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ABSTRACT. The concept of tenacity of a graph G was introduced in
References [5,6] as a useful measure of the ”vulnerabilty” of G. In assess-
ing the ”vulnerability” of a graph one determines the extent to which the
graph retains certain properties after the removal of vertices or edges. In
this paper we will compare different measures of vulnerability with tenacity
for several classes of graphs.

INTRODUCTION

If we think of the graph as modeling a network, the vulnerability mea-
sures the resistance of the network to disruption of operation after the
failure of certain stations or communication links. In this survey we will
restrict ourselves to the study of vertex versions of vulnerability.

Throughout this paper we will let n be the number of vertices of G, and
we use a(G) to denote the independence number of G. Let A be a subset of
V(G). The neighborhood of A, N(A), consists of all vertices of G adjacent
to at least one vertex of A. We define G-A to be the graph induced by the
vertices of V-A. Also, for any graph G, 7(QG) is the number of vertices in
a largest component of G and w(G) is the number of components of G.
A cutset of a connected graph G is a collection of vertices whose removal
results in a disconnected graph.

The connectivity of G, & = (G) is the minimum order of a cutset of

G.

The binding number of a graph G was introduced by Woodall in [17]
and is defined as bind(G) = min{ml%?ll}, where the minimum is taken over
all A C V(G) with A # ¢ and N(A)# V(G). The binding number has also
been studied in [8,10,11,12,13,16] among others.

The concept of integrity of a graph G was introduced in [2] as a useful
measure of the vulnerability of a graph G. The integrity of a graph G is
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defined as I(G) = min {| A | + 7(G — A)}, where the minimum is taken
over all A C V(G). The integrity is a measure which deals with the first
fundamental question. How many vertices can still communicate? Integrity
has been studied in numerous papers, including [1,4].

The toughness of a graph G was introduced by Chvatal in [3], where he
obtained several results regarding this invarient including the relationship
between this parameter and the existence of Hamilton cycles. The tough-
ness of a graph, denoted by t(G), is defined as t(G) = min{WcIEA‘-lTS}’ where
the minimum is taken over all cutsets A in V(G). The toughness deals with
the second fundemental question, namely, how difficult is it to reconnect
1[:he g]raph ? The toughness has been studied extensively; see for example
7,15).

The tenacity is another vulnerability measure, incorporating ideas of
both toughness and integrity and dealing with both of the above questions.
The tenacity of a graph G, T(G), is defined by T(G) = min{‘ﬁ"‘;j"g_c;f;%2 ,
where the minimum is taken over all vertex cutsets A of G, G-A is the
graph induced by the vertices of V-A, 7(G — A) is the number of vertices
in the largest component of the graph induced by G-A and w(G — A) is the
number of components of G-A. A connected graph G is called T-tenacious
if | A | +7(G — A) > Tw(G — A) holds for any subset A of vertices of G
with w(G — A) > 1. If G is not complete, then there is a largest T such
that G is T-tenacious; this T is the tenacity of G. On the other hand, a
complete graph contains no vertex cutset and so it is T-tenacious for every
T. Accordingly, we define T(Kp) = oo for every p (p > 1). Aset A C V(G)

is said to be a T-set of G if T(G) = LAZEA),

We will compare integrity, connectivity, binding number, toughness and
tenacity for several classes of graphs. The results suggest that tenacity is
a most suitable measure of vulnerabilty in that for many graphs it is best
able to distinguish between graphs that intuitively should have different
levels of vulnerability.

VULNERABILITY CALCULATION

Let Cp, = (v1v2---vp) be the n-cycle and define the k-th power of the
n-cycle, C¥, by
Cl = Cn + {uiv; ||i—j |< k}.

We will calculate the five measures of vulnerability for the complete
bipartite graph Kin_r, k < n—k, powers CX¥ of the n-cycle, and the
graph G(n, k), 1<k < ["—Zl_l, which has n vertices and vertex v which is
adjacent to all vertices of the two complete subgraphs, copies of K and
Kn k1,16 Gug = K1+ (Kr U Kn_g—1).

These graphs were purposefully chosen, because they exhibit the widest
possible range of edge density and because they illustrate where the dif-
ferent measures of vulnerability differ in their effectiveness in measuring
important structural characteristics of graphs.

Theorem 1 : (Chvatal [3]). For all graphs G, %%% <(G) < 1k(G).

24



. +5(G
Theorem 2 : (Woodall [17]). For all graphs G, bind(G) < %_—:{6%
Theorem 3 : (Woodall [17]). For all graphs G, bind(G) < #(

The following four proposition were proved in [6).
Proposition 1 : If G is a spanning subgraph of H, then T(G) < T(H).

Proposition 2 : For any graph G, T(G) > %%?

Proposition 3 : If G is not complete, then T(G) < %P

Proposition 4 : If k < n — k, then T(Kk n_t) = %*—}?

Lemma 1 : If A is a minimal T-set for C¥, then A consists of the union
of sets Xf k consecutive vertices tsuch that t.here exists at least one vertex
not in A between any two sets of consecutive vertices in
Proof : We assume C¥ is labeled by 0,1,2,---,n— 1. Let A be a minimal
T-set for C¥ and j be the least integer such that S = {j,j+1,---,j+t—1}
is a maximal set of consecutive vertices such that S CA. Re-label the ver-
ticesof C¥ asv) = j, v = j+1, -, 0e = j+1—1,- -, vp. Since A # V(CF),
S # V(C"‘) so v, does not belong to A. Since A must leave at least two
components, t # n — 1, s0 v¢y; # vn. Therefore {viyy,va} N A = ¢. Now
suppose £ < k. Choose v; such that 1 < i <, and delete v; from A yield-
ing a new set A’ = A — {v;} with | A’ |=| A | —1. The edges v;v, and
v;vg + 1 are in C¥ — A’. Consider a vertex v, adjacent to v; in C,’: - A,
then either t + 1 < p < t + k, so v, is also adjacent to ;4 in CF — 4/, or
n—k+1<p< nand v, is also adjacent to v, in C¥ — A’. Since t < &,
then v, and v;4; are adjacent in C¥ — A. Therefore we can conclude that
deletlné vertex v; from A does not change the number of components, and
so w(Ck — A) = w(CE — A’) and the maximum order of a component of
Ck - Als T(Ck - A) < 7(Ck - A)+ 1.

Therefore 14 "E'é(c’;_,;‘ ) < Al H('T(C ;)A)+1 = T(C¥), contrary to our
choice of A. Thus we must have ¢ > k.

Now suppose t > k. Delete v; from the set A yleldlng a new set

Ay = A—{vu}. Since t > k, the edge vv, is not in C¥ — A;. Con-
sider a vertex v, adjacent to v; in C¥ — A;. Then p > ¢+ 1 and p <
t+ k. So vp is also adjacent to v; + 1 in CF — A;. Therefore deleting v,
from A yields w(C’" A) = w(CE - Ay), 7(CkF — A)) < 7(CF - A) + 1.
ThereforelA‘J"'T(c a=d1) o l41- LY;&C;;)A)H, again contrary to our choice
of A. Thust = E a.nd so A consists of the union of sets of exactly k consec-
utive vertices.

Lemma 1 gives us an indication of the size of the cut-set for the tenacity
of CF ; the next lemma gives us the size of the largest component.

Lemma 2 : There is a T-set, A, for C¥ such that all components of
Ck — A have order 7(C% — A) or 7(C¥ — A) — 1.
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Proof : Among all minimum order T-sets, consider those sets B with max-
imum order, s, of the minimum order component of C¥ — B. Among these
sets let A be one with the fewest components of order s in CX¥ — A. Suppose
s < 7(C¥ — A)—2. Note that all of the components must be sets of consec-
utive vertices. Suppose C, is a smallest component, so | V(Cp) |= s, and
without loss of generality let Cp, = {v1,vs,---,v,}. Suppose C; is a largest
component, so | V(C) |= 7(CE — A) = m, and C; = {vj,- -+, vj4m—1}- Let
C),Cy,---,C, be components with vertices between v, and vj, such that
| Ci |= n; for 1 <i<aand C; = {v;,vi,, -, %, }. Now construct A’ as

follows, A" = A—{vs41,1, +1,V20,+1," * ") Van, +1}U{v1,, 02, *, Va,, v}
Therefore | A’ |=| A, 7(Ck—A") < 7(Ck— A) and w(Ck — A") = w(Ck - A).

%‘T‘l#l I-A—Hz'g,(—"nz’yﬂ Therefore 7(C¥ — A’) = 7(C¥ — A). But

— A’ has one less component of order s than C¥ — A, and this is a
contradlctlon Thus all components of CX¥ — A have order 7(C¥ — A) or
T(Ck — A) - 1. So 7(C¥) = ["—:}k“’].

These two lemmas allow us to determine precisely the tenacity of the
power of cycles.
Theorem 4 : Let C* be a power of cycles and n = r(k + 1) + s, for
0<s<k+1. Then T(C) = k + 21,
Proof : Let A be a minimal T-set of C¥. By Lemma 1 and Lemma 2,

| A|= kw, and 7(Ck — A) = [2=22]. Thus, from the definition of tenacity
we have

k n—kw
T=min{% |2<w<r}.
Now consider the function f(w) = lu.;;[w":""‘_] =k+ Lﬁ;—k] Let w; and
wp be any two integers in (2, 1] with w; < w3, then [J-] < [2-]. Thus

flw2) = &+ rJ—] <k+ r—J— = f(w1). Hence the function f(w)

is a nonmcreasmg  function and the minimum value occurs at the bound-
— n—kwy _ k+1)+s-k —

ary. Thus w = r and [BZR] = [ )r ~] = 1+ [£]. Therefore,

T(Ck) = k+ 2L

DISCUSSION

Now consider the complete bipartite graph Ky n_. In [17], the binding
number for a complete bipartite graph was calculated by Woodall, where
he gives the result bind(K,p) = min{ 2} fora > 1 and b > 1. Thus if
k < n—k, then bind(Ki n-i) = The connect1v1ty of Kx n_i obviously
is equal to k. From [3], we have t(Kk n—k) = . It is shown in [2] tha.t

Kk n—i has integrity equal to k+1. By proposntlon 4, T(Kkn-t) = n_
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Thus we have the following results for G = K n—&:
k(G)=¢k

k
n—k
. k
blnd(G)=m

IG)=k+1
k+1
n—k

The binding number implies that the neighborhood of subset A C V(K,n—k)
has order k and | A |= n — k. The value of k(K n—k) shows us that at
least k vertices must be destroyed in order to break a complete bipartite
graph. But these two measures do not indicate how many components exist

after removing the cutset from the graph. Since the toughness of Kn n—x is

equal to ;E—k, the cardinality of the cutset and the number of components

are k and n-k respectively. The integrity of Ki n_i implies that | A |= &
and 7(Kgn-r — A) = 1. Hence both toughness and integrity attempt to
describe the structure of the resulting graph after removing the cutset A
from Ky n—k. The tenacity of a bipartite graph shows us that | A |=k,
T(Kkn-k — A) =1, w(Kin—k — A) = n — k. Hence we obtain the number
of components, cardinality of cutset and, since 7(Kjn—x — A) = 1, all n-k
components have order 1. Thus we have all of the necessary information for
the repair and reconfiguration of the complete bipartite graphs. therefore,
in this class, tenacity appears to be a better vulnerability measure.

In [2], the connectivity, binding number and toughness of Ck were de-
termined. The integrity of C¥ was calculated in [1]. By Theorem 4, we
have the tenacity of C¥. Hence we have the following results for G = C} :

H(G) =

T(G) =

k(G)=2k,2<k<n-2

1 k=1,2]|n
bindG={ g1 2k=n-2
2=l otherwise
I(G) = k[ E_l_é].;.[—n—] where 1<k < =
“WET1 2 [o  1_1" -T2
ETIT2
H(G)=k
142
7(G) = k+
r

The value of x(C¥) shows us that it is necessary (and sufficient) to
remove two disjoint nonadjacent subsets of k consecutive vertices each,
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along the circumference of the polygon. The toughness of C¥, uses the
above fact and it was calculated and proved that the cardinality of the
cutset is equal to 2k and the number of components is 2. But the enemy will
selectively target more resources to break the network, since the resulting
network with only two components is easily repaired. Also, toughness does
not take into account the order of the components. Therefore, for breaking
or reconstruction of C¥, tenacity and its minimal cutset seem to be better
measures than connectivity and toughness in this class. If n is even and
k = 1, the neighborhood of subset A C V(C¥) and | A |, have the same

order. When n is odd and k = 1, bind(C¥) = 1 + minwl—(ﬁll. However,

A is as large as possible when | A |= n — 2 and this maximum value of
| A | coincides with the minimum value of N(A), namly, N(A) = 1. In
both of the above cases and when & > 1, the binding number does not
show the order of the components, or number of components. By theorem
4 and lemma 2 tenacity gives us the number of components and the order
of the largest component. If we compare connectivity, binding number and
toughness with this class, integrity seems to be a better measure for the
vulnerabilty of a network. But for repair and reconfiguration of C¥, we
have a lack of information about the number of components. Thus in this
class, for disruption and recontruction of network, tenacity appears to be
a better measure of the vulnerability of a graph.

We now turn our discussion to the vulnerability of G, x. For G = Gp

k(G) =1
1
t(G)—§
1l k=1
bind(G) = 5—52 k=2
n—k-1 k23
I(G)=n—-k
n—k
T(G) = 5

The graphs G i perhaps best illustrate the inability of connectivity to pro-
vide a realistic measure of the vulnerability of graphs. Certainly disabling
a station located at vertex v is less damaging to the operation of the re-

maining system when k = 1 than when k = [251]|. Yet neither £(Gn i)
nor t(Ghn ) reflect this. Also, bind(Gy i) is quite insensitive to the value
of k. On the other hand, T(Gy ) provides a significant indication of the
change in the nature of the structure of the system for 1 < k < |251].
The integrity of G i implies that the cardinality of cutset A C V(Gn k) is
equal to 1 and 7(Gnx — A) = n — k — 1. Hence if we remove the vertex
v, the integrity shows us the order of the largest component, but does not
show the number of components. Therefore since T(Gp ) has w(G — A)

in the denominator indicating the number of components, it then provides
a more realistic measure of the vulnerability of the graphs. For instance,
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if a similar graph were constructed with three copies of K, the integrity
would remain unchanged while tenacity would recognize this change.

CONCLUDING REMARKS

Deterministic measures tend to provide a worst case analysis of some
aspects of the overall disconnection process. For example knowing only
«x(G), means that for a particular network, even if the enemy knows how
the edges have been assigned to the vertices, at least x(G) vertices must be
destroyed in order to break communications. Unfortunately, this measure
does not indicate how many of these sets of vertices (called minimal cutsets)
act.ualliy" exist in the network, nor does it attempt to describe the resulting

ne("‘(‘ZJ‘Z)rnsider Figure 1. Both graphs have connectivity equal to 2. But the
removal of a 2-vertex cutset in (a) leaves almost all of the graph intact,
wherease the removal of a 2-vertex cutset in (b) cuts the graph in half,
potentially a far more serious matter, for example, in a communication

net'(&}%rl!(éider Figure 2. The graph has connectivity equal to 1, but removing
2 vertices can achieve considerably greater pairwise disconnection in this
graph than can be achieved by the removal of a single vertex.

For both of these reasons we would like to attempt to quantify connec-
tivity as a relative, as well as an absolute parameter.

Vertex integrity provides some information about the network after dis-
connection has taken place but, once again, it does not seem to provide the
fine resolution that is often needed.

(a) (b)

Figure 1

Kiooo

Figure 2
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Deterministic measures are generally very difficult to compute. Even-
though #(G) can be computed quickly - linear in the number of vertices
plus the number of edges - determination of vertex integrity of a graph is,
in general, an NP-complete problem (see, for example [4]).

The effective design of a survivable communications network requires a
means of accurately evaluating its structural vulnerability both as a whole
and with respect to its individual resources. For a communications network
operating in a tactical environment, this evaluation should be based on a
worst-case assumption that the enemy will selectively target those resources
most critical to its topological integrity. A critical concern of overall system
survivability, therefore, must be the specific level of connectivity associated
with the topological structure of the supporting communications network.
In [9], Harary showed that in any graph or communications network, the

connectivity of a graph with p vertices and q edges cannot exeed [Zpij if

g > p—1 and is 0 otherwise. The power of a cycle, C¥, is an example of a
graph with maximum connectivity. We would like to show the maximum
tenacity relative to the maximum connectivity. We found this relation in

Theorem 4. Sipce communication networks must be constructed to be as
stag e as possllﬁe, not only w%t;l{1 respect ton}n?tlal cflstruptfon, but also

with respect to the possible reconstruction of the network, then CF is a
good example for network designers who are looking for a network with
maximum connectivity relative to maximum tenacity.

Since it is not clear which networks constitute ”optimal networks”, the

best we (ian o is to find some measurg or measures that we believe do a
reasonable job at measuring * goodness”.
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