochromatic a-a.p. If {z,z + b} is
monochromatic, then z € Bj, z+b € Bjy; for some j. Thus z+2b € Bjy4,
so that x(z + 2b) # x(z + b). Hence there is no monochromatic 3-term
b-a.p.

Subcase (iii). For every ¢, let x(B;) = 1 for i odd and x(B;) = 0 for i
even. Clearly there is no monochromatic 2-term a-a.p. Also, if {z,z + b}
is monochromatic, with z € B;, then = + b must belong to B;. Thus
z + 2b € B;;1 (or else 2b < a), so that x(z + 2b) # x(z). So x is valid. O

Theorem 1 says, in particular, that f(D,3) = oo whenever |D| = 2.
Although we do not have quite as complete an answer for the case of |D] = 3
as we do for |D| = 2, the following theorem does give us the comparable
result that f(D,4) = oo for every 3-element set D.

Theorem 2 Let a,b,c be positive integers with a = min{a,b,c}. Then
fu,b,c(4v 37 3) = 00.

Proof: The proof splits naturally into two cases:

Case 1. 2b < c.

In this case let x be the 2c-periodic coloring of Z* defined recursively as
follows:

x(1)=1for1<i<a

x(@)#x(i—a)fora<i<b

x(1) #x(i-b) forb<i<ec

x(3) #x(i—c) fori >ec.
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Let j = [§]. For1 <i < j, let By = [(i —1)b+ 1,ib] and let B; =
[(G —1)b+1,¢]. Clearly, in each B;, 1 < < 7, there is no monochromatic
2-term a-a.p. Therefore there is no monochromatic 3-term a-a.p. in [1,¢J.
Notice that there is no monochromatic 2-term a-a.p. in {1, 2a], and so there
are none in [kc+1, kc+2a] for each non-negative integer k. Thusin Z* there
is no monochromatic 4-term a-a.p. Similarly, there is no monochromatic
3-term b-a.p. Finally, it is clear that there is no monochromatic 2-term
c-a.p. This implies that f,3c(4,3,3) = oo (in fact we have shown that
fap,c(4,3,2) = 00).

Case 2. 2b > c.
Let x' be the 4c-periodic coloring of Z* defined by:
xX(@)=1lforl1<i<a

xX@)#x(E—a)fora+1<i<b

X@)#xX(E-b)forb+1<i<2

x'(3) # /(i = 2¢) for i > 2¢.

Letting d = 2¢, then since 2b < d, by the method used in Case 1 we
see that under )’ there is no monochromatic 4-term a-a.p., no monochro-
matic 3-term b-a.p., and no monochromatic 2-term d-a.p. Hence there is
no monochromatic 3-term c-a.p. This completes the proof. a

We believe that Theorem 2 can be improved. Namely, we suspect that
f(D,3) = oo whenever |D| = 3. This may not be difficult, but we have not
been able to find valid colorings for each of the cases. We do have a bit
more information about the function f42,2,3).

Proposition 1 Let u = ged (a,b,c) and g = ged (a,b). Then fop,(2,2,3) =
oo if either (i) a/u and b/u are odd, c/u is even, and g # 1 or (ii) all of
a/g, b/g, and c/u are odd.

Proof: We assume that u = 1, since the proposition will then follow from
Lemma 1.

First consider the case in which c is even, @ and b are odd, and g # 1.
By assumption g fc. Hence by Theorem 1 there is a coloring x of Z+ that
is fg,e(2,3)-valid. Then for all z > 1, x(z) # x(z + ig) whenever i is odd,
so that x is fa (2,2, 3)-valid.

Now assume a/g, b/g, and c are odd. If a, b, and c are all odd, then, as
we have mentioned before, f54,c(2,2,2) = co. So we may assume that g is
even. As in the first case, we can apply Theorem 1 to the pair (g, c) and,
in the same way, this yields an fj (2, 3)-valid coloring. (]

Remark. Computer data suggests that all choices of a,b, ¢ not covered
by Proposition 1 do yield a finite value for f,,(2,2,3). Certain cases are
immediate from Theorem 1. For example, if exactly one of a/g and b/g
is even, then f35¢(2,2,3) < fo5(2,2) < a+b— g+ 1. If, in addition,
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¢ =max{a,b,c}, then f55c(2,2,3)=a+b—g+1,since [l,a+b—-g+1]
could not contain a 3-term c-a.p. There are some other cases for which we
are able to give an exact formula for fa5c(2,2,3). One such case is the
following.

Proposition 2 Let a and b be odd and c even. Let ged (a,b) =1, and
assume ¢ > a,b. Then fo40(2,2,3) =2c+1.

Proof: Let f = f55¢(2,2,3). It is obvious that the coloring 101010...10
of [1,2c| avoids monochromatic 2-term e-a.p.’s and b-a.p.’s and monochro-
matic 3-term c-a.p.’s. Hence f > 2¢c+1.

To show that f < 2c+ 1, assume that x is a valid 2-coloring of [1, 2¢+1].
Since g = 1, there exist positive integers rg, sp such that roa — sob = c. We
now define a sequence recursively as follows. Let ; = 14+r1a—3ob where r;
is the least integer such that rja—seb > 0. Once z;, ¢ 2> 1, has been defined,
let y; = 14 r;a — sob, where s; is the least integer such that r;a — s;5 < 2c.
Then once y; has been defined, let z;41 =1+ 7410 — s;b where 7y is the
least integer such that r;;1a — s;b > 0. Notice that s;_; > s; for alli > 1,
for otherwise, since r;a — (s; — 1)b > 2¢, we would have r;a — 5,10 > ¢,
contradicting the meaning of r;.

Now let k be the least positive integer such that sy <0. Then1 <rxa <
2¢+1. Now consider the sequence S = {1, 14+7¢a, Tk, Yk—1, Tk—1, Yk—2; ---» 2,
y1,Z1,c+ 1}. It is clear that S C [1,2¢c+ 1]. By our assumption about x,
x(z) # x(z+a) whenever z, z+a € [1,2c+1]. Hence, if z, z+ja € [1,2¢+1],
then x(z) = x(z+ja) if and only if j is even. The same is true if a is replaced
by b. Thus, since c is odd, and since each pair of adjacent elements of §
differ by either a multiple of a or a multiple of b, we see that x(1+c) = x(1).

By an argument symmetric to the one just used, one can show that
x(c+ 1) = x(2¢+1). We omit the details [briefly: use 2c + 1 in place
of 1, define z; = 2c + 1 — (r1a — sob), where r; is the least such that
r1a — sob > 0, etc.]. Then {1,c¢+ 1,2c+ 1} is a monochromatic 3-term
c-a.p., a contradiction, and the proof is complete. o

3 Remarks and Questions

When |D| = 3, there are certain other cases in which a precise formula for
fp(n1,n2,n3) can be easily determined. For example, if D = (1,5, c) where
exactly one of b and c is odd, say c, then by Theorem 1, f{2,n2,n3) <
(n2 — 1)b+ 1, while the coloring 1010...10 of length (n; — 1)b shows that
the reverse inequality also holds.

For each positive integer k, let m = m(k) denote the least positive such
that for all D with |D| = k, f(D,m) = co. We would very much like
to know about the function m(k). The results of this paper show that
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m(1) = 2, m(2) = 3, and m(3) = 3 or 4. Based on computer output, we
conjecture that m(3) = 3. By (1), we see that-f(D,3) = oo for those D
which contain no multiples of 3 and for those which contain no multiples
of 4. Perhaps m(k) < k+ 1 for all k.

In the remark preceding Proposition 2, it was noted that fg4,.(2,2,3) <
a+b-g+1if g = ged (a,b) and exactly one of a/g and b/g is even.
We would like to have a precise formula for the function fi{(2,2,3). Even
letting ged ¢ = 1, computer data does not suggest an obvious formula.
For example, fixing a = 8, and varying b, we found the following values of
f=fape(2,2,3)and a+ b - f.

b: 13 5 7 911131517 19 21 23 25 27 29 31

f: 9913 10 11 19 19 23 25 25 29 25 27 35 35 39

a+b—-f:02 0 5 6 0 2 00 2 0 6 6 0 2 0
We would also like to characterize those triples d = (a,b,¢) for which

£#2,3,3) < .
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