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Abstract

Let F be a family of objects and ¢ an integer-valued function
defined on F. If for any A, B € F and integer k between ¢(A) and
¢(B) there exists C € F such that ©(C) = k, then ¢ is said to
interpolate over F. In this paper we first discuss some basic ideas
used in proving interpolation theorems for graphs. By using this
we then prove that a number of conditional invariants interpolate
over some families of subgraphs of a given connected graph.

1 Introduction

Let F be a family of objects under consideration and ¢ : F — Z an
integer-valued function. If for any A, B € F and each integer k£ between
©(A) and @(B) there exists C € F such that ¢(C) = k, then following
[17] we say that ¢ interpolates over F. Evidently, this is equivalent to
saying that the image set (F) consists of consecutive integers. The
study on interpolation was initiated by Harary, Hedetniemi and Prins
[14] when they proved the homomorphism interpolation theorem. Gen-
eralization of this theorem was made in [8]. In 1980, Chartrand [4] asked
whether the number of pendant vertices interpolates over the family of
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spanning trees of a connected graph. This question was answered affir-
matively in [22, 26] and a lot of interpolation results concerning some
basic graphical invariants were obtained in the last decade. For exam-
ple, it was proved [16] that the diameter interpolates over the family
of spanning trees of a 2-connected graph. As a generalization to this
result it was proved in [27] that both the diameter and the radius in-
terpolate over the family of spanning trees of any tree-like graph (a
graph G is tree-like if it can be obtained from a tree by identifying the
centers of some multi-blocks, which are pairwise vertex-disjoint and are
also vertex-disjoint with G, to some vertices of the tree, where a multi-
block is a graph obtained from some vertex-disjoint blocks of order > 3
by identifying one vertex of each block to a new vertex, called the cen-
ter.). For other interpolation results the reader can consult, for example,
(2, 15, 17, 28, 29, 30].

The purpose of this paper is two-fold. In the first part (Section 2)
we discuss some basic ideas used in proving interpolation results. By
using this we then in the second part (Section 3) prove a number of
interpolation theorems for some conditional invariants of graphs. As we
shall see, the concepts of transformation and continuity of an invariant
with respect to the transformation play an important role in the research
of interpolation.

The graphs considered in this paper are finite, undirected and simple.
For a graph G = (V(G), E(G)), denote by G[X] the subgraph of G
induced by X if X C V(G) or X C E(G). We use K, to denote the
complete graph on n vertices and G to denote the complement graph of
G. By H C G we mean H is a subgraph of G. The union of two graphs
G and H is denoted by G U H. The degree-one vertices of G are called
the pendant vertices. For a vertex v of G, we use G — v to denote the
graph resulted from G by deleting v together with the edges incident
with v. For an edge e of G, G — e is the spanning subgraph of G with
edge set E(G)—{e}. If f is an edge of G, then G + f is the graph defined
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by G = (G + f) — f. In general, if E C E(G), F C E(G), let G— E and
G + F be the graphs with vertex set V(G) and edge sets E(G) — E and
E(G) U F, respectively. For other undefined terminology and notations
the reader is referred to [3].

2 Basic ideas
First we have the following simple but useful fact.

Proposition 1 ([28]) ¢ interpolates over F if and only if there ezists a
connected graph G(F) with vertez set F such that A,B € F is adjacent
in G(F) implies |p(A) — o(B)| < 1.

This can be viewed as a refinement of some basic ideas used in the
research of interpolation [16, 17, 18, 22, 26, 27, 28, 29, 30]. We say
roughly that G(F) is a transformation graph defined on F. Indeed,
in proving concrete interpolation theorems the graph G(F) is often
associated with some transformations among elements of F (see e.g.
[16, 17, 18, 22, 26, 28]). For instance, the simple edge-ezchange, adja-
cent edge-exchange and leaf edge-ezchange (see [17] for definitions) were
used in the research of interpolation. For two graphs G, H, we call
the transformation G — H a single edge deletion or addition (EDA) if
H=G-eforanedgee € E(G) or G=H — f for an edge f € E(H). If
H =G —e+ f for some e € E(G) — E(H) and f € E(H) — E(G), then
we say that G — H is a simple edge transformation (SET, or simple
edge-exchange as used in [17]). These two types of transformation and
the edge-exchanges above are useful in proving interpolation theorems
for some families of spanning subgraphs of a given graph [17, 28}. Nev-
ertheless, new transformations are needed for the study of interpolation
for non-spanning subgraphs. So let us introduce the following transfor-
mations. We call G = H a pendant vertez deletion or addition (VDA)
if H = G — v for a pendant vertex v of G or G = H — w for a pendant
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vertex w of H. If there exist respectively pendant vertices v, w (not nec-
essarily distinct) of G, H such that G —v = H —w, then we call G = H
a pendant vertex transformation (PVT). Obviously a leaf edge-exchange
is a PVT, but not conversely. If H = G —v +e for a pendant vertex v of
G and an edge e of G or G can be expressed in terms of H in a similar
way, then we call G — H a mized edge transformation (MET). Let L C
{EDA, VDA, SET, PVT, MET} and let F be a family of graphs. A
sequence Go, Gy, ..., Gp with all terms in F is called an L-sequence of
F from Gy to Gy if each G; = Gi41 is one type of transformation in L.
F is said to be L-connectable if for any distinct G, H € F there exists
an L-sequence of F from G to H. If we define L(F) to be the graph
with vertex set F and two members G, H being adjacent if and only if
G — H is one type of transformation in L, then F is L-connectable if
and only if L(F) is connected. So the L-connectability is an alterna-
tive (but convenient) way of stating the connectedness of L(F ). Thus,
the connectedness of the tree-graph of a connected graph is equivalent to
saying that the family of spanning trees of the graph is SET-connectable.

Now we introduce another concept, namely the continuity of an
integer-valued function ¢ with respect to a transformation. Let A be
a transformation defined for graphs. We say that ¢ is continuous with
respect to A if A : G — H implies

lp(G) — p(H)| < 1. (1)
For a graphical invariant ¢, if
9(G) =1 < (G —€) < »(G) (2)

for any graph G and e € E(G), then g is said to be positive [17]. If
P(G) < (G —e) < p(G) +1 (3)
instead, then ¢ is negative [17]. If ¢ satisfies both (2) and

©(G) —1 < (G —v) < p(G) (4)
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for any pendant vertex v of G, then we say that ¢ is strongly positive.
The concept of strongly negetive invariant is understood in a similar way.
Clearly any positive or negative invariant is continuous with respect to
both EDA and SET. Also, we observe that any strongly positive or
strongly negative invariant is continuous with respect to all types of
transformation defined above. So Proposition 1 implies the following

Proposition 2 Let F be a family of graphs and ¢ a graphical invari-
ant. Let L C {EDA,VDA,SET,PVT,MET}. If o is continuous with
respect to each type of transformation in L and F is L-connectable, then
@ interpolates over F. In particular, we have

(i) If F is {EDA, SET}-connectable, then any positive or negative
invariant interpolates over F;

(i) If F is {EDA,VDA,SET, PVT, M ET}-connectable, then any

strongly positive or strongly negative invariant interpolates over F.

3 Interpolation theorems

A property P associated with graphs is said to be hereditary [20] if when-
ever a graph G has property P and H C G then H also has property P.
Dually, a property Q is cohereditary (8] if whenever a graph G possesses
Q and G C H then H possesses @ as well. Although a number of inter-
polation results for some families of spanning subgraphs (particularly for
the family of spanning trees) of a connected graph have been obtained
([2, 16, 17, 18, 22, 26, 28]), few results are known for non-spanning sub-
graphs. The only example of such kind known to the author is that
the number of vertices with degree < M interpolates over the family of
connected m-edge subgraphs of a connected graph for any given M, m
[28]. In this paper we shall consider both spanning and non-spanning
subgraphs. For a given connected graph K with order p = |V(K)| and
size ¢ = |E(K)|, we shall discuss interpolation problems for the following
typical families of subgraphs of K.
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J: the family of connected spanning subgraphs with m edges for a
givenm,p—1<m<aq.

Fo: the family of connected spanning subgraphs having at least m
and at most n edges, where m,n are given integers withp —1 < m <
n<gq.

JF3: the family of connected spanning subgraphs.

F4: the family of spanning subgraphs having m edges, 0 <m < gq.

Fs: the family of spanning subgraphs having at least m and at most
n edges, where m,n are given integers with0 <m <n < gq.

Fe: the family of spanning subgraphs.

Fr: the family of spanning subgraphs with maximum degree < M
for a given integer M.

JFg: the family of spanning subgraphs with minimum degree > N for
a given integer N.

Fy: the family of spanning subgraphs having a given hereditary prop-
erty P.

Fio: the family of spanning forests having a given hereditary prop-
erty Pp.

Fi1: the family of connected spanning subgraphs having a given
cohereditary property Qo.

Fio: the family of spanning subgraphs having a given cohereditary
property Qo.

Fi3: the family of subtrees with m vertices for a given m,1 < m < p.

Fi4: the family of connected subgraphs with m vertices for a given
m,1 <m < p.

Fis: the family of connected subgraphs with m edges for a given
m,1 <m<Lq.

Fig: the family of connected subgraphs that have at least m and at
most n edges for given integers m,n,1 <m <n<g.

Fiz: the family of connected subgraphs.

Fig: the family of subgraphs with m edges for a given m,1 < m < q.
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Fig: the family of subgraphs.

Fao: the family of subgraphs having at least m and at most n edges,
1<m<n<gqg.

Fo1: the family of subgraphs having a given hereditary property Pj.

Fa: the family of subgraphs having a given cohereditary property
Qo-

Note that if m = p — 1 then F; is just the family of spanning trees
of K. We have

Lemma 1 (i) Each F; is {EDA, SET}-connectable, 1 < i < 12.
(ii) Each F; is {EDA, VDA, SET, PVT, MET}-connectable, 13 <
1< 22.

Proof The EDA- or SET-connectability of F;,7 = 1,4,5,7,8,9, was
actually proved in [17). Let G,H be two graphs in F,. By deleting
some edges from G one at a time we get a connected spanning subgraph
G1 of G with m edges. Similarly we can get a connected spanning
m-edge subgraph H; of H. Since F; is SET-connectable there is an
SET-sequence from G to H; of which all terms are connected spanning
m-edge subgraphs. So F; is {EDA, SET}-connectable. Let G, H € F3.
By adding the edges in E(K)— E(G) to G one by one we get K. Then by
deleting the edges in E(K) — E(H) one at a time we get H. So we have
an EDA-sequence of F3 from G to H and hence F3 is EDA-connectable.
The similar argument can be used to prove the EDA-connectablity of
Fe¢. Let G, H be two members of Fi9. By deleting the edges of G one
at a time we get the empty graph K, with vertex set V(G). Since Py
is hereditary all the intermediate graphs in this process belong to Fig.
Oppositely, we can get H from K, by adding the edges of H, one at a
time. Hence Fyg is EDA-connectable. By a similar discussion we know
JF11 and Fig are also EDA-connectable.

Now let us prove that Fy3 is {SET, PVT}-connectable. Obviously,
this is true for m = 1,2. If m = p, then Fi3 is the family of spanning
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trees of K and hence is SET-connectable as mentioned earlier. In the
following we suppose 3 < m < p— 1. For G, H € Fi3, denote §(G,H) =
(2m—1)—(|V(G)NV (H)|+|E(G)NE(H)|) and V(G, H) = V(G)NV (H).
Then 0 < 6(G, H) < 2m — 1. If there is an {SET, PVT}-sequence of
Fi3 from G to H, we write briefly G ~ H. Now we prove G ~ H by
induction on §(G, H).

If 6(G,H) = 0, then G = H. If §(G,H) = 1, then G = H is an
SET. Now suppose §(G, H) > 2 and the result holds for smaller value of
5. For the case when 6(G,H) = 2m —1 (i.e. G, H are vertex-disjoint),
we execute the following algorithm:

Step 1 Let Ty be a minimal subtree of K containing both G and H.
Let Gg =G and : = 0.

Step 2 Ifi = |E(Ty)— E(H)|, stop; otherwise, take a pendant vertex
v of T} such that the edge incident with v lies in E(T;) — E(H), and then
take an edge e € E(T;) — E(G;) which is incident with a vertex of G;.

Step 8 Let Giy1 = Gi+e—v,T;41 =T; —v. Replace i by i+ 1 and
return to Step 2.

It is not difficult to see that the sequence Gy, G1,... generated by
this algorithm is a PVT-sequence from G to H. Hence G ~ H. If
8(G,H) < 2m — 1, then V(G, H) # 0. We distinguish two cases.

CASE 1 There is a pendant vertex of G or a pendant vertex of H which
is not in V(G, H).

Let, say, v be a pendant vertex of G which is not in H. Noting that -
V(H) — V(G) # 0, we can take an edge e of H which has exactly one
end-vertex in V(G, H). Set Gy = G —v+e. Then G - Gy is a PVT
and 6(G1, H) < §(G, H). By the induction hypothesis, we have G1 ~ H
and hence G ~ H.

CASE 2 All vertices in V(G)—V (H) and V(H)—V(G) are non-pendant
vertices of G and H, respectively.

Then |V(G) N V(H)| > 2 since any nontrivial tree has at least two
pendant vertices. If there exists f € (E(G) — E(H)) U (E(H) — E(G))
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whose end-vertices are both in V (G, H), let, say f € E(G)—E(H). Then
there is an edge e which is in the unique cycle of G + f but not in H.
Let Gi = G — e+ f. Then G — G, is an SET and §(G, H) < §(G, H).
Therefore we have Gi ~ H, implying G ~ H. If no such f exists, then
for each e = uwv € E(G) with u € V(G) — V(H),v € V(G, H) we define
I(e) to be the number of vertices of the component of G — e containing
v. Let {(G) be the minimum of I(e) taken over all such e. We have
CLAIM There exists a sequence G = Gy, Gq,...,G; such that each
G; = Giy1 is a PVT and §(G,, H) < §(G, H), where | =1(G).

We prove this by induction on I. If [ = 1, then there is an edge
e = ww with u € V(G) — V(H) and v € V(G, H) a pendant vertex of
G. Let f be an edge of H with exactly one end-vertex in V(G, H) and
let Gy = G—e+ f. Then G — Gy is a PVT and §(G1, H) < 0(G, H).
Suppose ! > 2 and ¢ = uv is an edge which attains the minimum in
I(G), where u € V(G) — V(H),v € V(G,H). Let w # v be a pendant
vertex of the component of G — e containing v and f an edge of H with
only one end-vertex in V(G, H). Define G1 = G—w+ f. Then G = G
is a PVT and 6(G1, H) = §(G, H),l(G1) = I(G) — 1. By the induction
hypothesis we can find Gy,...,G; with each G; = G;41 a PVT and
0(G, H) < 6(G, H). This proves the claim.

By the claim above we have G ~ G; ~ -+ ~ G, and §(G, H) <
0(G, H). By the induction hypothesis we have G; ~ H and hence G ~
H. This completes the proof of the {SET, PVT}-connectability of Fi3.
From this it is clear that F4 is {EDA, SET, PVT}-connectable.

Now let us prove that F5 is {SET, PVT, MET}-connectable. We
write G ~ H if there is an {SET, PVT, MET}-sequence of F5 from G
to H. Then it suffices to show that G ~ H for any G,H € Fy5. f K isa
tree, then both G and H are subtrees with m + 1 edges and hence from
the {SET, PVT}-connectability of 13 we know G ~ H. Suppose K
is not a tree and T, J are spanning trees of G, H, respectively. Extend
respectively T and J to spanning trees Ty and Jg of K. If m = p—1, then
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the edges of Ty — E(T') can be ordered as f1,..., fi,t = |E(To) — E(T)|,
such that if we define Gy = G, Gi41 = Gi—eiy1+ fit1,0 <2 <t—1, then
each G; — Gi41 is an MET, where ey, ..., e; are the edges of G — E(T).
So we get G ~ Tp. Similarly we have H ~ Jy. But To ~ Jo by the
connectedness of the tree-graph, so we have G ~ H. If m > p — 1, let
E and F be subsets of E(K) each containing m — p + 1 edges such that
E(To)NE = E(Jo)NF = 0 (actually we can take E C E(G)—E(T),F C
E(H)— E(J)). By the similar method as above we get G ~ To+E, H ~
Jo+F. But Ty+E and Jy+F are connected spanning m-edge subgraphs
of G. So by the SET-connectability of F; we know Ty + E ~ Jp + F,
implying G ~ H. If m < p—1, let E and F be respectively (p—1—m)-
subsets of E(Ty) and E(Jp) such that Ty — E, Jo — F are trees with
m + 1 vertices. From the {SET, PVT}-connectability of ;3 we have
To— E ~ Jy— F. Hence G ~ Ty — E ~ Jy — F ~ H, completing the
proof of the {SET, PVT, MET}-connectability of F15.

For two members G, H of Fig, there exists an {EDA, VDA}-sequence
from G (respectively H) to a connected subgraph Gy (respectively Ho)
of K with n edges. By the conclusion we have just proved for 75, there
is an {SET, PVT, MET}-sequence of connected n-edge subgraphs from
Go to Hy. So Fig is {EDA, VDA, SET, PVT, MET}-connectable. It
is clear that Fy7 and Fyg are {EDA, VDA}-connectable. For G,H €
Fis, one can check that there exists an {SET, PVT, MET}-sequence
of Fis from G (respectively H) to a connected m-edge subgraph G
(respectively Hy) of K. Since Gy ~ Hy as we have shown and Fi15 C Fis,
we know that Fig is {SET, PVT, MET}-connectable. This, together
with a similar discussion as for Fig, implies that Fog is {EDA, VDA,
SET, PVT, MET}-connectable. Finally, one can check that both F3;
and Foy are {EDA, VDA}-connectable. This completes the proof of
Lemma 1.

Combining Proposition 2 with Lemma 1 we get the following
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Theorem 1 Let K be a connected graph and F;,1 < i < 22, be fami-
lies of subgraphs of K defined as above. Then any positive or negative
invariants interpolates over F;,1 < i < 12, and any strongly positive or

strongly negative invariant interpolates over F;,1 < ¢ < 22.

Interpolation properties for F; were studied in [2, 17, 30]. In the
sequel we shall use Theorem 1 to prove a number of interpolation results
for some conditional invariants, which can be divided into the following

three categories.

3.1 Invariants concerning conditional colorings

A property P associated with graphs is said to be induced hereditary [20]
if whenever G has property P then every vertex induced subgraph of G
has property P also. The edge-induced hereditary property is defined in a
similar way. Obviously, a hereditary property is both induced and edge-
induced hereditary and any induced hereditary property is possessed by
K,. For a property P, a partition (Vi,...,V,) of V(G) is called a P-
n-coloring of G if each G[V;] has property P. A partition (E,...,Ey)
is an edge P-n-coloring if each G[E;] has P. In a similar way, we call
a partition (X1,...,X,) of V(G) U E(G) a total P-n-coloring of G if
G[Vi] U G[E;] possesses P for each i, where V; = X; N V(G), E; = X; N
E(G). If (V4,...,V,) is a P-n-coloring of G, then we also say that G
is P-n-colorable and that the vertices in V; are colored with color 3.
Similar terminology will be used for edge P-n-colorability and total P-
n-colorability. If P is induced hereditary, then the P-chromatic number
of G [11], denoted by xp(G), is defined to be the minimum 7 such that
G is P-n-colorable. If P is edge-induced hereditary, then the edge P-
chromatic number x'p(G) [11] is the minimum n such that G is edge P-
n-colorable. If P is hereditary, we define the total P-chromatic number
X5(G) to be the minimum n such that G is total P-n-colorable. Let
P¢ be the property of being complete graphs and Py be the property
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of being edgeless graphs. We have

Lemma 2 (i) If P is induced hereditary and P # Pc, then xp is con-
tinous with respect to EDA, VDA, SET, PVT and MET;

(ii) If P is edge-induced hereditary and P # Py, then X is strongly
positive;

(iii) If P is hereditary and P # Py, then x£ is strongly positive.

Proof (i) We first note that P # Pc implies that Ko has property P.
Let k = xp(G) and | = xp(G —e) for an edge e of G. Then from a P-k-
coloring of G we can get a P-(k+ 1)-coloring of G — e by assigning a new
color to one end-vertex of e. Similarly one can obtain a P-(l+1)-coloring
of G. So we have

xp(G) —1< xp(G —¢) < xp(G) +1. (5)
It is not difficult to prove that for a pendant vertex v of G,
xp(G) —1 < xp(G —v) < xp(G). (6)

So xp is continuous with respect to EDA, VDA and PVT. Now we prove
the continuity of xp with respect to SET and MET.

Let G — H be a SET, where H = G — e+ f,e = uv and f = zy.
Let k = xp(G),l = xp(H) and (W,..., V) be a P-k-coloring of G. We
distinguish two cases.

CASE 1 w,v are colored with the same color.

Let, say, u,v € V;. If z and y are colored distinctly, then ({u}, V1 —
{u}, Va,..., Vi) is a P-(k + 1)-coloring of H. If they are colored with
the same color, then ({u,z},Vi — {u,z},..., Vi — {u,z}) is a P-(k+1)-
coloring of H since both K> and K2 have property P. So we get [ < k+1.
CASE 2 u,v are colored with different colors.

In such case ({z},V; — {z},..., Vi — {z}) is a P-(k + 1)-coloring of
H and hence we have [ < k+ 1 as well.
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Since H — G is an SET, we have symetrically that ¥ < [ + 1.
Therefore, xp is continuous with respect to SET.

Let G — H be an MET with H = G —w + f, where w is a pendant
vertex of G and f = zy an edge of the complement graph of G—w. Since
G—w = H— f we get immediately from (5)-(6) that xp(H) < xp(G)+1.
Let ! = xp(H) and (W4,..., V}) be a P-l-coloring of H. If z,y are colored
distinctly, then ({w}, V1,...,V}) is a P-(l 4+ 1)-coloring of G. Otherwise,
let, say, z,y € V;. Since w is a pendant vertex of G we may suppose
without loss of generality that w is not adjacent to z in G. Since K> has
property P, ({w,z},V4 — {z},...,Vi — {z}) is a P-(l + 1)-coloring of G.
In both cases, we get xp(G) < xp(H) + 1 and hence xp is continuous
with respect to MET.

(ii) Clearly we have x»(G —e) < xp(G), e € E(G). On the other
hand, P # Py implies that K, has property P and hence a P-xp(G —e¢)-
coloring of G — e can be extended to a P-(xp(G — e) + 1)-coloring of G
by assigning a new color to e. Thus, xp is positive. For any pendant
vertex w of G, we have xp(G — w) = xp(G — e), where e is the edge
incident with v. Hence x’p is in fact strongly positive.

(iii) Obviously, we have x5(G — €) < x5(G). Suppose for an edge
e = uv € E(G) that | = x5(G — €) and (Xy,...,X)) is a total P-
l-coloring of G —e. Let Y; = X;—{u} for 1 < i <!land ¥4 =
{u,e}. Then (Yi,...,Y;41) is a total P-(I + 1)- coloring of G. Hence
XE(G) —1 < x5(G —€) < xE(G). In a similar way, we can prove
X5(G) — 1 £ x5(G — w) < x5(G) for any pendant vertex w of G. So
xg is strongly positive and the proof is completed.

Note 1 If P = P, one can prove that yp is continuous with respect to
EDA, VDA, SET, PVT. But it is not continuous with respect to MET.
Furthermore, xp is strongly positive if P is hereditary. But it is neither
positive nor negative if P is induced-hereditary but not hereditary.
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A property Q is said to be cohereditary [8] if whenever G C H and G
has property @, then H has property Q as well. Q is induced cohereditary
if whenever G is an induced subgraph of H and G has property Q, then H
has property Q. The edge-induced cohereditary property can be defined
similarly. For induced cohereditary @, we define

(G) = max{n: G is @-n-colorable}, if G has property Q
XQ\M) =1 o, otherwise.

For edge-induced cohereditary property (), we define

L (@) = max{n: G is edge Q-n-colorable}, if G has property Q
10, otherwise.

We call xo(G) and xg(G), respectively, the Q-cockromatic number and
the edge Q-cochromatic number of G. Similarly, we can define the total
Q-cochromatic number xg(G). We have

Lemma 3 (i) If Q is cohereditary, then xq is strongly positive and xg
is positive.
(ii) If Q is edge-induced cohereditary, then x’Q is strongly positive.

Proof Let e = uv € E(G),k = xo(G) and | = xo(G —e). Then
evidently we have [ < k. In proving k¥ —1 < [, we can assume k > 1.
Let (V4,...,Vk) be a Q-k-coloring of G. If u,v are colored distinctly,
then it is also a Q-k-coloring of G — e. If u,v are colored the same, let,
say u,v € Vp, then (V1 UV,,V3,..., V) is a Q-(k — 1)-coloring of G —e.
In either case we get k — 1 < [. Similarly one can prove xo(G) — 1 <
xQ(G—v) < x@(G) for any pendant vertex v of G. Hence xq is strongly
positive. Clearly we have x5(G — ) < x{(G). On the other hand, let
k= xg(G) and (X1,...,Xx) be a total Q-k-coloring of G. Suppose for
example e € X1, then (X; UXp, Xj,...,Xk) is a total Q-(k —1)-coloring
of G — e, implying that XE is positive. In a similar way we can prove

(ii).
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Note 2 It can be proved that x¢ is continuous with respect to EDA,
VDA, PVT, MET and AEE (adjacent edge-exchange) if Q is induced
cohereditary. But it is not continuous with respect to SET. For example,
if Q is the property of being graphs containing either C3 (the triangle)
or P; (the path with four vertices) as an induced subgraph, then Q is
induced cohereditary. If G is the vertex disjoint union of C3 and P, and
H is the vertex disjoint union of P3 and Cy, then G — H is an SET but

xQ(G) =2,xq(H) =0.

Note 3 xg is not strongly positive. For example, if @ is the property
of being graphs containing P; as subgraph and G is the graph obtained
from K, by deleting two adjacent edges, then xg(G) =2, xg(G—v) =0,
where v is the unique pendant vertex of G.

Note that in the proof of Lemma 1 the MET’s are used only for
Fi,i = 15,16,18,20. From Lemmas 2 and 3, Proposition 2, Theorem 1
and Note 2 we get

Theorem 2 (i) If P # Pc is induced hereditary, then xp interpolates
over F;,1 <1 <22

(ii) If P # Py is edge-induced hereditary, then xp interpolates over
Fi,1<i<22;

(iii) If P # Py is hereditary, then x% interpolates over F;,1 <14 <
22;

(iv) If Q is induced cohereditary, then xq interpolates over Fi,1 <
i <22,i#15,16,18,20; if Q is cohereditary, then xq interpolates over
Fi1<i<22;

(v) If Q is edge-induced cohereditary, then xq interpolates over F;,1 <
1 < 22,

(vi) If Q is cohereditary, then xg interpolates over F;,1 <1 < 12.

As noted in the literature, a large number of invariants for graphs
can be expressed as xp,Xp,XQ OF x’Q. Here we list some of them in

81



Tables 1 and 2. From Theorem 2 we have

Corollary 1 All the invariants listed in Tables 1 and 2 interpolate over
Fi,1 <i<22.

P XP Xp

Planarity Thickness [12]
Acyclicity Vertex arboricity [6) Arboricity [11, 12]
With at most one cycle Unicyclicity [12]
Without odd cycles Biparticity [12]
Being linear forests Vertex linear arboricity {23) Linear arboricity [12]
Without paths of lenth n n-Chromatic number (5]

With chromatic number < n | Chromatic partition
number [25]

Being 1-regular graphs Edge chromatic number
Being edgeless graphs Chromatic number
Being complete or edgeless
graphs Cochromatic number [21)
Being disjoint union of
complete graphs Subchromatic number [1]
Being complete r-partite
graphs for any r Partite chromatic number [9]
Table 1
Q XQ Xo
Nonplanarity Coarseness [12]
Non-acyclicity Vertex cycle multiplicity (6] | Anarboricity [12]
Being graphs other than paths apathy [12]
Table 2

3.2 Generalized independence and covering numbers

A set X of vertices of G is called a P-set of G if G[X] possesses property
P. X is a P*-set if it has non-empty intersection with every non-P-set of
G. Let Bp(G) and ap(G) be respectively the maximum cardinality of a
P-set and the minimum cardinality of a P*-set of G. It was proved [20!
that ap(G) + Bp(G) = |V(G)| if P is hereditary. This equality becomes
the well-known Gallai equality a(G)+6(G) = |V(G)| if P = Py because
in such case ap and Bp are just the ordinary vertex covering number
and independence number, respectively.

Lemma 4 If P is hereditary, then ap is strongly positive whilst Bp is
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negative. Moreover, for any pendant vertez v of a graph G, fp(G)—1 <
Bp(G —v) < Bp(G).

Proof Clearly we have 8p(G) < Bp(G — e) since P is hereditary. On
the other hand, let X be a maximum P-set of G —e and v an end-vertex
of e. Then X —{v} is a P-set of G and hence 8p(G—e) < Bp(G)+1. For
a pendant vertex v of G, any P-set of G —v is a P-set of G and the set
resulted from a P-set of G by possibly deleting v is a P-set of G —v. So
Bp(G) — 1 < Bp(G —v) < Bp(G). This, together with the negativeness
of Bp we have just proved and the equality ap(G) + Bp(G) = |V(G)|,
implies the strongly positiveness of ap.

A property P is said to be induced edge hereditary (or induced line-
hereditary as used in [20]) if (i) it is edge-induced hereditary, (ii) the
edgeless graphs have P, and (iii) any graph obtained from a graph having
property P by adding isolated vertices has property P as well. For such
P, we call X C E(G) a P-edge set if G[X] has property P. X C E(G)
is a P*-edge set if it intersects every non-P-edge set of G. We define
o»(G) and Bp(G) to be respectively the maximum number of edges in
a P-edge set and the minimum number of edges in a P*-edge set of G.
It was implied in [20] that o/s(G) + Bp(G) = |E(G)|. From this we can

prove
Lemma 5 Both o/p and Bp are strongly positive.

Let 8(G) and o/, (G) be, respectively, the minimum cardinality of
a maximal edge independent set and the maximum cardinality of a min-
imal edge covering of G [7]. Then &/ (G) + B_(G) = |E(G)| [7]. Let
B~ (G) be the matchability number (7] defined to be the minimum cardi-
nality of a maximal set X C V(G) such that there exist | X| edges each
incident with exactly one vertex in X. It is not difficult to prove

Lemma 6 o ,B.,8 are all strongly positive.
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Note that from Lemma 4 fp is continuous with respect to EDA,
VDA, SET and PVT. So we have

Theorem 3 (i) If P is hereditary, then ap interpolates over all F;,1 <
i < 22, and Bp interpolates over F;,1 <1 < 22,1 # 15,16, 18, 20.

(ii) If P is induced edge hereditary, then both op and B} interpolate
over F;,1 <1< 22.

(iii) o/, BL, B~ interpolate over F;,1 <1 < 22.

If P = Py, then P is hereditary and ap,Bp are just the ordinary
vertex covering number o and independence number S, respectively. If
P is the property of being graphs with maximum degree < 1 then it is
induced edge hereditary, and o/p, Bp are respectively the ordinary edge
covering number o' and edge independence number 3. It was proved
([17], also partly contained in [28]) that a,8,¢' and §' all interpolate
over F; for i = 1,4,5,7,8,9. From Theorem 3 we know that the same
result is true for ap, Bp, &p and Bp provided that P is hereditary. Also,
Theorem 3 implies in particular that o, o/, 8’ interpolates over all F; and
B interpolates over all these families except F;,7 = 15, 16, 18, 20.

3.3 Conditional connectivities and subgraph invariants

The P-connectivity kp(G) [13] is the minimum cardinality of a set X C
V(QG) such that G—X is disconnected with each component has property
P. The P-edge connectivity [13] Ap(G) is defined similarly. For certain
property P, kp(G) or Ap(G) may not exist for some graph G [13]. We
observe that if P is hereditary, then these two invariants are well-defined
for all graphs.

Lemma 7 If P is hereditary, then both kp and Ap are positive.
Proof We call X C V(G) a P-seperating set of G if G — X is dis-

connected with all components have property P. Obviously, we have
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kp(G — e) < kp(G) for each edge e of G. Suppose X is a minimum
P-seperating set of G — e. If at least one of the two end-vertices of e is
in X, then X is also a P-seperating set of GG; otherwise one can check
that X together with an end-vertex of e is a P-seperating set of G. In
both cases we get kp(G) — 1 < kp(G — e) and hence kp is positive. In
a similar way, we can prove that Ap is positive.

Neither kp nor Ap is strongly positive. In fact they are not continu-
ous with respect to VDA. For example, if P is the planarity and if G is
a graph which contains a unique pendant vertex v and the deletion of v
from G results in a planar graph with both connectivity and edge connec-
tivity three, then kp(G) = Ap(G) = 1 but kp(G—v) > 3, A\p(G—v) > 3.
Nevertheless, if we define, as suggested in [13], &p(G) (respectively
Ap(G)) to be the minimum cardinality of a set X C V(G) (respec-
tively X C E(G)) such that each component of G — X possesses P, then

we have
Lemma 8 Both ip and Ap are strongly positive if P is hereditary.

If P is the universal property (that is, the property possessed by all
graphs), then kp(G) is the ordinary connectivity x(G) (provided that G
is not the complete graph) and Ap(G) is the ordinary edge connectivity
A(G). So Lemma 8 implies that both « and A are positive [28]. Let
Bx(G) be the maximum number of vertices in a set X C V(G) such that
G[X] is disconnected or K;. Let 8)(G) be the maximum number of
edges in a set X C E(G) such that G[X] is disconnected. It was proved
[19, 20] that (G) + Bx(G) = |[V(G)|, M(G) + Br(G) = |E(G)|. From this
and the positiveness of both x and A we get

Lemma 9 [, is negative whilst By is positive.
The following subgraph invariants were introduced in [24]:

#(G) = max{x(H) : H C G}
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A(G) = max{\(H) : H C G}
8(G) = max{é(H) : H C G}.

For background and results regarding these invariants the reader can
consult [24] (a well-known inequality is x(G) < 1+4§(G)). We can prove

Lemma 10 £, and é are strongly positive.
Combining Lemmas 7, 8, 9 and 10 with Theorem 1 we have

Theorem 4 Suppose P is hereditary. Then
(1) kp, Ap, K, A, B and P interpolate over F;,1 <i < 12.
(ii) Bp, Ap, &, A and & interpolate over F;,1 < i < 22.

Finally, we point out that the minimum degree is positive and hence
interpolates over F;,1 < ¢ < 12, and that the mazimum degree is strongly
positive and so interpolates over all F;,1 < ¢ < 22 (the interpolation of
maximum degree with respect to F;,7 = 1,4,5,7,8,9 was known in [17]
and partly known in [28]).
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