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ABSTRACT. The edge-integrity of a graph G is given by

sg}ls?c){lsl + m(G — S)}, where m(G — S) denotes the max-

imum order of a component of G — S. Let I’(G) denote the
edge-integrity of a graph G. We define a graph G to be I'-
maximal if for every edge e in G, the complement of graph
G, I'(G + ¢) > I'(G). In this paper, some basic results of
I’-maximal graphs are established, the girth of a connected I'-
maximal graph is given and lower and upper bounds on the
size of I’-maximal connected graphs with given order and edge-
integrity are investigated. Also, the I’-maximal trees and uni-
cyclic graphs are completely characterized.

1 Introduction

In this paper we consider finite undirected simple graphs. The edge-integrity
of a graph attempts to measure the disruption caused by the removal of
edges from the graph. The order of a component or graph is the number of
its vertices, and we let m(H) denote the maximum order of a component
of graph H. The edge-integrity is defined as

! — : _
I'(G) = gnglg{lSl +m(G - S)}.
Let G be a graph and G be the complement of G. G is I’-maximal iff
I'(G +e) > I'(G), for every edge e of G. Let M (k) denote the collection of

all I’-maximal graphs with edge-integrity k and M,,(k) denote the collection
of all I’-maximal graphs with order » and edge-integrity k.
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2 Some Basic Properties

Let G = (V, E) be a simple graph with vertex set V and edge set E. For
S C E, let I'(S) denote |S| + m(G — S). A set S C E for which I'(S) is
minimized is called an I’-set of G. If Hy, Hy,-- - , H, are the components of
G - S with |V(H;)| = n; such that ny < np < --- < n,, we say that G — S
has type (n11n2:"' :nr)- For 1,V C V(G)’ let [V'I)V2]G = {e =I1Zp €
E(G)|z; € Vi,i=1,2}. When G can be understood from the context, we
write [V1, Vo] for [V, V2)e.

Proposition 2.1. Assume G € M(k). Let S C E(G) with I'(G) =
I'(S) = k. Let Hy,Hy,:-- ,H, be the components of G — S with type
(r1,m2,-++ ,n;). Then H; 2 K, (i=1,---,7).

Proof: If there exists an edge e € E(H,), then in G +e, I'(S) = k, and so
I'(G + €) < k, a contradiction. o

Proposition 2.2. Assume G € M(k) and S C E(G) is an I'-set. Let
Hy, H,,--- ,H, be the components of G — S with type (n1,m2,--- ,n.).
Assume that r > 2. For any 1,3, we have

ny + I[V(Hi), V(HJ)]I < n; +nj.

Proof: We consider two cases.
Case 1: Suppose that there exist i, such that i,5 < r and n, + [V(H,),
V(H;)|l 2 ni + nj. Then |S| — |[V(H:), V(H))]| + ns + nj < |S| + 7.

If [V(H:), V(H;)] # 0, let S’ =S — [V(H;), V(H;)]. Then

I'(8") =S| = |[V(H:), V(Hy)|| + maz{ns +nj,n.} < |S| + 1, = I(S).

However, H{UH J-U[V(H.-); V(°H j)] can not be a complete subgraph, contrary
to Proposition 2.1.

If [V(H:),V(H;)] = 0, then |S| + n; + n; < |S| + n,. Hence, for any
edge e € [V(H;), V(H;)]z, we have that I'(G +e) < I’(G), contrary to the
definition of I’-maximal graph.

Case 2: If i = r or j = r, then we only need to prove that, for any
1<i<r—1, we have

[V (H-), V(H))l < ns.

Otherwise, suppose that there exists an integer  with 1 g'z’ <r—1such
that |[V(H,), V(H:)]| > ni. Let S’ = S — |[V(H,.), V(H)]|. We have

I'(s") =8| = |[V(H), V(H)]| + nr + 7 < |S| + 1y = I'(S).
Since G|V (H,), V(H;)] is not a complete subgraph of G, we get a contra-
diction with Proposition 2.1. a
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Corollary 2.8. Let G € M(k) and S C E(G) be an I'-set of G. Assume
that G — S has type (ny,ng,--+ ,n,) (r > 2). Then ng > n, /2.

Proof: By Proposition 2.2, we obviously have n; + ng > n,. If np < n,/2,
we have n; + na < 2ng < n,.. Therefore ny > n, /2. O

Since the removal of an edge which leaves an isolated vertex reduces the
order of some component (not necessarily the largest) by one, we have the
following propesition.

Proposition 2.4. Let G € M(k) and S C E(G) be an I’-set. And let
H,, H,,--- ,H, be the components of G — S with type (ny,ns, -+ ,n,). If
G is connected, then we have ny > 2.

3 The girth of I’-maximal graphs
First, we construct two classes of graphs and prove three lemmas which we
will use.

Let Ho, Hy,--- , H, be 7+ 1 complete graphs with H; 2 K,, (0 <i<r)
such that pg > p; > p2 > -+ 2 pr. For each 1,0 < ¢ < r, we choose
one vertex v; from V(H;) and construct a new graph G(po;p1, - ,pr) as
follows: .

V(G(po;p1,--- ,pr)) = V(Ho) UV(H1)U---UV(H,),

E(G(po;p1,-+ - ,pr)) = E(Ho)UE(H1)U- - UE(H,)U{vov1, vov2, "+ , Yo¥r }-

If py = p = - -- = p; = p, we simply denote this graph by G(po; (p);, Pj+1,

P,
Lemma 3.1. Suppose that G is a graph with unique I'-set S C E(G) and
H,,H,,--- ,H, are the components of G~ S with H; = K,,, 1 <i<r).
If for any i,j such that 1 < i,j <1, ni +n; > maz{ny,ns,-- ,n.}, then
G is an I'-maximal graph.

Proof: For any e € E(G), we consider graph G + e. Assume that S’ is an
‘set of G +e.

Case 1: e€ §'. Then I'(G+e)= ||+ m(G+e-85)=|5—€|+1+
m(G—(§'-¢€) 2 I'(G)+1.

Case 2: e¢ S'. If §''= 8, then I'(G+¢) = |S|+m(G+e-8) >
|S|+m(G-8)=I'(G);ifS"# S, then I'(G+e)=|S|+m(G+e—-8") >
I1S'| + m(G - S') > I'(G). a
Lemma 3.2. Suppose that p, > 2 and for any 1,5 such that 1 < 4,5 <
T, pi +p;j > po. Then

(i) I'(G(po;ip1,--- ,pr)) =po+T.
(ii) The I'-set of G(po;p1,- -+ ,Pr) is unique.
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(iii) G(po;p1,---,pr) is I'-maximal.

Proof: (i) Let A(G) be the maximum degree of a vertex of graph G.
We have, for any graph G, I'(G) > A(G) + 1 (see [3]). Thus we get
that I'(G(po; p1,-- - ,pr)) 2 po + 1. Let S = {wov1,vov2, - ,%v,}. Then
I'(S) = Po +r and so I’(G(poipl’ ccc aPr)) =Po + 7.

(ii) Suppose that S’ is an I'-set of G such that S’ # S. Let ¢ be the
number of H;s that S’ intersects. We might as well assume $'NE(H;,) # 0,
for some 1 <t < c < r+1. Note that since H;, = Kp,, and p;, > 2,
IS"NB(H,)| 2 p, —1 21, 1<t <) If §NE(Hy) = 0, then the
component of G — S’ containing Hy also contains at least one vertex from
each H;,, 1 <t < ¢, and so this component has at least Po + ¢ vertices.
Hence I'(S) = I'(S") = |S'| + m(G — ') 2 |S| — e+ Zgy (pi, — 1) +po +
¢ 2 I'(S) + ¢ > I'(S), a contradiction. Thus we assume H;, = Hp and
X =S"NE(Hp) #0.

Let Hg and Hg be the two parts of Ho — X such that vg € V(H}). Then
since Ho = Kp,, |X| = |V(Hp)|(po — |V(H})|). Since wo € V(H}), the
component of G — S’ containing V(H}) also contains at least one vertex
from each H;,, 1 <t < c—1, and so m(G — S’) > [V(H§)| + c. Hence
I'(S) = I'(S") = |S'| + m(G - §') 2 | 8] — e+ T2 (s, — 1) + |V (H3)|(mo —
V(H) + IV(Hp)| + ¢ > I'(S) + c—1 > I'(S). This implies ¢ = 1 and
V(Hg) = {wo}.

Let Epo(vo) C E(Hp) be the set of edges in Hp incident with vg. Since
Hy = Ky, |Eno(vo)] = po — 1. Since ¢ = 1 and V(Hj) = {w}, S’ =
SUEp,(vo) and G—S’ has components Hy, Hy, - - - , H, and Hy—vy. Hence
I'(8) = I'(S") 2 |S|+ (po—1) +|V (Ho—v0)| = r+2po—2 = I'(S) + (po—2),
and so po = 2. Since p, > 2, we conclude that pg = p; = --- = pr = 2.
Therefore I'(S) = I'(S") = || + m(C - S) = (r+ 1) +2 > r+2 = r(s),
a contradiction. This proves (ii).

(iii) This result follows from (ii) and Lemma 3.1. a

Let T(d1,d2) be a tree with vertex set {u;,us, v, wi, v, will < i <
d1,1 < j < da} and edge set {ujus, u Wi, wiw, ugvj,vjv_;-ll <:1<d,l1<L
J < d2}; let A; be a graph obtained from K3 with vertex set V(K3) =
{v1,v2,v3} by adding three new vertices: u;,u2,us, and three new edges:
U} V1, Ugv2, u3vs; and let A(d,, dy, d3) be a graph obtained from K3 with ver-
tex set V(K3) = {v1, v, v3} by adding a new vertex set {zi, z}, v, A IEA
<i<d,1<j<dyand1<k<d3}and a new edge set {v1zi, 22}, voy;,
yjy;‘)v3zk1 zkz;cll <i< dlal SJ < d2 and 1 < k < d3}-
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Figure 1. The graphs T(2,3) and A(3,2,1)

Lemma 3.3. If one of di, d2 and ds is equal to zero and at least one of
them is not equal to zero, then A(ds,dz,ds) is I’-maximal.

Proof: Without loss of generality, we suppose that d3 = 0. Let G =
A(dy, d2,0). Assume that S C E(G) is an I'-set of G. Let Sy = {v1z;, vay;|1 <
i <d;,1 < j < dy}. We consider three cases.
Case 1: Only one edge e of v1v2, v2v3 and vsv; belongs to S. We easily
check that S; C S and so I’(S;) < I'(S), a contradiction.
Case 2: Only two edges e; and e of v1v2,v2v3 and w3zv; belong to S.
Obviously, {e1, ea} # {vovs, v3v:}. We might as well assume that {e;, ez} =
{v1v2,v3v1} and S = {v1;,v295|1 < i < 71,1 < j <2} U {eg, €2}, where
T1 < dy,r2 < da. Then I'(S) = 2471 +ro+max{2(dy —r1)+2, 2(d2—r2)+1}
=max{4 + 2dy — 7y + 12,3+ 2d2 + 71 — 12} > I’(S)), a contradiction.
Case 3: {viv2,vov3,v3v1} C S. We might as well assume that S =
{v1zi, v2y;|1 < i <7y, 1 < j <72} U {v1v2, %203, v3v1}, Where 1y < dy, 72 <
da. Then I'(S) > I'(S:), a contradiction.

Hence, S does not contain v;v2, vous or vzv;. Obviously, S can be only
S1. The result follows from Lemma 3.1. O

Proposition 3.4. Let ‘G be a connected I’-maximal graph. Suppose
that there exists an I'-set S C E(G) such that G — S has components:
Hy,Hy,--- ,H, with c= I_-’%J

(i) If n is even, then G = G(2;(2)c-1) or A;.
(ii) If n is odd, then G = A(d;,d2,0), where dy +dy =c— 1.

Proof: (i) If n is even, then ¢ = n/2. Hence, each component Hy, Hy,--- , H,
of G- Sisa K.

Since G is connected, we might as well assume |[V (H;), V (H2)]| # 0.
Claim 1: For any 4,5 > 3 (i # j), [V(H;), V(H;)] = 0.

If not, let e € [V(H;), V(H>)] and e, € [V(H;), V(H;)] for some 3,5 >
3(i#7). Let S’ =S5—{e,e1}. Then I'(S") = |S| -2+ (2+2)=|5]|+2 =
I'(S), contrary to Proposition 2.1.
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Claim 2: If |[V(H,), V(H:)]| # 0 (3 < i < c), then |[V(Hy), V(H,)]| = 0,
for any j (3 <j < cand j # i); orif |[V(H2), V(H;)]| # 0 (3 <i < ¢), then
\[V(Ha), V(H;)][ =0, for any j (3 < j < cand j # i).

Otherwise, we assume e, € [V(H;),V(H;)), ez € [V(Hs), V(H;)], where
3<4j<candi#j Let §'=5— {e1,ea}. Then I'(S")=|S|-2+4=
|S|+ 2 = I'(S), contrary to Proposition 2.1.

Claim 3: For any 1 <14,j <¢, and i # j, |[V(H;), V(H;)]| < 1.

Otherwise, we can choose two edges e, ez € [V(H;), V(H;)]. Let §' =
S — {e1, e2}. Similarly, we get a contradiction.

Now we consider three cases.

Case 1: ¢ > 4.

Without loss of generality, we assume |[V(H2), V(H;)]| = 0, for any i (8 <
i <c),and V(H;) = {u1,u2}. Let d(uy) = dy+1, d(u2) = da+1, where d; +
d2 = c¢—1. Then this I’-maximal graph is isomorphic to tree T'(d;, d2). We
claim that d; = 0 or d; = 0. Otherwise, assume that [u;, V(H;)] # 0 and
[u2, V(Hj)] # 0, where i # j. Let e; € [u1, V(H;)] and ez € [ug, V(Hj;)).
Let 8’ = SU {ujus} — {e;,e2}. Then I’(S’) = I’(S), and so S’ is also an

'-set of T'(d,, d2), which yields a contradiction to Proposition 2.1. Thus G
is isomorphic to G(2; (2)c-1)-
Case 2: ¢c=3.

If |[V(H:), V(H3)]| = 0 or |[V(H2),V(Hs)]| = 0, then this case returns
to case 1 and G is isomorphic to G(2;(2)2). If |[V(H,), V(Hs)]| # 0 and
|[V(Hz), V(H3)]| # 0, by claim 3, |[V (H1), V(H3)]| = 1and |[V(H2), V(H3)]|
= 1. Hence, we need only consider four graphs: G;,G3,Cs and A,
where G, is a graph with vertex set {v,v;,v3,v4,u;,u2} and edge set
{v1v2, v2u3, v3v4, V4V1, u1v1,Ugv2}, Ga is a graph obtained from a 5-cycle
Cs with vertex set {u;|1 < i < 5} by adding a new vertex vp and a new
edge vov; and Cg is a 6-cycle. We easily check that G,, G and Cg are not
I’-maximal and A, is I’-maximal.

Case 3: ¢=2.

If r = 2, this I"-maximal graph is a path with order 4, namely graph
G(2;2).

Hence, the result follows from Lemma 3.2.

(ii) If n is odd, then ¢ = (n — 1)/2. Hence, one of H,, Ha,...,H, is
isomorphic to K3 and the others are isomorphic to K.

Without loss of generality, we suppose H, & K3 and H; = K5, where
1 <i<c—1. Weclaim that [V(H;),V(H;)] = 0,1 < 4,5 <c—1 and
i # j. Otherwise, let e € [V(H;),V(H;)] and S’ = S — e. We have
I'(8") = I'(S), contrary to Proposition 2.1. Now we prove that, for any
i (1<i<c—1),|[V(H:),V(H.)]| = 1. If not, let e, e2 € [V(H;), V(H.))
and §' = S — {ej, e2}. Then I'(S’) = I'(S), contrary to Proposition 2.1.
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Hence, G is isomorphic to one of three kinds of graphs: A(d;,0,0),
A(dy, ds,0) and A(d;, ds,ds), where dy,ds,ds # 0, and so we need only
to consider graphs: A(d;,0,0), A(dy,d2,0) and A(d,, d3, d3).

Since dy,dy # 0, by Lemmas 3.2 and 3.3, A(d;,0,0) and A(d;,ds,0)
are I’-maximal. For graph A(d;,d2,d3) (di,dz,d3 # 0), let ' = SU
{v1v2, vovs, v3v1 }-{v1Z1,v2y1, 321 }. Then I'(S’) = I’(S), contrary to Propo-
sition 2.1. O

Corollary 3.5. Let T be a tree. Then T is I'-maximal iff T =2 G(2;(2)a),
d=>1).

Proof: Assume tree T € M(k). Let S C E(T) be an I'-set of T. Let
H,,H,,--- ,H. be the components of T'— S. By Propositions 2.1 and 2.4,
we have H; & K» (i = 1,2,---,¢). Hence, we know that any tree with
an odd number of vertices is not I’-maximal. By Proposition 3.4, this I’-
maximal tree must be isomorphic to tree G(2;(2)4), where d = ¢ — 1. By
Lemma 3.2, for each integer d > 1, G(2; (2)4) is an I’-maximal tree, and so
the proof is complete. O

Corollary 3.6. Any connected I’-maximal graph, except G(2;(2)q) (d >
1), has girth 3.

Proof: Let G = (V, E) be an I’-maximal graph with girth larger than 3
and S C E(G) be an I’-set of G. Let Hy, Hy,--- , H, be the components of

By the assumption that G has no 3-cycle and by Propositions 2.1 and
2.4, we know that H; = K, (¢ = 1,2,---,¢), where ¢ = |V(G)|/2. By
Proposition 3.4, G is isomorphic to the tree G(2;(2)4), where d=c—1. O

Corollary 3.7. Let G be a anicyclic connected graph. G is I'-maximal if
and only if G2 A, or A(dy,d»,0), where d; and ds are not both zero.

Proof: Let S C E(G) be an I'-set of G and H,, Hs,--- , H, be the com-
ponents of G — S. Since G is a unicyclic connected graph, ¢ = |%]. This
corollary follows from Proposition 3.4.

4 The minimum size of an I’-maximal graph
Let m(n, k) = min{|E(G)| : G € Myn(k) and is connected}.

Lemma 4.1. Assume G € M,(k). Let S C E(G) be an I'-set of G. Let
H,,H,,--- ,H. be the components of G — S with type (n1,n2,--- ,n¢).

Then 9
m(n, k) > [(n— V' _(pt+1) +k] .

2c 2
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Proof: By Proposition 2.1, we have

1B = 52s (3 ) +151= 550 () + -

Combining the constraint ; + ny + - - - +n, = n, the minimum can be de-

termined by using calculus. Whenn; =ny=-.--=n,_; = (n—1)/¢,n. =
2

(n — 1+ ¢)/c, it is attained, namely, |E(G)| > 51;—:)— - ﬁ'# + k. Since

m(n, k) is an integer, m(n, k) > [S"T‘:Lz - 5"7“2 + k]. a

Note that the maximum value of ¢ in Lemma 4.1 is [}]. When ¢ =
(5], the I'-maximal graphs are what Proposition 3.4 described. Hence, by
Proposition 3.4, we have

Corollary 4.2.

2r—-1, if(n,k)=Q2r,r+1),7r>2
m(n, k) =¢2r+1, if(n,k)=(2r+1,7+2),r>2 (1)
6, if (n, k) = (6,5).

Lemma 4.3. Let G be an I'-maximal graph with order n and S C E(G)
be an I'-set of G. Suppose that G — S has type (n;,n3,---,n.) and
c= %] -1

(i) If n is even and n > 6, then G— S has type (2,2,---,2,3,3) or (2,4).

(ii) If n isodd and n > 7, then G—S has type (2,2,---,2,3,3,3) (n > 9),
or (2,3,4), or (2,5) or (3,4).

Proof: (i) Suppose n is even and n > 6. Since G is I'-maximal, by
Proposition 2.4 , n; > 2.
Claim: If c=n/2 -1, then 2 < n. < 5.

Ifn, = 2, then ¢ = n/2; if n. > 5, then c—1 < (n—n,)/2 < (n—5)/2 and
so ¢ < (n —3)/2 < n/2 -1, contrary to the assumption that ¢ = n/2 — 1.
This proves the Claim by contradiction.

Hence n. = 4 or 3. If n. = 4, since n —4 = 2(c — 1), then n._; = 2. By
Corollary 2.3, we know that its type must be (2,4). If n. = 3, since n is
even, then n._; = 3. Since n ~ 6 = 2(c — 2), n.—2 = 2. Hence its type is
(2,2,---,2,3,3).

(ii) Suppose nis odd and ¢ = ﬂ;—l —1, where n > 7. By similar argument,
we know that n. = 5, 4 or 3. By Corollary 2.3, if n, = 5, then its type is
(2,5) ; if ne = 4, then its type is (2,3,4) or (3,4); if n, = 3 and (n > 9),
then its type is (2,2,---,2,3,3,3). O
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Theorem 4.4. Suppose that (n, k) # (2¢c,c+1),(2¢c+ 1,c+2) and (6, 5),
where ¢ > 2.

(i)

s - e3 4130, 13 <k-,
m(n, k) > (272122 gl.f_lz +|.2J-| ) lz_l_. @
Gef - ae], irlgl>E-1

(ii) If |3] < k — 1, then equality in (2) holds if and only if (n,k) =
(2¢+3,¢+2) (c23).

(iii) If |3] > k — 1, then equality in (2) holds if and only if (n,k) =
(8c,c+2) (¢ 2 4), (3c—1,c+2) (c > 5),(16,8),(18,9),(19,9), (20, 10)
or (22,10).

Proof: (i) Assume G € My,(k). Let S C E(G) be an I’-set of G. Let
H,, Hy,--- , H; be the components of G — S with type (n1,n2,--- ,n.). By
Proposition 3.4 and Corollary 4.2, we know ¢ < | 3] — 1 and so n. > 3.
Since G is connected, k > (¢ —1) + 3, so ¢ < k — 2. Hence, we have

cgmin{[-;fj -1,k -2} (3)

If|3] <k-1,thenc< 3| ~1and k> %] +1;if [3] > k—1, then
¢ < k — 2. Hence the inequality (2) follows from Lemma 4.1.

Next, we shall determine all values of n and k for which m(n, k) reaches
its minimum.

(ii) Suppose that 2| <k —-1.

Claim 1: If equality holds in (2), then (n,k) = (2c¢+ 3,c+ 2) (c > 3).

Let G € M,(k) and S C E(G) be an I’-set of G such that G — S has type
(1,72, ,n;). We shall show that if |E(G)| reaches the lower bound in
(2), thenc=|%] -1, |S|=|%] -2 and n. = 3.

If [3] £ k—1,thenc < |3]—1and k¥ > [3] + 1. Note that a
decrease of ¢ by 1 or an increase of k by 1 must cause an increase of the
lower bound in Lemma 4.1 by at least 1. Hence, by Lemma 4.1 and (2),
if G € M, (k) and |E(G)| reaches the lower bound, then ¢ = |%] — 1 and
k = |%] +1. Since G is connected, |S| > ¢—1 = |}] - 2. On the other
hand, [S|=k-n.<|}]+1-3=|%] -2 So|S|=|%] -2and n.=3.

Thus k = |S| + n, = ¢+ 2. By Lemma 4.3, since n, = 3, n = 2c+ 2 or
2c+3. Therefore (n, k) = (2¢+2, c+2) (¢ > 2), or(2¢+3, c+2) (c > 3). Note
that (n, k) # (2r,r+1), where r > 2. Hence (n, k) = (2¢+3,¢c+2) (¢ > 3).
Claim 2: If (n, k) = (2c +.3,c+ 2) (¢ > 3), equality in (2) holds.
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By Lemma 3.2, G(3;3,3,2, - ,2) are I"-maximal connected graphs with
(n,k) = (2c+ 3,c¢+2) (c > 3). The size of G(3;3,3,2,---,2) is 2c +
5 (c 2 3). On the other hand, when (n,k) = (2c+ 3,c+2) (c > 3),
H"%ﬁf_ﬁz - 51;—12 + [gj-l = 2c+5. Hence, when (n,k) = (2c+3,¢+2) (c >
3), m(n, k) reaches the lower bound.

(iii) Suppose that | 3] > k - 1.

Claim 3: If equality holds in (2), then (n,k) = (3c,c +2) (c > 4), (3¢ —
1,¢+2) (c 2 5), (16,8), (18,9), (19,9), (20,10) or (22,10).

Let G € M,(k) and S C E(G) be an I’-set of G such that G — S has
type (n1,n2, -+ ,n). We shall first prove that if equality holds in (2), then
nc.=3and |[S|=c-1.

If | 3] > k-1, then ¢ < k—2. Note that a decrease of ¢ by 1 must cause
an increase of the lower bound in Lemma 4.1 by at least 1. Hence, if equality
holds in (2), then ¢ = k—2, and s0 n; = k—|S| = c+2—|S| < (c+2)—(c-1),
that is n. < 3. Since n, > 3, n. =3 and so |S| =c— 1.

Suppose that n; =ny = .-+ = n, = 2,n541 = Ne, 42 =+ =mnc =3,
Let c—ci =cy. Thenn =3c2+2c1,c=cy+co, k=c; +cy+ 2 and
IS|=c1+c2—1,50 3] = 322 | —¢; 4 cp + [2]. Since | 3] > k-1,
we have ¢ + c2 + | 2] > ¢;1 + ¢2 + 1, which implies ¢c; > 4.

Since equality holds in (2), we have

[(n—l)2 _(n+1)

et ) 5 +k]=3c2+cl+c—l. (4)

Substituting n = 3¢z + 2¢; in (4), we get

[(302 + 2c; — 1)2 _ (3c2+2¢; +1)

e+ ) 5 +c1+c +2] =4c2+2¢; — 1,(5)

or

l4cy—ciea—c2
[ 2(c1 +¢2)
Hence —1 < H'—zl(:l—'jgsg—rcz <0,and s0o c; > 1 and c3 < (14 3¢;1)/(c; — 1),
where ¢; > 1.
Therefore, if ¢; > 1, then 4 < ¢y < (1+3¢1)/(c1 — 1), and so ¢; < 5.
We conclude that, if c; =0 or 1, then c; > 4; if ¢; = 2, then 4 < ¢; < 6;
if ¢y = 3 or 4, then c; = 4. Hence, (n, k) must be (3c,c+2) (c >4), (3c—
1,c+2) (c > 5), (16,8), (18,9), (19,9), (20,10) or (22,10).
Claim 4: If (n, k) = (3¢,c+2) (¢ > 4), (3c—1,c+2) (c > 5), (16,8), (18,9),
(19,9), (20,10) or (22,10), equality in (2) holds.
For each (n, k), if we can find a I’-maximal graph G € M, (k) whose edge
number reaches the lower bound, then we are done.

+4cz+2cl—1] =4c¢s + 2¢; ~ 1.
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By Lemma 3.2, we know that the following graphs are I’-maximal.

G(3;(3):) (i > 3) with ¢; =0,

G(3;(3),2) (i > 3) with ¢; =1,

G(3; (3),’,2,2) (3 < i < 5) with c = 2,

G(3;(3)3,2,2,2) with ¢; = 3,

G(3;(3)3,2,2,2,2) with ¢; =4.

For these graphs, (n, k) = (3¢,c + 2), where ¢ > 4, (3¢ - 1, c+ 2), where
c 2> 5, (16,8), (18,9), (19,9), (20,10) or (22,10), respectively. We can verify
that their edge numbers reach the lower bound. O

5 The maximum size of an I’-maximal graph

Let M(n,k) = max{|E(G)| : G € My(k) and is connected}. In order to
find M(n,k), first we introduce four Lemmas. The proofs of Lemmas 5.1
and 5.2 follow the routine arguments and are omitted.

Lemma 5.1. For any positive integer n, we have

|G|+ A = v (®)

Lemma 5.2. Assume that G € My(k) and there exists an I'-set S C E(G)
such that |S| = r. Let n = m(k —r) + b, where m is a positive integer,
0<b<k-r.

(i) If b+# 1, then
g@lsm(*; )+ (3) +n @

(ii) If b=1, then

k- k—r-1
|E(G’)|5(m—l)( 2’)+( 5 )+1+1'. ®)
Lemma 5.3. For any given n and k, suppose that n = m(k —r)+b, where
m is a positive integer, 0 < b < k —r. let

_m(5)+6) +r, ifb£1,
1= {(m - 1)(k;3) +(* 5 +1+r, otherwise. ©)

Then when 2 <r<k-—r, f(r) < f(r —1).

Proof: Let g(r) = f(r) —r. Note that, for any two positive integers n; and
n with ny < ng, (%) + (%) < (™51 + ("57) — 1, and the equality holds
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if and only if n; = np. Suppose n =mi(k—r+1)+b;,0<b; <k-7r+1.
Now we consider four cases.
Case 1: b# 1 and b # 1. Then

ar-=('3)+ )

< (k-;+1)+(m_l)(k;r)+ (b;l) _1
(k—;+l)+(k—;+l) +(m_2)(k;r) N (b-2—2) Y
() 3)

=g(r—-1)—m;.

N IA

IA

Similarly, we can show the results of other cases.

Case 2: b# 1 and b = 1. Then g(r) = m(*;") + (3) < (m1 - 1)(*7J*Y) +
(]2 +1=(m1—1) =g(r —1) — (m1 - 1).

Case 3: b=1and by # 1. Then g(r) = (m - 1)(*;") + (* 31 +1 <
mi(* 5t + (§) —mi = g(r — 1) = m,.

Case 4: b=1and b; = 1. Then g(r) = (m - 1)(*;") + (* 7 +1 <
(m1 =15+ (557 +1-(m1 1) =g(r = 1) — (my ~ 1).

Notethat n > (k—7)+2. If not, n4+7r-2 < k < n-1and so
r < 1, contrary to the assumption of the Lemma. Hence, n > (k —r +
1)+1, and so m; > 1 and if m; = 1, then b; # 1. For Cases 1 and
3 f(r) =g(r)+r < g(r—1)+r—-m; = f(r—1)+1—m, and so
f(r=1)— f(r) 2 m1 —1 > 0. For Cases 2 and 4, since b; = 1, m; > 2.
Therefore, f(r) =g(r)+r <glr-1)+r—(m1 - 1) =f(r—-1)+2-m,
andso f(r —1) — f(r) >m; -2 >0. ]
Lemma 5.4. Let n, k be'twogiven positive integers such that [2y/n] -1 <
k<n-1.

(i) There is a unique integer r such that1 < r < |\/n|—1 and [FA7l+r <
E<[2]4+r-2.

(ii) If r satisfies (i), thenn=r(k—7)+b,2<b< k—r.

Proof: (i) Let T, = {k|[37] +7 < k < [2] +r —2}. Then, for any
t,jsuch that i ¥ jand 1 < 4,5 < |Vr|] -1, T\NT; = ¢ and T, U
TU--UTymo = {[ @y | + VAl - 1 [Zg] + WAl on =1 =

{[2\/77| _1!'.2\/7?'7"' ’n_l}'
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(ii) Since [Z7]1+r <k < [2]+r=2(Q <r < |Va]-1),r(k—7)+r <
n<(k—r)(r+1)andsor(k -r)+2<n<(k=-r)(r+1). ]

Theorem 5.5. Let n and k are two positive integers such that there exists
a connected graph G € Mn(k). Suppose [[3]+r <k < [2]+r -2,
where 1 <r < |/n] — 1. Then

M(n, k) =r(k;r) + ("_T(zk_r)) +.

Proof: Let G € M,(k) and S be an I’-set of G. Note that, since G is
connected, k > [24/n] -1 (see [3]). Hence, by Lemma 5.3, k > [2\/n] -1 =
I-T.l + |v/n] — 1. By Lemmas 5.2 and 5.3, the smaller |S] is, the larger
the upper bound of |E(G’)| becomes. When |S| =r, G—8 has at most r+1
components and so k > [17] +7, and when [S| =7 -1,k > [2] +7 - 1.
Hence, for given n and k, if [(]+7 < k < [2]+7 -2, then |S| > 7
and so |E(G)| < f(|S]) < f(r). By Lemma 5.4(ii), n = r(k — ) + b, where
2 <b £ k—r. Hence, by Lemma 5.2,

IE(G)ISr(k;r) + (g)+r=r(k;r) + ("_T(;_")) +r.

We shall show that this upper bound can be attained.

For given n and k such that [ 2514r < k < [2]4+r-2(1 <7 < |V/n]-1),
we construct graph G(n, k) as follows

G(n,k) =Gk —r1;(k—7)re1,n —r(k —1)).

By Lemma 5.4(ii), n — r(k — r) # 1. So by Lemma 3.2, each G(n,k)
defined above is an I’-maximal graph. It is straightforward to check that
|E(G(n, k)| = r(*37) + (*~""™) + r, and so this concludes the proof of
Theorem 5.5. a
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