On Edge-integrity Maximal Graphs

Hong-Jian Lai and Xiankun Zhang
Department of Mathematics
West Virginia University
Morgantown, WV 26505

ABSTRACT. The edge-integrity of a graph G is given by $\min_{S\subseteq E(G)}\{|S|+m(G-S)\}$, where m(G-S) denotes the maximum order of a component of G-S. Let I'(G) denote the edge-integrity of a graph G. We define a graph G to be I'-maximal if for every edge e in \overline{G} , the complement of graph G, I'(G+e)>I'(G). In this paper, some basic results of I'-maximal graphs are established, the girth of a connected I'-maximal graph is given and lower and upper bounds on the size of I'-maximal connected graphs with given order and edge-integrity are investigated. Also, the I'-maximal trees and unicyclic graphs are completely characterized.

1 Introduction

In this paper we consider finite undirected simple graphs. The edge-integrity of a graph attempts to measure the disruption caused by the removal of edges from the graph. The order of a component or graph is the number of its vertices, and we let m(H) denote the maximum order of a component of graph H. The edge-integrity is defined as

$$I'(G) = \min_{S \subseteq E} \{|S| + m(G-S)\}.$$

Let G be a graph and \overline{G} be the complement of G. G is I'-maximal iff I'(G+e) > I'(G), for every edge e of \overline{G} . Let M(k) denote the collection of all I'-maximal graphs with edge-integrity k and $M_n(k)$ denote the collection of all I'-maximal graphs with order n and edge-integrity k.

2 Some Basic Properties

Let G=(V,E) be a simple graph with vertex set V and edge set E. For $S\subseteq E$, let I'(S) denote |S|+m(G-S). A set $S\subseteq E$ for which I'(S) is minimized is called an I'-set of G. If H_1,H_2,\cdots,H_r are the components of G-S with $|V(H_i)|=n_i$ such that $n_1\leq n_2\leq \cdots \leq n_r$, we say that G-S has type (n_1,n_2,\cdots,n_r) . For $V_1,V_2\subseteq V(G)$, let $[V_1,V_2]_G=\{e=x_1x_2\in E(G)|x_i\in V_i,i=1,2\}$. When G can be understood from the context, we write $[V_1,V_2]$ for $[V_1,V_2]_G$.

Proposition 2.1. Assume $G \in M(k)$. Let $S \subseteq E(G)$ with I'(G) = I'(S) = k. Let H_1, H_2, \dots, H_r be the components of G - S with type (n_1, n_2, \dots, n_r) . Then $H_i \cong K_{n_i} (i = 1, \dots, r)$.

Proof: If there exists an edge $e \in E(\overline{H}_i)$, then in G + e, I'(S) = k, and so $I'(G + e) \leq k$, a contradiction.

Proposition 2.2. Assume $G \in M(k)$ and $S \subseteq E(G)$ is an I'-set. Let H_1, H_2, \dots, H_r be the components of G - S with type (n_1, n_2, \dots, n_r) . Assume that r > 2. For any i, j, we have

$$n_r + |[V(H_i), V(H_j)]| < n_i + n_j.$$

Proof: We consider two cases.

Case 1: Suppose that there exist i, j such that i, j < r and $n_r + |V(H_i), V(H_j)|| \ge n_i + n_j$. Then $|S| - |[V(H_i), V(H_j)]| + n_i + n_j \le |S| + n_r$. If $[V(H_i), V(H_j)] \ne \emptyset$, let $S' = S - [V(H_i), V(H_j)]$. Then

$$I'(S') = |S| - |[V(H_i), V(H_j)]| + \max\{n_i + n_j, n_r\} \le |S| + n_r = I'(S).$$

However, $H_i \cup H_j \cup [V(H_i), V(H_j)]$ can not be a complete subgraph, contrary to Proposition 2.1.

If $[V(H_i), V(H_j)] = \emptyset$, then $|S| + n_i + n_j \le |S| + n_\tau$. Hence, for any edge $e \in [V(H_i), V(H_j)]_{\overline{G}}$, we have that $I'(G + e) \le I'(G)$, contrary to the definition of I'-maximal graph.

Case 2: If i = r or j = r, then we only need to prove that, for any $1 \le i \le r - 1$, we have

$$|[V(H_r), V(H_i)]| < n_i.$$

Otherwise, suppose that there exists an integer i with $1 \le i \le r-1$ such that $|[V(H_r), V(H_i)]| \ge n_i$. Let $S' = S - |[V(H_r), V(H_i)]|$. We have

$$I'(S') = |S| - |[V(H_r), V(H_i)]| + n_r + n_i \le |S| + n_r = I'(S).$$

Since $G[V(H_r), V(H_i)]$ is not a complete subgraph of G, we get a contradiction with Proposition 2.1.

Corollary 2.3. Let $G \in M(k)$ and $S \subseteq E(G)$ be an I'-set of G. Assume that G - S has type (n_1, n_2, \dots, n_r) (r > 2). Then $n_2 > n_r/2$.

Proof: By Proposition 2.2, we obviously have $n_1 + n_2 > n_r$. If $n_2 \le n_r/2$, we have $n_1 + n_2 \le 2n_2 \le n_r$. Therefore $n_2 > n_r/2$.

Since the removal of an edge which leaves an isolated vertex reduces the order of some component (not necessarily the largest) by one, we have the following proposition.

Proposition 2.4. Let $G \in M(k)$ and $S \subseteq E(G)$ be an I'-set. And let H_1, H_2, \dots, H_r be the components of G - S with type (n_1, n_2, \dots, n_r) . If G is connected, then we have $n_1 \geq 2$.

3 The girth of I'-maximal graphs

First, we construct two classes of graphs and prove three lemmas which we will use.

Let H_0, H_1, \dots, H_r be r+1 complete graphs with $H_i \cong K_{p_i}$ $(0 \le i \le r)$ such that $p_0 \ge p_1 \ge p_2 \ge \dots \ge p_r$. For each $i, 0 \le i \le r$, we choose one vertex v_i from $V(H_i)$ and construct a new graph $G(p_0; p_1, \dots, p_r)$ as follows:

$$V(G(p_0; p_1, \cdots, p_r)) = V(H_0) \cup V(H_1) \cup \cdots \cup V(H_r),$$

$$E(G(p_0; p_1, \cdots, p_r)) = E(H_0) \cup E(H_1) \cup \cdots \cup E(H_r) \cup \{v_0v_1, v_0v_2, \cdots, v_0v_r\}.$$
If $p_1 = p_2 = \cdots = p_j = p$, we simply denote this graph by $G(p_0; (p)_j, p_{j+1}, \cdots, p_r).$

Lemma 3.1. Suppose that G is a graph with unique I'-set $S \subseteq E(G)$ and H_1, H_2, \dots, H_r are the components of G - S with $H_i \cong K_{n_i}$ $(1 \le i \le r)$. If for any i, j such that $1 \le i, j \le r$, $n_i + n_j > max\{n_1, n_2, \dots, n_r\}$, then G is an I'-maximal graph.

Proof: For any $e \in E(\overline{G})$, we consider graph G + e. Assume that S' is an I'-set of G + e.

Case 1: $e \in S'$. Then $I'(G + e) = |S'| + m(G + e - S') = |S' - e| + 1 + m(G - (S' - e)) \ge I'(G) + 1$.

Case 2:
$$e \notin S'$$
. If $S' = S$, then $I'(G + e) = |S| + m(G + e - S) > |S| + m(G - S) = I'(G)$; if $S' \neq S$, then $I'(G + e) = |S'| + m(G + e - S') \ge |S'| + m(G - S') > I'(G)$.

Lemma 3.2. Suppose that $p_r \ge 2$ and for any i, j such that $1 \le i, j \le r$, $p_i + p_j > p_0$. Then

- (i) $I'(G(p_0; p_1, \dots, p_r)) = p_0 + r$.
- (ii) The I'-set of $G(p_0; p_1, \dots, p_r)$ is unique.

- (iii) $G(p_0; p_1, \dots, p_r)$ is I'-maximal.
- **Proof:** (i) Let $\Delta(G)$ be the maximum degree of a vertex of graph G. We have, for any graph G, $I'(G) \geq \Delta(G) + 1$ (see [3]). Thus we get that $I'(G(p_0; p_1, \dots, p_r)) \geq p_0 + r$. Let $S = \{v_0v_1, v_0v_2, \dots, v_0v_r\}$. Then $I'(S) = p_0 + r$ and so $I'(G(p_0; p_1, \dots, p_r)) = p_0 + r$.
- (ii) Suppose that S' is an I'-set of G such that $S' \neq S$. Let c be the number of H_i' s that S' intersects. We might as well assume $S' \cap E(H_{i_t}) \neq \emptyset$, for some $1 \leq t \leq c \leq r+1$. Note that since $H_{i_t} \cong K_{p_{i_t}}$ and $p_{i_t} \geq 2$, $|S' \cap E(H_{i_t})| \geq p_{i_t} 1 \geq 1$, $(1 \leq t \leq c)$. If $S' \cap E(H_0) = \emptyset$, then the component of G S' containing H_0 also contains at least one vertex from each H_{i_t} , $1 \leq t \leq c$, and so this component has at least $p_0 + c$ vertices. Hence $I'(S) = I'(S') = |S'| + m(G S') \geq |S| c + \sum_{t=1}^{c} (p_{i_t} 1) + p_0 + c \geq I'(S) + c > I'(S)$, a contradiction. Thus we assume $H_{i_c} = H_0$ and $X = S' \cap E(H_0) \neq \emptyset$.

Let H_0' and H_0'' be the two parts of $H_0 - X$ such that $v_0 \in V(H_0')$. Then since $H_0 \cong K_{p_0}$, $|X| = |V(H_0')|(p_0 - |V(H_0')|)$. Since $v_0 \in V(H_0')$, the component of G - S' containing $V(H_0')$ also contains at least one vertex from each H_{i_t} , $1 \le t \le c - 1$, and so $m(G - S') \ge |V(H_0')| + c$. Hence $I'(S) = I'(S') = |S'| + m(G - S') \ge |S| - c + \sum_{t=1}^{c-1} (p_{i_t} - 1) + |V(H_0')|(p_0 - |V(H_0')|) + |V(H_0')| + c \ge I'(S) + c - 1 \ge I'(S)$. This implies c = 1 and $V(H_0') = \{v_0\}$.

Let $E_{H_0}(v_0) \subseteq E(H_0)$ be the set of edges in H_0 incident with v_0 . Since $H_0 \cong K_{p_0}$, $|E_{H_0}(v_0)| = p_0 - 1$. Since c = 1 and $V(H'_0) = \{v_0\}$, $S' = S \cup E_{H_0}(v_0)$ and G - S' has components H_1, H_2, \cdots, H_r and $H_0 - v_0$. Hence $I'(S) = I'(S') \ge |S| + (p_0 - 1) + |V(H_0 - v_0)| = r + 2p_0 - 2 = I'(S) + (p_0 - 2)$, and so $p_0 = 2$. Since $p_r \ge 2$, we conclude that $p_0 = p_1 = \cdots = p_r = 2$. Therefore I'(S) = |I'(S')| = |S'| + m(G - S') = (r + 1) + 2 > r + 2 = I'(S), a contradiction. This proves (ii).

(iii) This result follows from (ii) and Lemma 3.1.

Let $T(d_1,d_2)$ be a tree with vertex set $\{u_1,u_2,v_i,w_i,v_j',w_j'|1\leq i\leq d_1,1\leq j\leq d_2\}$ and edge set $\{u_1u_2,u_1w_i,w_iw_i',u_2v_j,v_jv_j'|1\leq i\leq d_1,1\leq j\leq d_2\}$; let Δ_1 be a graph obtained from K_3 with vertex set $V(K_3)=\{v_1,v_2,v_3\}$ by adding three new vertices: u_1,u_2,u_3 , and three new edges: u_1v_1,u_2v_2,u_3v_3 ; and let $\Delta(d_1,d_2,d_3)$ be a graph obtained from K_3 with vertex set $V(K_3)=\{v_1,v_2,v_3\}$ by adding a new vertex set $\{x_i,x_i',y_j,y_j',z_k,z_k'|1\leq i\leq d_1,1\leq j\leq d_2 \text{ and }1\leq k\leq d_3\}$ and a new edge set $\{v_1x_i,x_ix_i',v_2y_j,y_jy_j',v_3z_k,z_kz_k'|1\leq i\leq d_1,1\leq j\leq d_2 \text{ and }1\leq k\leq d_3\}$.

Figure 1. The graphs T(2,3) and $\Delta(3,2,1)$

Lemma 3.3. If one of d_1 , d_2 and d_3 is equal to zero and at least one of them is not equal to zero, then $\Delta(d_1, d_2, d_3)$ is I'-maximal.

Proof: Without loss of generality, we suppose that $d_3 = 0$. Let $G = \Delta(d_1, d_2, 0)$. Assume that $S \subseteq E(G)$ is an I'-set of G. Let $S_1 = \{v_1x_i, v_2y_j | 1 \le i \le d_1, 1 \le j \le d_2\}$. We consider three cases.

Case 1: Only one edge e of v_1v_2, v_2v_3 and v_3v_1 belongs to S. We easily check that $S_1 \subseteq S$ and so $I'(S_1) < I'(S)$, a contradiction.

Case 2: Only two edges e_1 and e_2 of v_1v_2, v_2v_3 and v_3v_1 belong to S. Obviously, $\{e_1, e_2\} \neq \{v_2v_3, v_3v_1\}$. We might as well assume that $\{e_1, e_2\} = \{v_1v_2, v_3v_1\}$ and $S = \{v_1x_i, v_2y_j | 1 \le i \le r_1, 1 \le j \le r_2\} \cup \{e_1, e_2\}$, where $r_1 \le d_1, r_2 < d_2$. Then $I'(S) = 2 + r_1 + r_2 + \max\{2(d_1 - r_1) + 2, 2(d_2 - r_2) + 1\} = \max\{4 + 2d_1 - r_1 + r_2, 3 + 2d_2 + r_1 - r_2\} > I'(S_1)$, a contradiction.

Case 3: $\{v_1v_2, v_2v_3, v_3v_1\} \subseteq S$. We might as well assume that $S = \{v_1x_i, v_2y_j | 1 \le i \le r_1, 1 \le j \le r_2\} \cup \{v_1v_2, v_2v_3, v_3v_1\}$, where $r_1 < d_1, r_2 < d_2$. Then $I'(S) > I'(S_1)$, a contradiction.

Hence, S does not contain v_1v_2, v_2v_3 or v_3v_1 . Obviously, S can be only S_1 . The result follows from Lemma 3.1.

Proposition 3.4. Let G be a connected I'-maximal graph. Suppose that there exists an I'-set $S \subseteq E(G)$ such that G - S has components: H_1, H_2, \dots, H_c with $c = \lfloor \frac{n}{2} \rfloor$.

- (i) If n is even, then $G \cong G(2; (2)_{c-1})$ or Δ_1 .
- (ii) If n is odd, then $G \cong \Delta(d_1, d_2, 0)$, where $d_1 + d_2 = c 1$.

Proof: (i) If n is even, then c = n/2. Hence, each component H_1, H_2, \dots, H_c of G - S is a K_2 .

Since G is connected, we might as well assume $|[V(H_1), V(H_2)]| \neq 0$.

Claim 1: For any $i, j \geq 3$ $(i \neq j), [V(H_i), V(H_j)] = \emptyset$.

If not, let $e \in [V(H_1), V(H_2)]$ and $e_1 \in [V(H_i), V(H_j)]$ for some $i, j \ge 3$ $(i \ne j)$. Let $S' = S - \{e, e_1\}$. Then I'(S') = |S| - 2 + (2 + 2) = |S| + 2 = I'(S), contrary to Proposition 2.1.

Claim 2: If $|[V(H_1), V(H_i)]| \neq 0$ $(3 \leq i \leq c)$, then $|[V(H_2), V(H_j)]| = 0$, for any j $(3 \leq j \leq c$ and $j \neq i)$; or if $|[V(H_2), V(H_i)]| \neq 0$ $(3 \leq i \leq c)$, then $|[V(H_1), V(H_j)]| = 0$, for any j $(3 \leq j \leq c$ and $j \neq i)$.

Otherwise, we assume $e_1 \in [V(H_1), V(H_i)], e_2 \in [V(H_2), V(H_j)]$, where $3 \le i, j \le c$, and $i \ne j$. Let $S' = S - \{e_1, e_2\}$. Then I'(S') = |S| - 2 + 4 = |S| + 2 = I'(S), contrary to Proposition 2.1.

Claim 3: For any $1 \le i, j \le c$, and $i \ne j$, $|[V(H_i), V(H_j)]| \le 1$.

Otherwise, we can choose two edges $e_1, e_2 \in [V(H_i), V(H_j)]$. Let $S' = S - \{e_1, e_2\}$. Similarly, we get a contradiction.

Now we consider three cases.

Case 1: $c \ge 4$.

Without loss of generality, we assume $|[V(H_2), V(H_i)]| = 0$, for any i ($3 \le i \le c$), and $V(H_1) = \{u_1, u_2\}$. Let $d(u_1) = d_1 + 1$, $d(u_2) = d_2 + 1$, where $d_1 + d_2 = c - 1$. Then this I'-maximal graph is isomorphic to tree $T(d_1, d_2)$. We claim that $d_1 = 0$ or $d_2 = 0$. Otherwise, assume that $[u_1, V(H_i)] \ne \emptyset$ and $[u_2, V(H_j)] \ne \emptyset$, where $i \ne j$. Let $e_1 \in [u_1, V(H_i)]$ and $e_2 \in [u_2, V(H_j)]$. Let $S' = S \cup \{u_1u_2\} - \{e_1, e_2\}$. Then I'(S') = I'(S), and so S' is also an I'-set of $T(d_1, d_2)$, which yields a contradiction to Proposition 2.1. Thus G is isomorphic to $G(2; (2)_{c-1})$.

Case 2: c = 3.

If $|[V(H_1),V(H_3)]|=0$ or $|[V(H_2),V(H_3)]|=0$, then this case returns to case 1 and G is isomorphic to $G(2;(2)_2)$. If $|[V(H_1),V(H_3)]|\neq 0$ and $|[V(H_2),V(H_3)]|\neq 0$, by claim 3, $|[V(H_1),V(H_3)]|=1$ and $|[V(H_2),V(H_3)]|=1$. Hence, we need only consider four graphs: G_1,G_2,G_6 and Δ_1 , where G_1 is a graph with vertex set $\{v_1,v_2,v_3,v_4,u_1,u_2\}$ and edge set $\{v_1v_2,v_2v_3,v_3v_4,v_4v_1,u_1v_1,u_2v_2\},G_2$ is a graph obtained from a 5-cycle C_5 with vertex set $\{v_i|1\leq i\leq 5\}$ by adding a new vertex v_0 and a new edge v_0v_1 and C_6 is a 6-cycle. We easily check that G_1,G_2 and G_6 are not I'-maximal and A_1 is I'-maximal.

Case 3: c = 2.

If r = 2, this I'-maximal graph is a path with order 4, namely graph G(2;2).

Hence, the result follows from Lemma 3.2.

(ii) If n is odd, then c = (n-1)/2. Hence, one of $H_1, H_2, ..., H_c$ is isomorphic to K_3 and the others are isomorphic to K_2 .

Without loss of generality, we suppose $H_c\cong K_3$ and $H_i\cong K_2$, where $1\leq i\leq c-1$. We claim that $[V(H_i),V(H_j)]=\emptyset, 1\leq i,j\leq c-1$ and $i\neq j$. Otherwise, let $e\in [V(H_i),V(H_j)]$ and S'=S-e. We have I'(S')=I'(S), contrary to Proposition 2.1. Now we prove that, for any $i\ (1\leq i\leq c-1),\ |[V(H_i),V(H_c)]|=1$. If not, let $e_1,e_2\in [V(H_i),V(H_c)]$ and $S'=S-\{e_1,e_2\}$. Then I'(S')=I'(S), contrary to Proposition 2.1.

Hence, G is isomorphic to one of three kinds of graphs: $\Delta(d_1, 0, 0)$, $\Delta(d_1, d_2, 0)$ and $\Delta(d_1, d_2, d_3)$, where $d_1, d_2, d_3 \neq 0$, and so we need only to consider graphs: $\Delta(d_1, 0, 0)$, $\Delta(d_1, d_2, 0)$ and $\Delta(d_1, d_2, d_3)$.

Since $d_1, d_2 \neq 0$, by Lemmas 3.2 and 3.3, $\Delta(d_1, 0, 0)$ and $\Delta(d_1, d_2, 0)$ are I'-maximal. For graph $\Delta(d_1, d_2, d_3)$ $(d_1, d_2, d_3 \neq 0)$, let $S' = S \cup \{v_1v_2, v_2v_3, v_3v_1\} - \{v_1x_1, v_2y_1, v_3z_1\}$. Then I'(S') = I'(S), contrary to Proposition 2.1.

Corollary 3.5. Let T be a tree. Then T is I'-maximal iff $T \cong G(2;(2)_d)$, $(d \geq 1)$.

Proof: Assume tree $T \in M(k)$. Let $S \subseteq E(T)$ be an I'-set of T. Let H_1, H_2, \dots, H_c be the components of T - S. By Propositions 2.1 and 2.4, we have $H_i \cong K_2$ $(i = 1, 2, \dots, c)$. Hence, we know that any tree with an odd number of vertices is not I'-maximal. By Proposition 3.4, this I'-maximal tree must be isomorphic to tree $G(2; (2)_d)$, where d = c - 1. By Lemma 3.2, for each integer $d \ge 1$, $G(2; (2)_d)$ is an I'-maximal tree, and so the proof is complete.

Corollary 3.6. Any connected I'-maximal graph, except $G(2;(2)_d)$ $(d \ge 1)$, has girth 3.

Proof: Let G = (V, E) be an I'-maximal graph with girth larger than 3 and $S \subseteq E(G)$ be an I'-set of G. Let H_1, H_2, \dots, H_c be the components of G - S.

By the assumption that G has no 3-cycle and by Propositions 2.1 and 2.4, we know that $H_i \cong K_2$ $(i = 1, 2, \dots, c)$, where c = |V(G)|/2. By Proposition 3.4, G is isomorphic to the tree $G(2;(2)_d)$, where d = c - 1. \square

Corollary 3.7. Let G be a unicyclic connected graph. G is I'-maximal if and only if $G \cong \Delta_1$ or $\Delta(d_1, d_2, 0)$, where d_1 and d_2 are not both zero.

Proof: Let $S \subseteq E(G)$ be an I'-set of G and H_1, H_2, \dots, H_c be the components of G - S. Since G is a unicyclic connected graph, $c = \lfloor \frac{n}{2} \rfloor$. This corollary follows from Proposition 3.4.

4 The minimum size of an I'-maximal graph

Let $m(n, k) = min\{|E(G)| : G \in M_n(k) \text{ and is connected}\}.$

Lemma 4.1. Assume $G \in M_n(k)$. Let $S \subseteq E(G)$ be an I'-set of G. Let H_1, H_2, \dots, H_c be the components of G - S with type (n_1, n_2, \dots, n_c) . Then

$$m(n,k) \geq \left\lceil \frac{(n-1)^2}{2c} - \frac{(n+1)}{2} + k \right\rceil.$$

Proof: By Proposition 2.1, we have

$$|E(G)| = \sum_{i=1}^{c} {n_i \choose 2} + |S| = \sum_{i=1}^{c} {n_i \choose 2} + k - n_c.$$

Combining the constraint $n_1+n_2+\cdots+n_c=n$, the minimum can be determined by using calculus. When $n_1=n_2=\cdots=n_{c-1}=(n-1)/c, n_c=(n-1+c)/c$, it is attained, namely, $|E(G)|\geq \frac{(n-1)^2}{2c}-\frac{(n+1)}{2}+k$. Since m(n,k) is an integer, $m(n,k)\geq \left\lceil \frac{(n-1)^2}{2c}-\frac{(n+1)}{2}+k\right\rceil$.

Note that the maximum value of c in Lemma 4.1 is $\lfloor \frac{n}{2} \rfloor$. When $c = \lfloor \frac{n}{2} \rfloor$, the I'-maximal graphs are what Proposition 3.4 described. Hence, by Proposition 3.4, we have

Corollary 4.2.

$$m(n,k) = \begin{cases} 2r - 1, & \text{if } (n,k) = (2r,r+1), r \ge 2\\ 2r + 1, & \text{if } (n,k) = (2r+1,r+2), r \ge 2\\ 6, & \text{if } (n,k) = (6,5). \end{cases}$$
 (1)

Lemma 4.3. Let G be an I'-maximal graph with order n and $S \subseteq E(G)$ be an I'-set of G. Suppose that G - S has type (n_1, n_2, \dots, n_c) and $c = \lfloor \frac{n}{2} \rfloor - 1$.

- (i) If n is even and $n \ge 6$, then G-S has type $(2, 2, \dots, 2, 3, 3)$ or (2, 4).
- (ii) If n is odd and $n \ge 7$, then G-S has type $(2, 2, \dots, 2, 3, 3, 3)$ $(n \ge 9)$, or (2, 3, 4), or (2, 5) or (3, 4).

Proof: (i) Suppose n is even and $n \ge 6$. Since G is I'-maximal, by Proposition 2.4, $n_1 \ge 2$.

Claim: If c = n/2 - 1, then $2 < n_c < 5$.

If $n_c = 2$, then c = n/2; if $n_c \ge 5$, then $c-1 \le (n-n_c)/2 \le (n-5)/2$ and so $c \le (n-3)/2 < n/2 - 1$, contrary to the assumption that c = n/2 - 1. This proves the Claim by contradiction.

Hence $n_c=4$ or 3. If $n_c=4$, since n-4=2(c-1), then $n_{c-1}=2$. By Corollary 2.3, we know that its type must be (2,4). If $n_c=3$, since n is even, then $n_{c-1}=3$. Since n-6=2(c-2), $n_{c-2}=2$. Hence its type is $(2,2,\cdots,2,3,3)$.

(ii) Suppose n is odd and $c = \frac{n-1}{2} - 1$, where $n \ge 7$. By similar argument, we know that $n_c = 5$, 4 or 3. By Corollary 2.3, if $n_c = 5$, then its type is (2,5); if $n_c = 4$, then its type is (2,3,4) or (3,4); if $n_c = 3$ and $(n \ge 9)$, then its type is $(2,2,\cdots,2,3,3,3)$.

Theorem 4.4. Suppose that $(n, k) \neq (2c, c+1), (2c+1, c+2)$ and (6, 5), where $c \geq 2$.

(i)

$$m(n,k) \ge \begin{cases} \left\lceil \frac{(n-1)^2}{2\left\lfloor \frac{n}{2} \right\rfloor - 2} - \frac{(n-1)}{2} + \left\lfloor \frac{n}{2} \right\rfloor \right\rceil, & \text{if } \left\lfloor \frac{n}{2} \right\rfloor \le k - 1, \\ \left\lfloor \frac{(n-1)^2}{2(k-2)} - \frac{(n+1)}{2} + k \right\rfloor, & \text{if } \left\lfloor \frac{n}{2} \right\rfloor > k - 1. \end{cases}$$
(2)

- (ii) If $\lfloor \frac{n}{2} \rfloor \leq k-1$, then equality in (2) holds if and only if (n,k) = (2c+3,c+2) $(c \geq 3)$.
- (iii) If $\lfloor \frac{n}{2} \rfloor > k-1$, then equality in (2) holds if and only if (n,k) = (3c,c+2) $(c \ge 4), (3c-1,c+2)$ $(c \ge 5), (16,8), (18,9), (19,9), (20,10)$ or (22,10).

Proof: (i) Assume $G \in M_n(k)$. Let $S \subseteq E(G)$ be an I'-set of G. Let H_1, H_2, \dots, H_c be the components of G - S with type (n_1, n_2, \dots, n_c) . By Proposition 3.4 and Corollary 4.2, we know $c \leq \lfloor \frac{n}{2} \rfloor - 1$ and so $n_c \geq 3$. Since G is connected, $k \geq (c-1) + 3$, so $c \leq k-2$. Hence, we have

$$c \leq \min\{\lfloor \frac{n}{2} \rfloor - 1, k - 2\}. \tag{3}$$

If $\lfloor \frac{n}{2} \rfloor \le k-1$, then $c \le \lfloor \frac{n}{2} \rfloor - 1$ and $k \ge \lfloor \frac{n}{2} \rfloor + 1$; if $\lfloor \frac{n}{2} \rfloor > k-1$, then $c \le k-2$. Hence the inequality (2) follows from Lemma 4.1.

Next, we shall determine all values of n and k for which m(n, k) reaches its minimum.

(ii) Suppose that $\lfloor \frac{n}{2} \rfloor \leq k-1$.

Claim 1: If equality holds in (2), then (n, k) = (2c + 3, c + 2) $(c \ge 3)$.

Let $G \in M_n(k)$ and $S \subseteq E(G)$ be an I'-set of G such that G - S has type (n_1, n_2, \dots, n_c) . We shall show that if |E(G)| reaches the lower bound in (2), then $c = \lfloor \frac{n}{2} \rfloor - 1$, $|S| = \lfloor \frac{n}{2} \rfloor - 2$ and $n_c = 3$.

If $\lfloor \frac{n}{2} \rfloor \leq k-1$, then $c \leq \lfloor \frac{n}{2} \rfloor -1$ and $k \geq \lfloor \frac{n}{2} \rfloor +1$. Note that a decrease of c by 1 or an increase of k by 1 must cause an increase of the lower bound in Lemma 4.1 by at least 1. Hence, by Lemma 4.1 and (2), if $G \in M_n(k)$ and |E(G)| reaches the lower bound, then $c = \lfloor \frac{n}{2} \rfloor -1$ and $k = \lfloor \frac{n}{2} \rfloor +1$. Since G is connected, $|S| \geq c-1 = \lfloor \frac{n}{2} \rfloor -2$. On the other hand, $|S| = k - n_c \leq \lfloor \frac{n}{2} \rfloor +1 -3 = \lfloor \frac{n}{2} \rfloor -2$. So $|S| = \lfloor \frac{n}{2} \rfloor -2$ and $n_c = 3$.

Thus $k = |S| + n_c = c + 2$. By Lemma 4.3, since $n_c = 3$, n = 2c + 2 or 2c+3. Therefore (n,k) = (2c+2,c+2) $(c \ge 2)$, or(2c+3,c+2) $(c \ge 3)$. Note that $(n,k) \ne (2r,r+1)$, where $r \ge 2$. Hence (n,k) = (2c+3,c+2) $(c \ge 3)$. Claim 2: If (n,k) = (2c+3,c+2) $(c \ge 3)$, equality in (2) holds.

By Lemma 3.2, $G(3;3,3,2,\dots,2)$ are I'-maximal connected graphs with (n,k)=(2c+3,c+2) $(c\geq 3)$. The size of $G(3;3,3,2,\dots,2)$ is 2c+5 $(c\geq 3)$. On the other hand, when (n,k)=(2c+3,c+2) $(c\geq 3)$, $\left\lceil \frac{(n-1)^2}{2\lfloor \frac{n}{2} \rfloor - 2} - \frac{(n-1)}{2} + \lfloor \frac{n}{2} \rfloor \right\rceil = 2c+5$. Hence, when (n,k)=(2c+3,c+2) $(c\geq 3)$, m(n,k) reaches the lower bound.

(iii) Suppose that $\lfloor \frac{n}{2} \rfloor > k-1$.

Claim 3: If equality holds in (2), then (n, k) = (3c, c+2) $(c \ge 4)$, (3c-1, c+2) $(c \ge 5)$, (16,8), (18,9), (19,9), (20,10) or (22,10).

Let $G \in M_n(k)$ and $S \subseteq E(G)$ be an I'-set of G such that G - S has type (n_1, n_2, \dots, n_c) . We shall first prove that if equality holds in (2), then $n_c = 3$ and |S| = c - 1.

If $\lfloor \frac{n}{2} \rfloor > k-1$, then $c \le k-2$. Note that a decrease of c by 1 must cause an increase of the lower bound in Lemma 4.1 by at least 1. Hence, if equality holds in (2), then c = k-2, and so $n_c = k-|S| = c+2-|S| \le (c+2)-(c-1)$, that is $n_c \le 3$. Since $n_c \ge 3$, $n_c = 3$ and so |S| = c-1.

Suppose that $n_1 = n_2 = \cdots = n_{c_1} = 2, n_{c_1+1} = n_{c_1+2} = \cdots = n_c = 3$. Let $c - c_1 = c_2$. Then $n = 3c_2 + 2c_1$, $c = c_1 + c_2$, $k = c_1 + c_2 + 2$ and $|S| = c_1 + c_2 - 1$, so $\lfloor \frac{n}{2} \rfloor = \lfloor \frac{3c_2 + 2c_1}{2} \rfloor = c_1 + c_2 + \lfloor \frac{c_2}{2} \rfloor$. Since $\lfloor \frac{n}{2} \rfloor > k - 1$, we have $c_1 + c_2 + \lfloor \frac{c_2}{2} \rfloor > c_1 + c_2 + 1$, which implies $c_2 \ge 4$.

Since equality holds in (2), we have

$$\left[\frac{(n-1)^2}{2(c_1+c_2)} - \frac{(n+1)}{2} + k\right] = 3c_2 + c_1 + c - 1. \tag{4}$$

Substituting $n = 3c_2 + 2c_1$ in (4), we get

$$\left[\frac{(3c_2+2c_1-1)^2}{2(c_1+c_2)} - \frac{(3c_2+2c_1+1)}{2} + c_1 + c_2 + 2\right] = 4c_2 + 2c_1 - 1, (5)$$

or

$$\left\lceil \frac{1 + c_1 - c_1 c_2 - c_2}{2(c_1 + c_2)} + 4c_2 + 2c_1 - 1 \right\rceil = 4c_2 + 2c_1 - 1.$$

Hence $-1 < \frac{1+c_1-c_1c_2-c_2}{2(c_1+c_2)} \le 0$, and so $c_2 \ge 1$ and $c_2 < (1+3c_1)/(c_1-1)$, where $c_1 > 1$.

Therefore, if $c_1 > 1$, then $4 \le c_2 < (1 + 3c_1)/(c_1 - 1)$, and so $c_1 < 5$.

We conclude that, if $c_1=0$ or 1, then $c_2\geq 4$; if $c_1=2$, then $4\leq c_2\leq 6$; if $c_1=3$ or 4, then $c_2=4$. Hence, (n,k) must be (3c,c+2) $(c\geq 4)$, (3c-1,c+2) $(c\geq 5)$, (16,8), (18,9), (19,9), (20,10) or (22,10).

Claim 4: If (n, k) = (3c, c+2) $(c \ge 4)$, (3c-1, c+2) $(c \ge 5)$, (16,8), (18,9), (19,9), (20,10) or (22,10), equality in (2) holds.

For each (n, k), if we can find a I'-maximal graph $G \in M_n(k)$ whose edge number reaches the lower bound, then we are done.

By Lemma 3.2, we know that the following graphs are I'-maximal.

 $G(3;(3)_i)$ $(i \ge 3)$ with $c_1 = 0$,

 $G(3;(3)_i,2)$ $(i \ge 3)$ with $c_1 = 1$,

 $G(3; (3)_i, 2, 2)$ $(3 \le i \le 5)$ with $c_1 = 2$,

 $G(3; (3)_3, 2, 2, 2)$ with $c_1 = 3$,

 $G(3; (3)_3, 2, 2, 2, 2)$ with $c_1 = 4$.

For these graphs, (n, k) = (3c, c+2), where $c \ge 4$, (3c-1, c+2), where $c \ge 5$, (16.8), (18.9), (19.9), (20.10) or (22.10), respectively. We can verify that their edge numbers reach the lower bound.

5 The maximum size of an I'-maximal graph

Let $M(n, k) = \max\{|E(G)| : G \in M_n(k) \text{ and is connected}\}$. In order to find M(n, k), first we introduce four Lemmas. The proofs of Lemmas 5.1 and 5.2 follow the routine arguments and are omitted.

Lemma 5.1. For any positive integer n, we have

$$\left[\frac{n}{|\sqrt{n}|}\right] + \lfloor \sqrt{n} \rfloor = \lceil 2\sqrt{n} \rceil. \tag{6}$$

Lemma 5.2. Assume that $G \in M_n(k)$ and there exists an I'-set $S \subseteq E(G)$ such that |S| = r. Let n = m(k - r) + b, where m is a positive integer, $0 \le b < k - r$.

(i) If $b \neq 1$, then

$$|E(G)| \le m \binom{k-r}{2} + \binom{b}{2} + r. \tag{7}$$

(ii) If b = 1, then

$$|E(G)| \le (m-1)\binom{k-r}{2} + \binom{k-r-1}{2} + 1 + r.$$
 (8)

Lemma 5.3. For any given n and k, suppose that n = m(k-r) + b, where m is a positive integer, 0 < b < k-r. let

$$f(r) = \begin{cases} m\binom{k-r}{2} + \binom{b}{2} + r, & \text{if } b \neq 1, \\ (m-1)\binom{k-r}{2} + \binom{k-r-1}{2} + 1 + r, & \text{otherwise.} \end{cases}$$
(9)

Then when $2 \le r \le k - r$, $f(r) \le f(r - 1)$.

Proof: Let g(r) = f(r) - r. Note that, for any two positive integers n_1 and n_2 with $n_1 \le n_2$, $\binom{n_1}{2} + \binom{n_2}{2} \le \binom{n_1-1}{2} + \binom{n_2+1}{2} - 1$, and the equality holds

if and only if $n_1 = n_2$. Suppose $n = m_1(k-r+1) + b_1$, $0 \le b_1 < k-r+1$. Now we consider four cases.

Case 1: $b \neq 1$ and $b_1 \neq 1$. Then

$$g(r) = m\binom{k-r}{2} + \binom{b}{2}$$

$$\leq \binom{k-r+1}{2} + (m-1)\binom{k-r}{2} + \binom{b-1}{2} - 1$$

$$\leq \binom{k-r+1}{2} + \binom{k-r+1}{2} + (m-2)\binom{k-r}{2} + \binom{b-2}{2} - 2$$

$$\leq \cdots$$

$$\leq m_1\binom{k-r+1}{2} + \binom{b_1}{2} - m_1$$

$$= g(r-1) - m_1.$$

Similarly, we can show the results of other cases.

Case 2: $b \neq 1$ and $b_1 = 1$. Then $g(r) = m\binom{k-r}{2} + \binom{b}{2} \leq (m_1 - 1)\binom{k-r+1}{2} + \binom{k-r}{2} + 1 - (m_1 - 1) = g(r - 1) - (m_1 - 1)$.

Case 3: b = 1 and $b_1 \neq 1$. Then $g(r) = (m-1)\binom{k-r}{2} + \binom{k-r-1}{2} + 1 \leq m_1\binom{k-r+1}{2} + \binom{b_1}{2} - m_1 = g(r-1) - m_1$.

Case 4: b = 1 and $b_1 = 1$. Then $g(r) = (m-1)\binom{k-r}{2} + \binom{k-r-1}{2} + 1 \le (m_1-1)\binom{k-r+1}{2} + \binom{k-r}{2} + 1 - (m_1-1) = g(r-1) - (m_1-1)$.

Note that n > (k-r) + 2. If not, $n+r-2 \le k \le n-1$ and so $r \le 1$, contrary to the assumption of the Lemma. Hence, n > (k-r+1) + 1, and so $m_1 \ge 1$ and if $m_1 = 1$, then $b_1 \ne 1$. For Cases 1 and 3, $f(r) = g(r) + r \le g(r-1) + r - m_1 = f(r-1) + 1 - m_1$ and so $f(r-1) - f(r) \ge m_1 - 1 \ge 0$. For Cases 2 and 4, since $b_1 = 1$, $m_1 \ge 2$. Therefore, $f(r) = g(r) + r \le g(r-1) + r - (m_1-1) = f(r-1) + 2 - m_1$ and so $f(r-1) - f(r) \ge m_1 - 2 \ge 0$.

Lemma 5.4. Let n, k be two given positive integers such that $\lceil 2\sqrt{n} \rceil - 1 \le k \le n - 1$.

- (i) There is a unique integer r such that $1 \le r \le \lfloor \sqrt{n} \rfloor 1$ and $\lceil \frac{n}{r+1} \rceil + r \le k \le \lceil \frac{n}{r} \rceil + r 2$.
- (ii) If r satisfies (i), then n = r(k-r) + b, 2 < b < k-r.

Proof: (i) Let $T_r = \{k | \lceil \frac{n}{r+1} \rceil + r \le k \le \lceil \frac{n}{r} \rceil + r - 2\}$. Then, for any i, j such that $i \ne j$ and $1 \le i, j \le \lfloor \sqrt{n} \rfloor - 1$, $T_i \cap T_j = \phi$ and $T_1 \cup T_2 \cup \cdots \cup T_{\lfloor \sqrt{n} \rfloor - 1} = \{ \lceil \frac{n}{\lfloor \sqrt{n} \rfloor} \rceil + \lfloor \sqrt{n} \rfloor - 1, \lceil \frac{n}{\lfloor \sqrt{n} \rfloor} \rceil + \lfloor \sqrt{n} \rfloor, \cdots, n - 1 \} = \{ \lceil 2\sqrt{n} \rceil - 1, \lceil 2\sqrt{n} \rceil, \cdots, n - 1 \}.$

(ii) Since
$$\lceil \frac{n}{r+1} \rceil + r \le k \le \lceil \frac{n}{r} \rceil + r - 2$$
 $(1 \le r \le \lfloor \sqrt{n} \rfloor - 1), r(k-r) + r < n \le (k-r)(r+1)$ and so $r(k-r) + 2 \le n \le (k-r)(r+1)$.

Theorem 5.5. Let n and k are two positive integers such that there exists a connected graph $G \in M_n(k)$. Suppose $\lceil \frac{n}{r+1} \rceil + r \leq k \leq \lceil \frac{n}{r} \rceil + r - 2$, where $1 \leq r \leq \lfloor \sqrt{n} \rfloor - 1$. Then

$$M(n,k) = r\binom{k-r}{2} + \binom{n-r(k-r)}{2} + r.$$

Proof: Let $G \in M_n(k)$ and S be an I'-set of G. Note that, since G is connected, $k \geq \lceil 2\sqrt{n} \rceil - 1$ (see [3]). Hence, by Lemma 5.3, $k \geq \lceil 2\sqrt{n} \rceil - 1 = \lceil \frac{n}{\lfloor \sqrt{n} \rfloor} \rceil + \lfloor \sqrt{n} \rfloor - 1$. By Lemmas 5.2 and 5.3, the smaller |S| is, the larger the upper bound of |E(G)| becomes. When |S| = r, G - S has at most r + 1 components and so $k \geq \lceil \frac{n}{r+1} \rceil + r$, and when |S| = r - 1, $k \geq \lceil \frac{n}{r} \rceil + r - 1$. Hence, for given n and k, if $\lceil \frac{n}{r+1} \rceil + r \leq k \leq \lceil \frac{n}{r} \rceil + r - 2$, then $|S| \geq r$ and so $|E(G)| \leq f(|S|) \leq f(r)$. By Lemma 5.4(ii), n = r(k - r) + b, where $2 \leq b \leq k - r$. Hence, by Lemma 5.2,

$$|E(G)| \le r \binom{k-r}{2} + \binom{b}{2} + r = r \binom{k-r}{2} + \binom{n-r(k-r)}{2} + r.$$

We shall show that this upper bound can be attained.

For given n and k such that $\lceil \frac{n}{r+1} \rceil + r \le k \le \lceil \frac{n}{r} \rceil + r - 2$ $(1 \le r \le \lfloor \sqrt{n} \rfloor - 1)$, we construct graph G(n, k) as follows:

$$G(n,k) = G(k-r;(k-r)_{r-1},n-r(k-r)).$$

By Lemma 5.4(ii), $n - r(k - r) \neq 1$. So by Lemma 3.2, each G(n, k) defined above is an I'-maximal graph. It is straightforward to check that $|E(G(n,k))| = r\binom{k-r}{2} + \binom{n-r(k-r)}{2} + r$, and so this concludes the proof of Theorem 5.5.

Acknowledgement. We would like to thank the anonymous referees for their many valuable remarks and suggestions.

References

- [1] K.S. Bagga, L.W. Beineke, W.D. Goddard, M.J. Lipman and R.E. Pippert, A survey of integrity, *Discrete Applied Mathematics* 37/38 (1992), 13-28.
- [2] K.S. Bagga, L.W. Beineke, M.J. Lipman and R.E. Pippert, On the edge-integrity of graphs, *Congr. Numerantium* 60 (1987), 141-144.

- [3] K.S. Bagga, L.W. Beineke, M.J. Lipman and R.E. Pippert, Edge-integrity: a survey, *Discrete Mathematics* 124 (1994), 3-12.
- [4] C.A. Barefoot, R. Entringer and H.C. Swart, Vulnerability in graphs-A comparative survey, J. Combin. Math. Combin. Computing 1 (1987), 13-22.
- [5] R. Laskar, S. Stueckle and B. Piazza, On the edge-integrity of some graphs and their complements, *Discrete Mathematics* 122 (1993), 245– 253.
- [6] M.J. Lipman, The honest cubic graphs, Congr. Numerantium 85 (1991), 184-192.