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1 Introduction

In this paper it is assumed that G = (V, E) is a connected graph without
self-loops or multiple edges. Let v € V. The closed neighborhood of v,
denoted Nv], is the set {v} U{u € V | uv € E}. Let S be a subset of V.
The closed neighborhood of S, denoted N[S], is the set {Nfv] | v € S}. Let
S be a subset of V. It is a dominating set for the graph G if and only if for
every u € V, there exists v € S such that u € Nv]. A dominating set is
minimal if for every u € S, there exists w € N{u] such that |[N[w]NnS| = 1.
The domination numberof a graph G, denoted (G), is the size of a smallest
minimal dominating set.

Let S be a set of vertices in a graph G. Consider N|[S]. If there exists a
set of vertices, S’, such that either

(1) |$’] < 19| and N[S’] 2 N|[S] or

(2) |8'| =1S| and N[S"] > N[S],

then we say S is a beatable dominating set; otherwise, S is an unbeatable
dominating sel.

Examples are given in Figures 1 and 2. Observe that the relation “is
beatable by” is irreflexive, asymmetric and transitive.
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Figure 1. |§’| < |S| and N[S"] 2 N|[9].
S is a beatable dominating set.
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Figure 2. |S’| = |S| and N[S’] D NI[S].
S is a beatable dominating set.

Theorem 1. If S is beatable, then every set dominated by S is also
dominated by a set S’ having no more vertices than S.

Proof:

Case 1. N[S] = V. Since S is beatable, there exists S’ such that |S’| < |$|
and N[S] = N[S’] = V. Thus, |S| is not the domination number of G, and
G is dominated by a set, S’, having fewer vertices.

Case 2. V D N|[S] and |S’| < |S| and N[S’] 2 N[S] for some set S’. By
the definition, every vertex in N[S] is dominated by $’, using fewer vertices

Case 3. V D N[S] and |§’| = |S| and N[S'] D N[S] for some set S’. By
the definition, every vertex in N[S] is dominated by $’, using the same
number of vertices. O

Beatable dominating sets were introduced in 1989 by Hare and Hedet-
niemi [4] as a tool for finding the domination number of arbitrary graphs.
Hare and Fisher [3]) have used beatable dominating set to decrease the time
required to compute y(P, x P,). Slater [6] has shown the problem of
determining whether a set is beatable to be NP-complete.

Let v be a cut vertex, the removal of which partitions V into disjoint
subgraphs, C},Cy, ..., Cy,, called components. Let X =C;, for 1 < i < m.

Before proving Theorem 2, let us establish the existence of two cases.
First, it is possible that v(X) > ({(X U N[v])). In Figure 3 observe that
removal of v separates G into components, C;, 7 < 6. In particular, C is a
path on four vertices, and y(Ps) = 2, but y((C; U N[v])) = 1. Next, show
that it is possible for y(X) = 4({X U N[v])). Again in Figure 3, observe
that v(C4) = 2 = 4({(C4 U N[v])). (Here (X} denotes the subgraph of G
induced by X.)

Theorem 2. If v(X) < v((XUNv])), then v is in any smallest dominating
set of G.
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Figure 3. Example graph.

Proof: If |S] = v(X) > v({X U N[])) = |§’|, then S is beatable by S’ and
v € §’. On the other hand, if |S| = y(X) = y((X UNP])) = ||, then S is
beatable by S’ and v € S'. ]

Theorem 3. If v(X) < v((X U N[v])), then v is not in any minimum
dominating set of G unless needed to dominate G— X . Also, v is dominated
by u € X if and only if v(X) = vy({X U {v})).

Proof: The proof is subdivided into
Case 1. |S| = v(X) = y((X U {v}}),
Case 2. |S| = v(X) < y({(X U {v})), and
Case 3. |S] = v(X) > y({(X U {v})).

Case 1. If |S]| = v(X) = vy({X U {v}}) = |9’|, then S is beatable by S,
v¢ S, and v € N[9'].

Case 2. If |S] = v(X) < y({X U {v})) = |S'|, then v € S and v & N|[S].
Observe that v is not dominated by S.

Case 3. If |S| = y(X) > v({X U {v})) = |9’|, then v € S’ and y(X) >
Y((XUN [v]}), which contradicts the assumption that y(X) < y((XUN[])).
Thus, Case 3 is not possible. 0
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Algorithm 1 finds the domination number of a graph containing v.

1.0 Set v-dominated to FALSE.
Set »-in-dom-set to FALSE.
Set Count to zero.
2.0 For i+ 1tomdo
If ¥(C; U N[v]) < ~(C;) then
add (y(C; U N[v]) — 1) to Count
set v-in-dom-set to TRUE
else
Add ¥(C;) to Count
If y(Ci) = ¥(C; U {v}) then
set v-dominated to TRUE.
3.0 If »-in-dom-set then add 1 to Count
else if NOT v-dominated add 1 to Count.
4.0 v(G) « Count.

Algorithm 1.
Computes the domination number of a graph G containing a cut vertex v.

Figure 4. Domination of example graph.

Algorithm 1 may be extended to utilize more than one cut vertex. Sup-
pose U = {uj, ug,...,u,) is a collection of cut vertices of G.
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Algorithm 2 orders the vertices of U in time at most O(n?).

Let u, be a distinguished vertex of G — U.
For i — m down to 2 do

od

Find u;, 7 < 4, such that removal of u; partitions V' into
components, Cj,,Cj,,...,Cj,, with at most one
component containing any vertices of {u,} U {uy,us, ..

Interchange u; and u;.

Algorithm 2. Ordering the set U = {u;,us,...,%mn}.

S Ui}

Without loss of generality, let C;,, 1 < i < m, denote the component
containing the distinguished vertex, u.. Algorithm 3 assumes that the
vertices of U have been so ordered.

A block is a non-trivial connected graph with no cut vertices. If a graph
has any cut vertices, there is an underlying tree structure of the blocks.
Algorithm 2 orders the cut vertices of a graph so that Algorithm 3 can
process the blocks in a manner analogous to processing the leaves of a tree
and pruning each leaf until the root is processed.

1.0 Set Count to zero.
1.1 Copy G to Gp,.
2.0 for ¢« m downto 1 do

2.1
2.2

23

24

2.5

Set u-in-dom-set to FALSE.
If u; € N[w] where w has been marked “dominating”
then set u-dominated to TRUE
else set u-dominated to FALSE.
For k « i3 to i, do
If ¥({Cx U N[wi])) < ¥(Ck) then
Add (v({Cr U N[u;]}) = 1) to Count
Set u-in-dom-set to TRUE
else
Add (Cy) to Count
If ¥(Ck) = 7({Cic U {w:})) then
set u-dominated to TRUE
end for
If u-in-dom-set then mark u; “in-dom-set”
else if u~-dominated then mark u; “dominated”
Set G;—1 to (C,', U {u,})

3.0 4(G) — Count +(Go).

Algorithm 3.
Finding the domination number of an arbitrary graph
containing cut vertices.
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Figure 5.
Example of minimum dominating set selected by Algorithm 3

2 Discussion

Since the problem of finding a minimum dominating set for a graph G is
known to be NP-complete [1], finding minimum dominating sets of subsets
instead of the entire graph may be an improvement.

Algorithm 3 is especially useful for any graph with blocks for which the
domination number can be easily calculated. For example, if the blocks
are cycles, calculation of the domination number is straight-forward. In
any case, Algorithm 3 allows the domination number of components to be
calculated, rather than the domination number of the graph as a whole.
The complexity of Algorithm 3 is O(s - t) where s is the number of cut
vertices and ¢ = max(O(f(c;)), where f(C;) is a function of the structure
of the component C;.

The table-driven algorithm of Goodman, Hetetniemi, and Cockayne (2]
and a similiar algorithm used by Wimer [7] in developing a methodology
for k-terminal families of graphs are among the linear algorithms for the
domination of trees found in the literature. In the case of a tree, all interior
vertices may be selected in the set of cut vertices, giving complexity O(n).
Thus, Algorithm 3 yields a linear algorithm for trees. (A conveniently
ordered data structure, such as a Parent Array [5], should be used to avoid
the complexity of Algorithm 2.)

It is expected that Algorithm 3 can be modified to calculate other pa-
rameters for which beatable sets can be defined, such as k-packing, total
domination, distance-k-domination, and k-weight-domination.
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