RESOLVE:

An algorithm for the Minimum Dummy Task Problem

Sharon G. Boswell,
Department of Mathematics, The University of Newcastle,
NSW, AUSTRALIA 2308

and

Roger B. Eggleton,
4520 Mathematics Department, Illinois State University,
Normal, Illinois, U.S.A. 61790-4520

ABSTRACT
Scheduling graphs are used by algorithms such as PERT/CPM in order to
determine an optimal schedule for a given project. It is well-known that dummy
tasks (requiring zero processing time) must sometimes be incorporated into a

scheduling graph.

The main tool in the paper is a new algorithm RESOLVE, which creates a
scheduling graph, typically with fewer dummy tasks than are produced by the
Richards' algorithm (1967). A theoretical framework for scheduling graphs is
systematically developed through several theorems, culminating in a
demonstration of the validity of RESOLVE. A worked example illustrating the
application of RESOLVE concludes the paper.

JCMCC 30 (1999), pp. 45-65



1. Introduction

Algorithms for project scheduling include Project Evaluation and Review
Technique and the Critical Path Method (PERT/CPM). These are widely
discussed in the literature; two readily accessible treatments are [4, 5]. They
typically require as input a directed graph, which we shall call a scheduling
graph, in which the edges represent the individual tasks, the vertices mark the
beginnings and ends of tasks, and consecutive edges correspond to tasks which
can only be performed sequentially. The terminology used in the literature
varies widely, for example the graphs are called as a event-node networks,
PERT/CPM network, and arrow diagrams [9] etc. We begin by clarifying our

terminology and the problem itself.

A task is an activity which is performed in a single interval of time, of
prescribed length, called its processing time. The processing time of a task a is
denoted by t(a), so ©(a) 2 0. A project comprises a finite set of tasks, the task
set T, together with a specification that certain pairs of tasks can only be
performed sequentially. (It is implicit that other pairs of tasks in T could be
performed in overlapping intervals of time.) The total completion time of a

project of IT] = n tasks is

AT) = max { Z wa): (@, ay), @y @), (@, a)e sched(T)}

Note that the definition of T(T) does not refer to any scheduling graph.
However, if there is a scheduling graph G which properly represents 7, then

7(T) is the maximum of the expressions
IR a)
aeP (

taken over the directed paths Pin G.
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If task a must be completed before task b can be started then a is a predecessor of
b; equivalently, b is a successor of a. If there is no task which is both a
successor of a and a predecessor of b then a is an immediate predecessor of b and
b is an immediate successor of a. Initially, the available sequencing information
about the task set T is a binary relation which we call the prescheduling
relation, presched(T). Obviously, it must not contain a directed cycle, this can
be tested using Warshall's matrix algorithm ([10],[12]). The prescheduling
relation comprises predecessor—successor pairs, but these pairs are not
necessarily immediate. The subset of presched(T) comprising precisely those
predecessor-successor pairs which are immediate is called the scheduling relation,
sched(7). The scheduling relation is the transitive closure of the prescheduling

relation.

If one plans to use an algorithm (such as PERT/CPM) which uses the
scheduling graph as input, that graph must first be constructed: in practice,
however, difficulties may arise when one attempts to construct a directed graph
to represent a given scheduling relation. In many cases, as we shall show in
Section 3, it is necessary to incorporate into the task set one or more dummy
tasks, which have zero processing time, simply to make it possible for a
scheduling graph to be drawn. The problem of finding the minimum set of
dummy tasks has been shown to be NP-complete [8], formulated as finding a
“minimal PERT network equivalent to a given precedence relation represented
by an acyclic digraph”. In this paper, we present an algorithm which inserts a
minimal sufficient set of dummy tasks to achieve representation as a scheduling
graph. However, it is not the first algorithm designed for this purpose: that
credit apparently belongs to Richards [9]). On all test problems used to date,
Richard’s algorithm inserts at least as many dummy tasks into the graph as does

our algorithm RESOLVE.
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2. The scheduling graph

Each immediate predecessor-successor pair of tasks must correspond to a pair of
consecutive edges in the scheduling graph. But this condition is not sufficient
to ensure that the graph will yield an optimal schedule. We must also include
its converse, as the following example shows. Take the task set T := {a, b, ¢}
suppose that b and ¢ can only be started after a has been processed. Then
sched(T,) := {(a, b), (a, ¢)}. Consider the two directed graphs shown in

Figure 1.

Figure 1. Two scheduling graphs which represent sched(T1).

The graph G, introduces the additional constraint (b, c) which obviously has the
potential to increase the optimal completion time. The ordered pair (a, c) is
represented in G, by a directed path in which the edges a and ¢ are not
consecutive, whereas this phenomenon does not occur in G,. In general, for a
scheduling graph G to properly represent sched(T) we require that the ordered
pairs of tasks in sched(T) correspond to the pairs of consecutive edges in G, and
vice versa. In other words, G has just the right collection of pairs of

consecutive edges to represent the constraints in sched(T) and no others.

48



We shall show in Section 3 that it is not always possible for a scheduling
relation to be properly represented by a scheduling graph. When a scheduling
graph which properly represents sched(7) does exist, the corresponding schedule
is automatically optimal, because it respects all and only those sequencing

restrictions generated by presched(T).

In fact, computing an optimal schedule for T is possible from sched(7) without
reference to a scheduling graph. However, when we do have a scheduling graph
G which properly represents T we have several advantages. The scheduling
graph is a conceptual aid to dealing with the under-lying structure of sched(7),
and helps us efficiently compute an optimal schedule. (Indeed, the standard
PERT/CPM algorithms are written in terms of G, so effectively assume that
one has a scheduling graph which properly represents 7.) Moreover, even after
an optimal schedule is determined, G remains useful as a visual aid for those

working on the project represented by T.

3. Dummy tasks

We now show that a given scheduling relation may fail to have any
corresponding scheduling graph which properly represents it. Consider the
problem of scheduling four tasks a, b, ¢, d such that a is a predecessor of ¢ and
d, and b is a predecessor of 4. Here the task set is T, := {a, b, ¢, d} and the

scheduling relation is
Sched(Tz) = {(a’ C)’ (av d)’ (b9 d)}'

Suppose there is a scheduling graph G which properly represents sched(T?).
Since ¢ and d are both immediate successors of a, there must be a vertex in G

which a enters and both ¢ and d leave. But b is an immediate predecessor of d,

so b must enter the same vertex in G . Then G represents sched(T;). However,
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the tasks b and c are represented by consecutive edges in G, yet the ordered pair
(b, ¢) is not in sched(T,). Thus G does not properly represent sched(7,). This
contradiction shows that sched(7T5) is not properly represented by any scheduling

graph.

The traditional way of coping with this problem is to introduce dummy tasks,
that is, tasks with zero processing time. Thus, by introducing a dummy task e
it is possible to produce a scheduling graph (Figure 2) which leads to an optimal
schedule for T,. With 7' := T, U {e} and 1(e¢) = 0, let us take
presched(73") := sched(T3) U {(q, e), (e, d)}.
Then
sched(T>") := {(a, c), (a, €), (b, d), (e, d)}.

Note that the scheduling graph in Figure 2 properly represents sched(75").

Q
(9}

O - O - O

b d

O > U > O

Figure 2. An appropriate scheduling graph for sched(75’).

If T" is any task set which contains 7, define the restriction of <sched(T")> to T,
denoted by

<sched(T")>ly
to be the set of all ordered pairs (a, b) € <sched(T")> such that a, b€ T. When
we have <sched(T")>l; = <sched(T)>, the tasks in 7'\ T do not lead to any
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predecessor-successor pairs involving tasks in T which are not already implied

by sched(7). Then we have

THEOREM 1. Let T' be any task set which is derived from the task set T by
adjoining dummy tasks in such a way that <sched(T")>ly = <sched(T)>. Then

T =o(T).

PROOF. See [2]

COROLLARY. Under the conditions of Theorem 1, any optimal schedule
for T' yields an optimal schedule for T simply by suppressing the dummy tasks.

PROOF. See [2]

Theorem 1 and its Corollary give us grounds for hope. Even though a given
sched(T) may not be properly representable by any scheduling graph, if we can
insert dummy tasks in the right way the resulting relation sched(T”) will be
properly representable and will yield the appropriate information about sched(7).
In what follows, we shall show that it is in fact always possible to insert

dummy edges to achieve this, and we give an algorithm for doing so.

When are dummy tasks required? We can answer this question with the
following concepts. The immediate predecessor set and immediate successor set

of a task a € T are the sets

pred(a) := {t € T: (¢, a) € sched(T)},

succ(a) := {t € T: (a, t) € sched(T)}.
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Two distinct tasks a, b in T are predecessor-equivalent if pred(a) = pred(b) # @.
This defines an equivalence relation on T; let pred(7) be the resulting partition
of T into equivalence classes. Similarly, two distinct tasks a, b are successor—
equivalent if succ(a) = succ(b) # . Let succ(T) denote the corresponding
partition of 7. The tasks with empty predecessor set form singletons of pred(7)

and those with empty successor set form singletons of succ(7).

Now consider the scheduling graph G. Because G properly represents sched(7),
the tasks represented by the incoming edges at a vertex v of G are all successor—
equivalent, and those represented by the outgoing edges at v are all predecessor-
equivalent. Each interior vertex of G can therefore be regarded as the nexus of a
predecessor set P; and a successor set S; ; each initial vertex of G can be
associated with a successor set; and each terminal vertex of G can be associated

with a predecessor set. Then every vertex of G is an ordered pair of disjoint sets

of tasks (P;, S;), where P; is empty for an initial vertex and S; is empty for a
terminal vertex. Note that every task belongs to exactly one set Pj and exactly

one set S, since pred(7) and succ(T) are partitions of T.

Recall that sched(T,) := {(a, ¢), (a, d), (b, d)} is not properly represented by any
scheduling graph, but extending T, to T,’ by adding a dummy task e and
suitably extending the prescheduling relation yields a scheduling relation
sched(7,") which can be properly represented (Figure 2). What forced the
introduction of ¢? Both ¢ and 4 belong to succ(a); this requires ¢ and d to exit
from the same vertex. But task d is the only successor of task b; this requires ¢
and d to exit from different vertices. This incompatibility is caused by the
overlap of succ(a) and succ(b), that is, these two sets have at least one, but not

all, members in common. This can also be expressed in a dual form, by
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discussing the predecessor sets pred(c) and pred(d), with consideration of whether

a and b should enter the same or different vertices.

THEOREM 2. The following two properties are equivalent:
1. There exist tasks a and b such that succ(a) # succ(b) and succ(a) Nsucc(b) #D.
2. There exist tasks ¢ and d such that pred(c) # pred(d) and pred(c) N pred(d) # Q.

PROOF. Assume succ(a) # succ(b) and succ(a) N succ(b) # D for some tasks
a and b. Let ¢ € succ(a) N succ(b). At least one of succ(a) and succ(b)
contains a task which is not in the other. Suppose d € succ(a) \ succ(b). Then
a and b are both in pred(c), and a is in pred(d) but b is not. Similarly if

d € succ(b) \ succ(a). Thus pred(c) # pred(d) and pred(c) N pred(d) # . Hence
Property 1 implies Property 2. Likewise Property 2 implies Property 1.

A scheduling relation sched(7) with Property 1 in Theorem 2 cannot be properly
represented by any scheduling graph. For suppose succ(a) # succ(b) and
succ(a) N succ(b) # @. In any scheduling graph which could properly represent
sched(T), the vertex entered by a must be entered by b, since
succ(a) N succ(b) # D; but it cannot be entered by b, since succ(a) # succ(b),

so we have an impossibility.

If Property 1 does not hold for a given scheduling relation sched(T), then the
successor sets form a partition of T, that is, any two distinct successor sets are
disjoint, and together their union is 7. (This is called an improper partition in
{4] because it allows empty sets among the parts.) If the successor sets form a
partition of T then sched(T) is properly represented by some scheduling graph.
In fact, adapting theorems of Harary and Norman [5] and Geller and Harary [4]
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to our present context we have the following characterisation of properly

representable scheduling relations.

THEOREM 3. (Geller, Harary and Norman). A scheduling relation sched(T)
is properly represented by some scheduling graph if and only if either of the
Jollowing holds:

1. The successor sets form a partition of T;

2. The predecessor sets form a partition of T.

The negations of the properties in Theorem 3 are the properties in Theorem 2,
and in that form they are well suited to practical testing for the nonexistence of a
scheduling graph which properly represents a given scheduling relation.
Theorems 2 and 3 form the basis for an algorithm to insert dummy tasks in a

way which removes the obstacles to proper representation.

4. An algorithm for inserting dummy tasks

Given a scheduling relation sched(7T) which cannot be properly represented by a
scheduling graph, we can resolve this difficulty with the algorithm RESOLVE,
presented below. It extends T to a new task set 7 by the addition of dummy
tasks and produces a scheduling relation sched(7") which is consistent with

sched(7) and does have a proper representation.

Let adj(7) be the adjacency matrix of the scheduling relation sched(7). An L-
shape in a (0,1)-matrix is a rectangular configuration of three 1's and one 0. The
overlap of two immediate successor sets determined by sched(T) corresponds to
the presence of an L-shape in adj(T). Thus Theorems 2 and 3 imply that

sched(T) has no proper representation as a scheduling graph precisely when

54



adj(T) contains at least one L-shape. RESOLVE is designed to locate and

remove L-shapes from adj(7).

RESOLVE is made up of three procedures, CONDENSE, IMPROVE, and
REDUCE. CONDENSE removes redundant rows and columns, to avoid
duplication of dummy tasks and reduce the computational effort required.
IMPROVE does the real work. At each iteration it removes all L-shapes from
one row of the matrix, and creates dummy tasks corresponding to a minimal set

of later rows which participated in those L-shapes.

IMPROVE may introduce some dummy tasks which are unnecessary but this
can only be determined by considering the whole scheduling graph. REDUCE
completes the job by removing these redundant dummy tasks. There are two
types of dummy tasks which are redundant, those that can be deleted and those
that can be contracted. The operations of edge deletion and edge contraction are
well-known in graph theory and apply equally to directed graphs (see for
example [11]) The standard notation is that G—e denotes the graph formed by
deleting the edge e from the graph G, and G.e denotes the graph formed by
contracting e in G. We adapt this for our current purpose by using the adjacency
matrices in place of the graphs. REDUCE uses the transitive closure of the
scheduling relation to determine which dummy tasks, if any, can be deleted or

contracted.

The all-zero rows in adj(T) correspond to finish tasks (tasks with no successors)
and the all-zero columns correspond to start tasks (tasks with no predecessors).
RESOLVE begins with the abbreviated adjacency matrix A, constructed as

follows. From adj(7) omit each all-zero row and label each remaining row with
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the set {t}, where t is the task represented by the row. Then omit each all-zero

column and correspondingly label each remaining column.

Let A be the matrix being processed at any stage. We denote the ith row of A
by A(i) and its label set by L(i). We denote the ith column of A by A[{] and its
label set by L[i].

CONDENSE
Let A(r) be the first row of A with the property that A(r) = A(s) for some s > r.
Replace the label set L(r) of A(r) by L(r) U L(s). Delete the row A(s) and
appropriately adjust the numbers of lower rows and their label sets. Iterate until

all rows are distinct.

Let A[r] be the first column with the property that A[r] = A[s] for some s > r.
Replace the label set L[r] of A[r] by L[r] U L[s]. Delete the column A[s] and
appropriately adjust the numbers of columns to the right and their label sets.
Iterate until all columns are distinct. {End CONDENSE}

We remark that after the first application of CONDENSE, the matrix A is

similar to, but not identical with, the coalesced matrix used by Richards [9].

For completeness, we define two Boolean operations which we shall need for

IMPROVE. If X and Y are any two (0, 1)-matrices of the same shape, then
X&Y and XvY

are (0, 1)-matrices of the same shape defined by entrywise application of the

following rules. For all x,y e {0, 1}:

0ifx=0,y=0
1 otherwise.

lifx=1Ly=1

x&y={ and xvy={

0 otherwise,
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We call X & Y the intersection of X and Y, and X v Y the join of X and Y.
If X, Y and Z are any (0, 1)-matrices of the same shape, we shall say that Y is
equivalent to Z for X-intersection if X & Y =X & Z.

IMPROVE
Let A(r) be the first row of A with the property that A(r) & A(s) # 0 for some
s>r. {Row r is the active row.} If A(r) & A(s)= A(r) for some s > r,

interchange rows A(r) and A(s); iterate until this condition no longer holds.

Choose a minimal set of rows A(s,), A(s,), ..., A(s,) with join A(s)) V A(s,)

V ... V A(sy) which is equivalent to the join of all rows A(s), s > r, for A(r)-

intersection.

Add a border of £ new rows below A, denoted B(1), B(2), ..., B(k), where
B(i) .= A(r) & A(sp). Letay, a,, ..., a; be k new symbols not already used as

labels. Let {a;} be the label set of B(i). Replace A(r) by A(r) - A(r) & [A(s))
V A(sy)) V ... V A(sp)]. The row A(r) retains its label set L(r). Add a new

column C, to the right of A and B, which has 1 in row r and all other entries
zero. Let {a, a,, ..., a;} be the label set of C. {End IMPROVE}

The final procedure, REDUCE, uses the transitive closure of the scheduling
relation. We define TRANS(A) to be the transitive closure of the scheduling

relation represented by matrix A.

REDUCE
For each dummy task o do
if TRANS(A)=TRANS(A-xt) then A:=A—0..
For each dummy task o do
if TRANS(A)=TRANS(A ) then A:=A-0.
{End REDUCE}
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The overall algorithm, RESOLVE, combines these procedures:

RESOLVE

Begin with the abbreviated adjacency matrix A.
Put Labelset :=T.
Repeat

CONDENSE(A)

IMPROVE(A)

Augment Labelset with the labels a|, a,, ..., a;
until A contains no L-shapes.
REDUCE(A)
Put 7" := Labelset. {End RESOLVE}

Now construct adj(T") from the final abbreviated matrix A as follows. Note that
the finish tasks in 7" are those not used to label any row of A, and the start
tasks are those not used to label any column of A. First replicate all rows of A
which have more than one label. Let /(i) be the number of labels in the label
set L(i). If I(i) = 1, adjoin I(i) — 1 new rows to the matrix, all identical with the
row A(i), and assign each of the labels from L(i) to one of the /(i) identical
rows. Create an all-zero row for each of the finish tasks and label accordingly.
Replicate all columns which have more than one label in the corresponding
way, adding all-zero columns for each of the start tasks. Now reorder the
columns so they are in the same order as the rows. The resulting matrix is

adj(T").
5. Proof of RESOLVE

We now prove that the algorithm RESOLVE really does what it is supposed to

do. First we must show that it really does terminate, so is a genuine algorithm.
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This is not trivial, for although each iteration of IMPROVE does remove all L-
shapes involving the active row A(r), nevertheless the newly inserted rows B(1),
B(2), ..., B(k) can introduce new L-shapes into the matrix, and the total number
of L-shapes present can actually increase as a result of one iteration. For

reasons of brevity the reader is referred to [2] for the proof.

THEOREM 4. The algorithm RESOLVE does terminate.

PROOF. See [2, Section 7]

In Section 4 we showed how to construct the adjacency matrix adj(7T")
corresponding to the matrix output by RESOLVE. From it we can directly
construct a scheduling graph which properly represents sched(7”), as the

following theorem shows.

THEOREM 5. Let sched(T") be the scheduling relation resulting from the
application of the algorithm RESOLVE to sched(T). Then sched(T") has a
proper representation as a scheduling graph, and <sched(T")>lr= <sched(7)>.

PROOF. (1) The algorithm RESOLVE terminates when there are no L-shapes
in the output matrix A. This is equivalent to both the properties in Theorem 2
failing. Therefore it is equivalent to each of the properties in Theorem 3
holding. Then Theorem 3 ensures that sched(7") is properly represented by a
scheduling graph, where T := RESOLVE(T).

(2) From the definition of adj(7) and the abbreviated adjacency matrix A, we see
that sched(7) comprises exactly those ordered pairs (a, b) such that A contains a
1 at the intersection of the row labelled {a} and the column labelled {#}. Let

A®™ be the current matrix A and Labelset™ be the current Labelset at the start of
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the nth iteration of the loop within RESOLVE. Then A®™ can be regarded as an
abbreviated adjacency matrix for the task set Ty, := Labelset™ with
sched(T,) := {(a, b): a € L(i), be L[j), A" =1}.
We claim that
<sched(T,)>ly = <sched(T)> 3

holds for all iterations. It certainly holds initially, for T := 7. Suppose (3)
holds when commencing the nth iteration of the loop within RESOLVE.
CONDENSE(A™) does not alter the ordered pairs represented by A; it only
combines the representation of certain pairs using fewer 1's. But IMPROVE
typically alters the set of ordered pairs currently represented by A. If A (r) is
the active row, then IMPROVE(A™) replaces certain entries 1 in AY(r) by 0,
and adjoins a 1 to the end of A®(r). If the substitution 1 < 0 occurs at A®p;,
this corresponds to deletion of (a, b) from sched(T,) for each a € L(r), b € L[j].
The 1 adjoined to the end of A®(#) is in the column labelled {a), a,, ..., a.}, 50
it corresponds to insertion of (a, a;) into sched(T,,,) for each a € L(r) and

1 i<k IMPROVE(A™) also inserts k new rows B(i) below A™, so that
B(i) := A®(r) & A™Xs;), with label set {a;}.

So the I's in B(i) occur in those columns j where both A®)(r) and A®)(s;) have

an entry 1. For each such j, the corresponding entry 1 in B(i) represents
insertion of (a;, b) into sched(T,,,,) for each b € L[j].

Since Ty \ T, = {a,, a,, ..., a;}, the net result of the nth pass through the loop
in RESOLVE is that sched(T,,,) is obtained from sched(T,) by deleting all
those pairs (a, b) with a € L(r), b € L[jl, A= 1 and inserting all pairs

(a, a;), (a;, b) witha; € T,y \ T,
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But (g, a), (a;, b) € sched(T,,,) implies (a, b) € <sched(T,,,,)>, so the pairs in
sched(T,) which are not retained in sched(T,,,) are contained in the closure of
sched(7,,,). Therefore
<sched(Tyy1)>lr, = <sched(T})>
S0
<sched(7,,,1)>lr= <sched(T,,)>ly = <sched(7)>,
where the last step follows from hypothesis. By finite induction, (3) holds for

all iterations, so at the last iteration
<sched(T")>ly = <sched(T)>. | |

In effect the algorithm RESOLVE shows us that the scheduling problem
associated with a task set T always has a schedule which only requires time (7)
to complete. In fact Theorem 1 and its Corollary combine with Theorem 5 to

show the following.

COROLLARY. Every scheduling relation sched(T) has an optimal schedule

which processes all tasks in a total elapsed time equal to 1(T).

6. Illustration of RESOLVE

The algorithm RESOLVE was programmed in Pascal, as was Richards'
algorithm, as specified in [9]. (A copy of the code is available from the first
author.) We have compared the two algorithms on a number of test problems
and in each case tested we found that Richards' algorithm produces at least as
many dummy tasks as RESOLVE, and frequently produces more. However, we

have no proof that this is always the case.

To illustrate the effectiveness of RESOLVE, we have chosen the following
scheduling problem of practical size. The task set is 75 := {a, b, ¢, d, e, 1, 5, ¢,

u, v} and the scheduling relation, sched(Ts), is shown in abbreviated matrix

61



form in Figure 12. Note that this example has numerous overlaps in its

SUCCessor sets.

{r} {s} {1} {u} {v}

{a} | 1 1 1 1 0
{b}| O 1 1 1 1
{c}] 1 0 1 1 0
{d}] 1 1 0 1 0

{e}] 1 1 0 0 1

Figure 3. The abbreviated adjacency matrix for sched(T5).

Our example shows that RESOLVE can handle equivalent problems from other
contexts. In particular, it could be interpreted as a problem concerning a "black
box" which has input channels a, b, ¢, d, e and output channels r, s, ¢, u, v.
Output on channel r is a combination of inputs on channels g, ¢, d, ¢; output on
channel s is a combination of inputs on channels a, b, d, e; and so on, as
specified by the matrix in Figure 3. Determine a small internal network for the

black box.

An obvious solution suggested by the "black box" version of the problem is to
insert a single directed edge (dummy task) from each input channel to each
appropriate output channel. This yields a solution with 17 dummy tasks.
Richards algorithm yields precisely this result. However, in 11 iterations,
IMPROVE produces a solution with only 15 dummy tasks of which 2 are
removed by REDUCE, giving a final solution from RESOLVE with 13 dummy

tasks as shown in Figure 4. The dummy tasks introduced at iteration n are
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labelled An, Bn etc. The vertices are also labelled with the number of the
iteration at which they were effectively introduced, except for the initial vertices

of both the start and finish tasks and the final vertices of the finish tasks.

Figure 4. The scheduling graph produced by RESOLVE for sched(T5").

7. Closing remarks
For RESOLVE, some important open problems remain. Is the set of dummy
tasks produced by RESOLVE actually minimum as well as minimal? If not, is

it always better than Richards’ algorithm [9]?

Scheduling relations may be represented by a directed graph in an alternative
manner — where the tasks are represented by the vertices of the graph, and there
is a directed edge from vertex i to vertex j precisely when (i, j) € sched(7). In

general, the vertex scheduling graph for sched(7) is the line digraph (see [4]) of
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the scheduling graph for sched(7). Condensation of such graphs has also been

investigated (see [1] for example).

Vertex scheduling graphs are easy to draw and we feel that there is much to
recommend them. Edge scheduling graphs are in common use with
PERT/CPM algorithms, but these algorithms can be adapted to operate on
vertex scheduling graphs. However vertex scheduling graphs do lack the visual
advantage of (edge) scheduling graphs where the lengths of the edges suggest the
duration of the task. Moreover, the "black box" version of the example in
Section 6 shows another context in which it is natural for the unknowns to be

represented by directed edges rather than vertices.
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