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ABSTRACT. The numbers of the sets of independent edge sets in
2-lattice graphs, wheel graphs and circuit graphs are computed.

Let G = (V,E) be a graph with vertex set V and edge set E. An
independent set of G is a subset of V' such that no two of its vertices
are adjacent, and the Fibonacci number f(G) of G is defined to be the
number of the set of independent sets in G. In [2] and (3], it is observed
that the Fibonacci number of the graph P, ,as in Figure 1, of a path on
{1,2,- -+ ,n} is fa+1, the (n+1)th Fibonacci sequence, which is defined by

fO =fi=1, fn = fa-1 + fn-2.
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FIGURE 1.

They also dealt with the lattice graph La, as in Figure 2, and obtained
that

flae) = 3+ VA 4 31— VP
which satisfies recursion
f(Lan) = 2f(Lagn-1)) + f(L2(n-2))- (1)

Although it may difficult to find a formula for the Fibonacci number of
a general m-lattice graph Lmyn, Yeh [4] gave a computer algorithm that
counts the Fibonacci number f(Lmn).
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FIGURE 2.

An independent edge set of G = (V, E) is defined to be a subset of E
such that no two of its edges are adjacent. The number of the set of
independent edge sets in G is denoted by f£(G), and for each nonnegative
integer k, the number of the set of k-independent edge sets in G is denoted
by fe(G, k). It is obvious that fg(G) = 3,50 f&(G, k). From the viewpoint
of the matching polynomial of a graph, it was shown by Farrell [1] that
the coefficients of the matching polynomial are the numbers of the sets of
independent edge sets of various cardinalities in the graph. In this paper, we
count the numbers of the sets of independent edge sets in 2-lattice graphs,
wheel graphs and circuit graphs.

Theorem 1. fg(P,) = fa.

Proof: It is clear that f(Po) = fg(P1) = 1, and the independent edge
sets of P, may be divided into those which conatin the last edge {n—1, n}
and those which do not contain the last edge in P,, thus we have fe(Pn) =
fE(Pn—2) + fE(Pn—l)'

To compute fg(L2n), We need two auxiliary graphs B, and C, as in
Figure 3.
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Let a,,b, and c, denote the numbers of the sets of independent edge sets
in Loy, B, and C,, respectively.

Theorem 2. The numbers of the sets of independent edge sets a,, b, and
¢n, satisfy the recurrence relation

ZTnt1 =3Tp + ZTn—| — Tn_2. (2)
Numerically,

an = .664591(3.21432)" + .255972(—.675131)" + .079437(.460811)". (3)
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Proof: The number of the set of independent edge sets in Lo, can be
computed by counting those which contain the nth stalk edge in Figure 2
and those which do not contain the nth stalk edge. We obtain that

@n = an-1+ (b +cn), (4)
bp = Gn—1+bn_1, (5)
Cn = Gn-2+ bn_1. (6)
Substituting (6) in (4), we have
Gn = Cnt1 + Cn. ]
From (6)
bp_1 =cCn—@n-2=0Cp —Cpn—1 —Cn—2. €))

Substituting (7) and (8) into (5), we obtain
Cnt1 — Cn — Cn—1 = (€n + €n—1) + (cn — Cn—1 — Cn-2),
and thus the recursion (2) holds for ¢,. From (7), a,, is a linear sum of cp 41
and c,, it follows that a,, satisfies (2), and then by (6), b, satisfies (2).
The characteristic equation of recurrence relation (2) is
-3 -24+1=0
which has numerical solutions 3.21432, -.675131 and .460811. Compute the
inital values of a,,, we have ag = 1,a; = 2 and a3 = 7. By solving the linear
homogeneous recurrence (2), the general solution (3) follows.

Notice that, by Theorem 1, fe(Pr) £ f(Py,) for all n, however, by com-
paring (1) and (2), we have fg(Lon) = f(L2s) whenever n > 2. Extension
of Theorem 2 to compute f(Lmn) Of a general m-lattice product graph
Lum» seems worthy of further study. Consider the wheel graph W,, and two
auxiliary graphs D, and the circuit graph E, as in Figure 4. The center
vertex is denoted by w, the numbers of the sets of independent edge sets in
Wa, D, and E, are denoted by wy, dn and e, respectively.
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FIGURE 4.
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We first count Fg(Phn, k), and obtain a well-known combinatorial identity.

Theorem 3. For each nonnegative integer k,
. -k
0 foPuk) = (" *);

@) fo=Tio ("3 )

Proof: Let p(n, k) denote the number fg(P,, k). Then it is obvious that

p(na k) =p(n—2,k- 1) +p(n - Lk).

9)

Let g(z,y) be the generating function of the sequence p(n, k). We compute

that

g(:c, y) = Z Zp(n: k)znyk

n=0k=0

= Y > pnk)z"* +p(1,1)zy + Y p(n,0)z"

n=2 k=1 n=0
— n, k 1

= 2D _pn ket +—.
n=2k=1 z

Substituting (9) into (10), we have

(10)

9(zy) = DY pln-2k-1)z"y +ZZp(n 1, k)z"y* +—

n=2 k=1 n=2k=1
oo n
= YD plm ke
n=0 k=0
oo n
x(z Zp(ns k)xn Zp(n: O)xn) + -
n=0 k=0 n=0

= zyg(z,y) + zg(z,y) + 1.
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From (11),

glz,y) =

1 X .,
= — Zzz'y'(l —z)™
i=0

(o]

= sziy‘(l - g)~G+1)
=0

SR )Ew o

Collecting the coefficeint of z"y* of g(z,¥) in (12), we conclude that

p(n k) = ( :——212)=(n;k )

and this proves (7). Taking the sum over k on (¢), the result (ii) follows.

Hopkins and Staton [2] determined the Fibonacci number f(W,) =
(=1)™*1 4 (14 v/2)"* + (1 — v2)™. In the following we compute fr(Wn) and
f E (En)

Theorem 4.
(i) fe(Wn,k) = fE(Pa,k) + nfe(Pa-1,k = 1) + fE(Pa-2,k - 1);
(i) fE(En,k) = fe(Pa-2,k — 1)+ f&(Pn, k);
(i5) fE(Wa) = fa+nfa-1+ fa-2;
(i) fe(En) = fn-2+ fn.

Proof: Let w(n, k), p(n, k), d(n, k) and e(n, k) denote the numbers
fE(Wp, k), f&(Pa, k), fE(Dn, k) and fg(Eq, k) respectively. The number
w(n, k) can be computed by counting those k-independent edge sets which
contain the edge {w,n} and those which do not contain the edge {w,n} in
W,. Then we have

w(n, k) =p(n — 1,k — 1) + d(n, k). (13)

We compute d(n, k) by counting those which contain the edge {w,n — 1}
and those which do not contain {w,n — 1} in Dy,

d(n, k)= p(n—1,k — 1) + d'(n, k), (14)
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where d'(n, k) is the number of the set of k-independent edge sets in the
graph by removing the edge {w,n — 1} from D,,. Continue the counting in
this way on d'(n, k), we obtain from (13) and (14) that

w(n, k) =np(n — 1,k — 1) + e(n, k).

By similar counting on e(n, k), we have e(n, k) = p(n — 2,k — 1) + p(n, k),
and this proves (i) and (4%).

By summing over k on equations (z) and (i), and together with Theorem
1, the result (44) and (iv) follow.
References

(1] EJ. Farrell, An introduction to matching polynomials, J. Comb. The-
ory, Series B 27 (1979), 75-86.

[2] G. Hopkins and W. Staton, An indentity arising from counting inde-
pendent sets, Congressus Numerantium 44 (1984), 5-10.

(3] H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci
Quaterly 20 (1982), 16-21.

[4] L. Yeh, Fibonacci numbers of product graphs, J. Comb. Math. Comb.
Comp., to appear.

236



