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Abstract

Median graphs are surveyed from the point of view of their char-
acterizations, their role in location theory and their connections with
median structures. The median structures we present include ternary
algebras, betweenness, interval structures, semilattices, hypergraphs,
join geometries and conflict models. In addition, some new charac-
terizations of median graphs as meshed graphs are presented and a
new characterization in terms of location theory is given.
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1 Introduction

Median graphs form by now a well-studied class of graphs. They can be
viewed as the natural common generalization of trees and hypercubes. Grid
graphs and the covering graphs of distributive lattices are median graphs
as well. Characterizations abound, and can be found dispersed in the lit-
erature. Some of these have been rediscovered either exactly in the same
form, or in a slight disguise. Here we present (almost) all characterizations
from the literature in a unified and structured way as well as some new
ones.

Median graphs have various origins: they were obtained from algebraic
structures as well as hypergraphs. We collect the known structures related
to median graphs from diverse fields of (discrete) mathematics.

An important application of median graphs is within location theory.
From this point of view there are also several characterizations.

The paper is organized as follows. First we give the notions and note-
tions used throughout the paper. In Section 2 we present new characteriza-
tions of median graphs as meshed graphs. We use these to group together
the known characterizations in Section 3 in a more or less systematic way.
Some short proofs are also included. In Section 4 we discuss the role of
median graphs in location theory by collecting characterizations involving
various locational notions. We include also a new characterization here.
In Section 5, we review structures that are equivalent to median graphs,
e.g. from the areas of ternary algebras, of semilattices, of set functions, of
hypergraphs, of convexities, of geometries, and of conflict models. Relevant
references to the literature are given throughout the paper. This overview
of characterizing properties of median graphs can also serve to gain insight
in the rich structure theory developed by now on median graphs.

All graphs considered in this paper are finite, connected, undirected
graphs, without loops or multiple edges. We wish to point out that most
of the characterizations we are going to present for median graphs extend
to infinite graphs as well.

The distance dg(u, v) between vertices u and v of a graph G will be the
usual shortest path distance. Whenever the graph G will be clear from the
context, we will shortly write d(u,v). A shortest path between two vertices
is also called a geodesic. A subgraph H of a graph G is an isometric
subgraph if dy (u,v) = d¢(u,v), for all u,v € V(H). The distance d(u, H)
between a vertex u of a graph G and a subgraph H of G is the minimum
distance d(u, z) over all vertices z of H. For an edge ab of a graph G, let

Web = {u € V(G) | d(a,u) < d(b,u)},
Uy = {u € Wgp | u is adjacent to a vertex in Wy},

i.e., Wy consists of vertices of G closer to a than to b and U, are those
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vertices from W,; which have a neighbor in Wy,. Note that V = Wy, U Wy,
for bipartite graphs.

The interval I(u,v) between vertices u and v consists of all vertices on
shortest paths between u and ». A subset W of vertices of G is convex if
I(u,v) C W for any u,v € W. Observe that the intersection of two convex
sets is again convex. A convex subgraph is a subgraph induced by a
convex set. In the sequel we will not distinguish between a subset W of
vertices in a graph G and the subgraph of G induced by W. A subgraph
H of G is 2-convex, if for any u, v € V(H) with d(u,») = 2 all common
neighbors of » and v belong to H.

A family F of subsets of a set X has the Helly property if any finite
family of pairwise non-disjoint sets of 7 has a non-empty intersection. The
family F has the separation property S; if any two disjoint points are
in complementary sets from F.

A median of three vertices u, v and w is a vertex that lies in I(u,v) N
I{u,w)N I(v,w). A connected graph G is a median graph if every triple
of its vertices has a unique median. For an example of a median graph
see Fig. 1, where also the sets W,;, and W, corresponding to an edge ab
are shown. An important feature is that for any edge between W,, and
Whia, say uv with u» in Wy, and v in Wp,, we have that W,, = W, and
Wba = Wiu.

A graph is called meshed if it satisfies the quadrangle property: for
any vertices u, v, w and z with d(u, w) = d(v,w) = k = d(z,w) — 1 and
d(u,v) = 2 with z a common neighbour of u and v, there exists a common
neighbour z of » and v with d(z,w) =k — 1.

Finally, the vertices of the n-dimensional hypercube Q,, are all words
from {0,1}" and two vertices are adjacent if they differ in precisely one
coordinate.

2 New characterizations of median graphs

In this section we present different characterizations of median graphs. All
will be given by the use of meshed graphs, i.e. the graphs which fulfil
the quadrangle property. The characterizations will thus be given in the
form: quadrangle property and an additional condition. The additional
conditions will be of several different types and we use them in the next
section to collect and group the new and known characterizations of median
graphs.

Let G be a bipartite graph, and let u, v and w be vertices of G. Consider
any path P:v =v; - w9 — ... = v, = w from v to w. When we walk
along P from v to w, then, because G is bipartite, in each step we either go
one step nearer to u or one step away from u. Therefore, we say that the
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d(z,a) < d(z,b)
d(z,u) < d(z,v)

d(y,b) < d(y,a)
d(y,v) < d(y,u)

Figure 1: A median graph and the sets Wy and Wy,

edge v; — v;41 on P is downward with respect to u if d(u, v;) > d(u, vi41),
and upward otherwise. We say that P is down-up with respect to u if
there exists 7 with 1 < j < k such that all edges on P from v to v; are
downward and all edges on P from v; to w are upward.

The following lemma. was already observed in the submitted version of
Bandelt and Mulder [10], but to reduce the length of the paper it was left
out from the published version.

Lemma 1 Let G be a connected, bipartite, meshed graph. Then, for any
three vertices u, v and w of G, there exists a down-up geodesic from v to w
with respect to u.

Proof. Let P : v = v; — v — ... = v = w be a geodesic from v to
w such that the distance from u to P, viz. E:.;l d(u,v;), is as small as
possible. Assume that there is an upward edge v;_; — v; followed by a
downward edge v; — v;+1. Then we have

d(u, ’U,;_]) = d(u, vi—}-l) . d(u, ’U,') -1.
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By the quadrangle property, we find a common neighbor v; of v;—1 and v;4+1
with d(u,v!) = d(u,v;) — 2. If we replace v; by v; in P, then we obtain a
geodesic from v to w with smaller distance to » than P. This contradicts
the minimality of P. a

Note that a down-up geodesic P from v to w with respect to u is con-
tained in I(u,v) U I(u,w). The unique vertex on P nearest to u is the
unique vertex of P in I(u,v) N I(u,w). We call this vertex the bottom
vertex of P with respect to u.

Theorem 2 Let G be a connected, bipartite, meshed graph. Then the fol-
lowing conditions are equivalent.

(i) G is an induced subgraph of a hypercube.
(ii) G is an isometric subgraph of a hypercube.
(i) Every interval of G is convez.
(iv) Every interval of G is 2-conver.
(v) G contains no Ko 3 as a subgraph.
(vi) The convez sets of G have the separation property Sa.

Proof. The proof is organized as follows:

(i) —> (ik)

29
N
(v) &=

Note first that the implications (é¢) = (i) = (v) as well as (i) =
(iv) = (v) are trivial.

To see that (vi) implies (v) suppose that G contains a K33 as a sub-
graph. If uv is any edge of K33 then it is easy to see that » and v cannot
be separated by complementary convex sets.

(i) = (iit). Let G be an isometric subgraph of a hypercube @, and let
I(u,v) be an interval of G. Recall that the vertices of Q,, are the words from
{0,1}". Without loss of generality we may assume that © =0...0b;...bn
and v =1...1b;...b,. As G is an isometric subgraph of @y, the vertices
of I(u,v) are labeled c;...ci—1b;...b, where ¢; € {0,1}. Moreover, a
vertex on a shortest path between two vertices from I(u, v) must be labeled
likewise, hence I(u,v) is convex.

(¢v)

107



(v) = (4). By a well-known theorem of Djokovié [23], it is enough to
prove that, for all edges ab of G, the sets Wy, and W,, are convex.

Assume the contrary, and let z,y be vertices in W, such that I(z,y) N
Wia # 0 with d(z,y) as small as possible. Without loss of generality we
may take d(x,b) > d(y,b). Because of minimality of d(z,y), there exists a
geodesic P : z — zy — zp — ... = zx — y of length k 4+ 1 with all its
internal vertices in Wp,. We consider two cases.

Case 1. k=1.
Then we have d(a,y) = d(b, z1) and therefore

d(a,z) = d(a,y) = d(b,z1) = d(a,z1) — 1 =d(b,z) — 1.

By the quadrangle property, there is a common neighbor z of z and y in
I{a,z) N I(a,y) C Was with d(a,2) = d(a,z) — 1 = d(b,z;) — 1. Again,
by the quadrangle property, there is a common neighbor w of z and z; in
I1(b,z) N I(b,z;) C Wpo. But now the vertices z, z;, w,  and y induce a
K3 in ¢ which is forbidden. This settles Case 1.

Case 2. k> 1.

Using Lemma 1, we may choose P to be such that the geodesic z; —
.. = zx is down-up with respect to b (for such a geodesic lies in I(b, z;) U

1(b,z) C Wh,). Hence also P itself is down-up with respect to b. Let z;

be the bottom vertex of P. Since d(z,b) > d(y,b), we have j > 1. It follows

that d(b, z2) = d(b,z,) — 1 = d(b, ) — 2, so that

d(a,z2) = d(a,z1) — 1 = d(a, z).

By the quadrangle property, we find a common neighbor =5 of z and z,
in I{a,z) N I{a,z2) C W, with d(a,z3) = d(a,z2) — 1. Proceeding in the
same way, we find a path z —» 2§ - 2§ — ... — z; in Wyp such that x;
is adjacent to z; and d(a,z!) = d(a,z;) — 1, for 2 <i < j. If j < k, then,
using the quadrangle property, we also find apathy — zj/_, — ... — z

in W, such that z is adjacent to z; and d(a,z!) = d(a,z;) — 1, for
7 <i< k-—1. By Case 1, we have x;. = z}’ . But now we have constructed

apath P'iz —zh - ... > zi=2] > ... >z} | - y from z to y of
length k — 1 contradicting the fact that d(z,y) = k + 1. This settles Case
2.

It remains to prove that (v) implies (vi). Let w and v be any vertices
of G and let P be a geodesic between v and v. Let w be the neighbor of u
on P. Then clearly v € W,,,, and v € W,,,,. Moreover, as we have already
proved that (v) implies (i), we have, using the theorem of Djokovié¢ [23]
again, that W,,, and W,,, are convex. O

Bandelt [3] proved that a connected graph is a median graph if and only
if it is bipartite, fulfils the quadrangle property and is K3 3-free. We note
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that this characterization also follows immediately from a more general
result due to Bandelt, Mulder and Wilkeit [12], which characterizes quasi-
median graphs as graphs fulfilling the quadrangle and the so-called triangle
property and having no induced Kz 3 or K3 — e (i.e. K4 minus an edge).
As the triangle property and having no induced K, — e are trivial in the
bipartite case, and median graphs are just bipartite quasi-median graphs,
the result follows.
Hence Theorem 2 in fact gives characterizations of median graphs.

3 A review of median graphs characteriza-
tions

In this section we review known characterizations of median graphs together
with the characterizations given in Theorem 2. Some short proofs are also
included. We have collected the characterizations into the following five

types:
- characterizations close to the definition of median graphs,
— characterizations in terms of hypercube subgraphs,
— characterizations involving convex subgraphs,
— characterizations with conditions on intervals,
— characterizations with separation properties.

In some cases, for instance in the case of convex intervals, a characterization
could be placed into two different types. We have, however, presented each
characterization only once.

We begin with characterizations of median graphs which are closely
related to the definition. A Steiner point of a set of three vertices u, v and
w of a graph is a vertex = that minimizes the sum d(z, u)+d(z, v) +d(z, w).

Theorem 3 For a connected graph G, the following conditions are equiv-
alent.
() G is a median graph.
(4) Every triple of G has a unique Steiner point.
(iii) G is triangle-free and any triple u,v,w of G with d(u,v) =2 has
a unique median.
(iv) PBuery triple of vertices of G has a median and G has no Ka3 as
a subgraph.

Theorem 3 (i) is due to Avann [2] and is the first characterization of
median graphs. We refer also to Chung, Graham and Saks [20]. That the
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uniqueness of medians can be replaced by forbidding K93 was implicitly
proved by Mulder [38] and explicitly by Bandelt [3], see also Bandelt [6].
In addition, it is an immediate corollary of Theorem 1 from Bandelt and
Mulder [10]. The minimality of conditions posed on medians of triples of
vertices from Theorem 3 (4ii) is due to Mulder [38].

We next collect those characterizations of median graphs, where median
graphs are considered as subgraphs of hypercubes. Some definitions are
needed first. A subgraph H of a graph G is median closed if, with any
triple of vertices of H, their median is also in H. A (necessarily induced)
subgraph H of a graph G is a retract of G, if there is a map r from V(G)
to V(H) that maps each edge of G either to an edge of H or to a vertex of
H, and fixes H, i.e., 7(v) = v for every v € V(H). If we allow that r maps
edges to edges only, we call H a strong retract of G.

Theorem 4 For a connected graph G, the following condilions are eguiv-
alent.
(i) G is a median graph.
(#i)) G is a meshed, induced subgraph of a hypercube.
(i) G is a meshed, isometric subgraph of a hypercube.
(iv) G is a median closed, induced subgraph of a hypercube.
(v) G is a median closed, isometric subgraph of a hypercube.
(vi) G is a retract of a hypercube.

Characterizations (i) and (i) are given in Theorem 2 (i) and (i),
respectively. Characterizations (7v) and (v) appear most frequently in the
literature among all characterizations of median graphs. They are due
to Mulder (36, 37, 38|, for alternative proofs we refer also to Mulder and
Schrijver [42] and Chung, Graham and Saks [20].

Theorem 4 (vi) is due to Bandelt [4]. Moreover, he showed that both
retract and strong retract can be used in the statement of the theorem. A
prool using the convex expansion theorem (which we present in the next
theorem) is given by Mulder in [40]. The results can also be deduced from
a generalization to quasi-median graphs which was obtained independently
by Chung, Graham and Saks [21] and Wilkeit [54]. We wish to add that
an important step to Bandelt’s theorem was the following theorem due to
Duffus and Rival [24]: a graph G is the covering graph of a distributive
lattice of length n if and only if G is a retract of Q, and G is of diameter
n.

We next summarize characterizations involving convex subgraphs. In
addition, two relevant characterizations will be included later in Theorem
6. A subgraph H of a graph G is called gated in G, if, for every v € V(G),
there exists a vertex z € V(H) such that, for every v € V(H), z lieson a
shortest path from v to u. If such a vertex exists, it must be unique. We
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call it the gate of v in H. We call a subgraph H of a graph G weakly
gated in G, if, for every v € V(G), there exists a unique vertex =z € V(H),
which minimizes the distance between v and the vertices of H.

Theorem 5 For a connected graph G, the following conditions are equiv-
alent.
(:) G is a median graph.
(i) I(u,v)NI(v,w) = {v} implies d(u, w) = d(u,v)+d(v,w), for any
vertices u, v and w, and intervals of G are convez.
(i) G is a bipariite and for every edge ab of G, the sets Usp and Up,
are conver.
(iv) The convez closure of any isometric cycle in G is a hypercube.
(uv) G can be obtained from the one vertex graph by the convex expan-
sion procedure.
(vi) G can be obtained from hypercubes by a sequence of conver amal-
gams.
(vit) EBuvery convexz set of G is weakly gated and G contains no Ky 3 as
a subgraph.

Theorem 5 (i) is due to Mulder [38] while (zi2) and (iv) are from Bandelt
[3]. For (iit) we refer also to Bandelt, Mulder and Wilkeit [12] where a
generalization to quasi-median graphs is presented.

The convex expansion theorem, i.e. Theorem 5 (v), gives the most
structural insight into median graphs among all the characterizations of
these graphs. The theorem was proved by Mulder [36, 38], we also refer to
Mulder [40]. Roughly speaking, the convex expansion of a graph is obtained
from the graph by selecting two convex sets with nonempty intersection and
without edges between vertices not in the intersection and expanding the
intersection by blowing each vertex to an edge. For instance, the median
graph of Fig. 2 is expanded to that of Fig. 1. We have already mentioned
that Theorem 4 (vz) can also be proved using the convex expansion the-
orem. In addition, several other characterizations follow from the convex
expansion theorem by induction.

Two technical variations of the convex expansion procedure were given
by Jha and Slutzky [30], and by Hagauer, Imrich and Klavzar [26], respec-
tively, to give fast recognition algorithms for median graphs. For more
information on recognition algorithms we refer to Imrich and Klavzar [27].

Theorem 5 (vi) was proved by Bandelt and van de Vel [13]. It is an
immediate corollary of (v), see Mulder [39]. Roughly speaking, a convex
amalgamation consists of gluing together two graphs along common convex
subgraphs.

The last characterization is from Berrachedi and Mollard [17]. We give
an outline of its proof. If G is a median graph then by Theorem 2 (v) it
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Figure 2: A contraction of the graph from Fig. 1

contains no K> 3. In addition, using Lemma 1, it follows easily that convex
sets of G are weakly gated. Conversely, assume that every convex set of G
is weakly gated and that G contains no K33 as a subgraph. Then the first
condition immediately implies that G is bipartite and moreover, G must
also be meshed. By Theorem 2 (v) we conclude that G is a median graph.

We next give different conditions on the intervals of a given graph G
which ensures that G is a median graph. As we already mentioned, two
conditions also involve convexity whereas Theorem 5 (i) also involves in-
tervals.

Theorem 6 For a connected graph G, the following conditions are equiv-
alent.
(i) G is a median graph.
(ii) G is a bipariite, meshed graph with 2-convez intervals.
(i1i) G 1is a bipartite, meshed graph with convez intervals.
(iv) G is bipartite and every interval induces a median graph.
(v) Every interval of G is weakly gated.
(vi) Every interval of G is gated.
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Theorem 6 (i) and (i7%) is Theorem 2 (iv) and (44i), respectively. The-
orem 6 (iv) is due to Bandelt and Mulder [9] and (v) is a recent result due
to Berrachedi [16]. In the sequel we will give a short proof of it. Note that
(vi) is a slightly stronger condition than the one of (v). However, since
gatedness is a well-known concept we have included also this condition. To
see that intervals in median graphs are indeed gated, recall that there is a
unique nearest vertex in the interval, which, by Theorem 5 (i2) must be the
gate in the interval.

We now give a short proof of Theorem 6 (v). Let every interval of G
be weakly gated. Then it easily follows that G must be bipartite, that
it contains no K, 3 and that fulfils the quadrangle property. Thus G is
a median graph. Conversely, suppose on the contrary that there is an
interval I(w,v) of G and a vertex z of G such that d(z, I(u,v)) = d(z,2’) =
d(z,z") = k > 1, where 2’ # z'. Note first that 2-convexity implies
k>1 Let P=29 - 24 - T3 = ... = Tn — ZTpy1 be a path in
I(u,v) between z’ and z”, where n > 1, o = 2’ and z,4; = z”. Then
clearly d(x,z;) = d(x,zn) = k + 1. Furthermore, as G is bipartite it
follows that for some i, where 1 < i < n — 1, we have d(z,z;) = k + 1
and d(z,zi—1) = d(z,zi+1) = k+ ¢ — 1. By the quadrangle property, it
then follows that there exists a vertex z such that z; is adjacent to both
z;—1 and z;4; and that d(z,z}) = k+ ¢ — 2. In addition, by 2-convexity,
z} belongs to I(u,v). Repeating this argument we see that there exists a
vertex z}j which lies in I(u,v) with d(z,z]) = k — 1, a contradiction.

The last theorem in this section collects characterizations of median
graphs involving separation axioms.

Theorem 7 For a connected graph G, the following conditions are equiv-
alent.
(i) G is a median graph.
(it) G is a bipartite, meshed graph and its convez sets have the sepa-
ralion property Sa.
(iii) The intervals of G have the Helly property.
(iv) The convez sets of G have the Helly property and G contains no
K3 as a subgraph.
(v) The convez sets of G have the Helly property and the separation
property So.
(vi) The gated sets of G have the Helly property and the separation
property Sa.

Theorem 7 (4i) is Theorem 2 (vi), (%) is due to Tardif [51], (iv) was

proved by Soltan and Chepoi [50]. Characterizations (v) and (vi) are due
to Bandelt [5], where one more similar characterization is given.

113



4 Median graphs and location theory

Let G be a (connected) graph. A profile of length p on G is a finite
sequence m = vy, V2, ..., Up Of vertices of G. We denote p = |n|. A median
of 7 is a vertex z minimizing D(z,w) := Y_F_, d(z,v;), and the median
set M(x) of m consists of all medians of 7. In location theory the Median
Problem is then: given «, find M(x). In this terminology the median
graphs are precisely those graphs in which |M(x)] = 1, for all profiles of
length 3. Let V* be the set of all nonempty profiles of G. Then M can
be viewed as a function M : V* — P(V) \ {#}. For median graphs, the
function M is by now well studied, see e.g. Bandelt and Barthélemy [7]
and McMorris, Mulder and Roberts [35]. Some simple properties of the
function M for arbitrary (connected) graphs are:

Anonymity (A) : for any profile 7 = vy, vs,...,vp and any permutation
oof {1,2,...,p}, we have

M(m) = M(x%),
where 7% = Vo (1)s Yo(2)s «-+» Vo(p) -
Faithfulness (F) : M(v) = {v}, for all v € V(G).
Betweenness (B) : M(u,v) = I(u,v), for all u,v € V(G).

Consistency (C) : if M(m)NM (o) # 0 for profiles 7 and o, then M(x, o)
= M(m)N M(o).

For a profile 7 = vy, va, ..., vp, We denote by 7 — v; the vertex-deleted
profile obtained from 7 by deleting v;. McMorris, Mulder and Roberts [35]
proved that in a median graph M also satisfies:

Convexity (K) : let 7 = v, vy, ..., vp be a profile with p > 2 in G; if
N_yM(m — v;) = 0, then M(w) = Con|[Ul_, M (r — v;)].

Here Con(H) denotes the convex hull of a subgraph H in G, i.e., the
smallest convex subgraph of G containing H.

An interesting problem in location theory is the following. Let G be a
(connected) graph, and let L : V* — P(V) \ {0} be some function on the
profiles of G. What axioms should L satisfy to force that L = M on G. Of
course, L should satisfy some or all of the necessary axioms (A), (B), (C)
and (F) above, plus some extra axioms depending on the structure of G.
In McMorris, Mulder and Roberts [35] it is proved that, if G is a median
graph, then L = M if and only if L satisfies (A), (C), (F) and (K). This
result provides us with a new characterization of median graphs in terms
of location theory.
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Theorem 8 Let G be a connected graph. Then G is a median graph if and
only if G contains no induced K3 or Ko 3 and M satisfies (K) on G.

Proof. For a proof that M satisfies (K) on a median graph we refer the
reader to McMorris, Mulder and Roberts [35].

So let G be a triangle-free graph without K73 and with M satisfying
(K) on G. First we prove that G is bipartite. Assume the contrary, and
let C be a cycle of length 2k + 1 with k as small as possible. Because G
is triangle-free, we have k > 1. Note that C is isometric in G. Take any
edge vw on C and the vertex u on C with d(u,v) = d(u,w) = k. Because
of minimality of k, we have

I(u,v) N I(u,w) = {u},

so that M (u, v)NM (u, w)NM (v, w) = {u}n{v,w} =0. Set 7 = u, v, w. By
(K), we infer that u is in M(r). Clearly, we have D(v, ) = D{w, ) = k+1,
and D(u,w) = 2k > k + 2, whence u is not in M(x). This contradiction
tells us that G is bipartite.

Now we prove that G is meshed. Assume the contrary, and let u, v,
w and z be vertices such that z is a common neighbor of v and w, and
k = d(u,v) = d(u, w) = d(u, 2) — 1, and that there is no common neighbor
of v and w at distance k — 1 to u, with k as small as possible. Note that
we have k > 2, and

I(u,v) N I(uy,w) = {u},
I(u,v) N I(u,w) N I(v,w)=0.

Set m = u, v, w. By (K), we infer that z is in M(x). On the other hand,
we have D(v,7) = k+2 = D(w,w) and D(z,m) =k+1+1+1=Kk+3,
whence z is not in M (). This contradiction tells us that G is meshed, and,
by Theorem 2 (v), G is a median graph. 0

Several other characterizations of median graphs in terms of location
theory are known. Before we present them three more concepts should be
introduced.

Let G be a connected graph and let 7 be a profile of length at least two.
The centroid of G with respect to # consists of those vertices u of G for
which the number of vertices of 7 that belong to a maximal convex set not
containing  is minimum.

The second concept is seemingly completely different than the concepts
introduced by now, but it will give us a very interesting characterization
of median graphs. Chung, Graham and Saks [20, 21] defined a new graph
invariant called windex. We roughly present it here, for more details see
Chung, Graham and Saks [21]. We have a system which is represented by
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a connected graph G. A sequence of requests, say ry,79,...,7,, Where r;
are vertices of G, is coming to the system dynamically. Our goal is to find,
from an initial vertex sg, a state sequence, say so, 81, 82, ..., 8n, Where s;
are vertices of G, such that

D (d(si-1,8:) + d(si, 7))

i=1

is as small as possible. Then the windex of a graph G is the smallest
k, such that there exists an optimal algorithm for the above problem if,
at each stage i, when we want to determine s;;1, we know k requests in
advance, i.e. Tiy1, ..., Titk-

In a tree, it is easily seen that one can find M(x), for a profile w, by
starting in an arbitrary vertex and moving in the tree to the majority of
w. This idea is generalized by Mulder [41] as follows. For an edge uv of a
connected graph G, and a profile = of G, we denote by =, the subprofile
of w consisting of all elements of 7 nearer to u than to v. The majority
strategy for 7 reads as follows: start at an initial vertex u of G; if v is a
neighbor of v with |7y,| > |7|/2, then move to v; move to a vertex already
visited twice only if there is no other choice; stop when either we are stuck
at a vertex v (i.e. |mwy| < |m|/2, for all neighbors w of v) or we have visited
vertices at least twice, and, for each vertex v visited at least twice and each
neighbor w of v, either w is also visited twice or |my,| < |7|/2. We say
that the majority strategy produces from initial vertex u, for , the set
consisting of the single vertex where we get stuck or of all vertices visited
at least twice. If the majority strategy produces for 7 the same set W from
any initial vertex, then we just say that it produces W for .

Theorem 9 Let G be a connected graph. Then the following conditions
are equivalent.
(i) G is a median graph.
(it) G contains no K3 or Ko 3 and M satisfies (K).
(i) G is triangle-free and M(w) is connected for all .
(iv) G has windez 2.
(v) M(w) consists of all vertices z such that Wy, contains at most
half of w for any neighbor y of x.
(vi) The majority strategy produces M (x), for all x.
(vii) The majority strategy produces M(w), for all ™ of length 3.
(viti) The majority strategy produces the same set from each initial po-
sition, for all m.
(iz) The majority strategy produces the same set from each initial po-
sition, for all ™ of length 3.
() |M(m)| =1, for all m of odd length.
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(zi) There exists an odd integer p =2k +1 > 3 such that [M(7)| =1,
Sfor all © of length p.
(zii) G is triangle-free, and the centroid of ® coincides with M (=), for
all .
(ziii) M(w) is the intersection of all convex sets containing at least half
of &, for all w.

Theorem 9 (i) is Theorem 8. The characterization (7iz) is due to Ban-
delt [3], see also Bandelt and Mulder [10]. Theorem 9 (iv) was proved by
Chung, Graham and Saks [20], see also Chung, Graham and Saks [21] and
Mulder [40]. A short direct proof that the windex of a median graph is equal
two is given in Klavzar [31]. Theorem 9 (v) is from Bandelt and Barthélemy
[7], see also McMorris, Mulder and Roberts [35] while theorems (vi) — (iz)
are due to Mulder [41]. Theorems 9 (z) and (zi) are due to Bandelt and
Barthélemy [7]. The last two characterizations from Theorem 9 are due to
Bandelt [6], where one can also find some other similar characterizations.

5 Related structures

Median structures can be found in many different guises. Here we present
the main ones: in various algebraic terms, in terms of set functions, in
terms of hypergraphs, in terms of convexities, in terms of geometries, and
in terms of conflict models. Pertinent references to the literature are given.
In the case of trees and hypercubes appropriate axioms can be found in the
literature, we do not review these here.

5.1 Ternary algebras

In this subsection, we present the independent discoveries of median alge-
bras.
A ternary algebra (V, M) consists of a set V' and a ternary operator

M:VxVxV-oV,
The graph Gy = (V, Ep) of (V, M) is defined by
uw € Epyy <= u#vand M(u,z,v) € {u,v} forallze V.
A ternary algebra (V, M) is a median algebra if it satisfies the axioms:

(al) M(u,u,v) = u;
(a2) M(u,v,w) is invariant under all six permutations;
(a3) M(u, M(v,w,z),y) = M(M(v,v,y), w, M(u,z,y)).
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Then (V, M) is a median algebra if and only if its graph Gps is a median
graph. Conversely, let G = (V, E) be a median graph, and define M (u, v, w)
to be the median of the triple u,v,w. Then (V, M) is a median algebra.

Median algebras in this sense were introduced by Avann [1] as ternary
distributive semi-lattices. In [1] he announced and in [2] he established the
relationship with median graphs, which he called unique ternary distance
graphs.

The second discovery of median algebras was by Sholander [47]. He de-
fined a median algebra (named by him median semi-lattice) to be a ternary
algebra (V, M) satisfying

(ml) M(u,u,v) = v;
(m2) M(M(u,v,w), M(u,v,2),y) = M(M(w,z,y),u,v).
In [48, 49] Sholander proved the equivalence of these median algebras with
the structures given below in Sections 5.2 - 5.4.
The third independent discovery of median algebras was by Nebesky in

[43] under the name of normal graphic algebra (or simple graphic algebra in
[44]). He defined a median algebra to be a ternary algebra (V, M) satisfying

(nl1) M(u,u,v) = v;

(n2) M(u,v,w) = M(w,v,u) = M(v,u, w);

(n3) M(M (u,v,w),w,z) = M(u, M(v,w, z),w).
He proved the relation between median algebras and median graphs in [44].
The term median algebra seems to be independently introduced by Evans
[25], Isbell [28] and Mulder [38]. Many other axiom systems for median

algebras can be found in the literature, e.g. in Kolibiar and Marcisov (34],
Isbell [28], Bandelt and Hedlikové [8].

5.2 Betweenness

A betweenness structure (V, B) consists of a set V and a betweenness
relation

BCVxVxV

satisfying at least the conditions (u,u,v) € B and (u,v,w) € B if and only
(w,v,u) € B, for all u,v,w € V. If (u,v,w) € B, then we say that “v is
between u and w". The graph Gg = (V, Eg) of (V, B) is given by

w € Egp < u#vand (u,z,v) € B only if x € {u,v}.

A betweenness structure (V, B) is a median betweenness structure if
it satisfies the axioms:
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(b1) for all u,v,w € V, there exists = such that (u,z,v), (v,z,w),
(w,z,u) € B;

(b2) if (w,v,u) € B, then v = »;

(b3) if (usv, ’IU), ('U:,’U,ﬁ), (wa Y I) € Ba then (y’ v, u) € B.

Then (V, B) is a median betweenness structure if and only if its graph G
is a median graph. Conversely, let G = (V, E) be a median graph with
interval function I, and let B be the betweenness relation on V defined by
(u,v,w) € Bifv € I(u,w). Then (V, B) is a median betweenness structure.
This gives a one-to-one correspondence between the median betweenness
structures (V, B) and the median graphs with vertex set V.

The median betweenness structures were introduced by Sholander [48]
and proven to be equivalent with his median algebras from Section 5.1.

5.3 Interval structures
An interval structure (V, I') consists of a set V and an interval function
I:VxV o P(V)

satisfying at least the conditions v € I(u,v) and I(u,v) = I(v,u), for all
u,v € V. The graph Gy = (V, Ej) of the interval structure is defined by

w € By <= u#vand I(u,v) = {u,v}.

An interval structure (V| I) is a median interval structure if it satisfies
the axioms:
(s1) there exists z such that I(u,v) N I{(u,w) = I(u,z), for all u, v,
weV;
(s2) if I(w,v) N I(u,w) = I(u,v), then I(z,u) N I(z,w) C I(v,z), for
any z € V;
(s3) if I(u,v) NI(u,w) = I{u,u), then I{u,u) N I(v,w) = {u}.

Then (V, I) is a median interval structure if and only if its graph Gy is a
median graph. Conversely, let G = (V, E) be a median graph with interval
function I. Then (V, I) is a median interval structure. This gives a one-to-
one correspondence between the median interval structures (V,I) and the
median graphs with vertex set V.

Median interval structure (V, I') with the axioms (s1), (s2) and (s3} were
introduced by Sholander [48], which he called median segments, and proven
to be equivalent to his median algebras from Section 5.1. The equivalence
with median graphs follows from Avann [2]. In Mulder and Schrijver [42)
a different set of axioms and direct proofs of the relation between median
interval structures and median graphs were given, cf. Mulder [38]. A me-
dian interval structure sensu Mulder and Schrijver is an interval structure
(V, I) satisfying
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(i1) if z,y € I(u,v) then I(z,y) C I(u,v);
(i2) |I(u,v) N I(v,w) N I(w,u)| =1, for all u,v,we V.

5.4 Semilattices

A semilattice is a partially ordered set (V, <) in which any two elements
u, v have a meet (greatest lower bound) uAv. If u and v have a join (least
upper bound), then we denote it by u V v. For u < v, we define the order
interval to be [u,v] = {w | v < w < v}. As usual, the covering graph
G< = (V, E<) of (V, <) is given by

w € E< <= u#vand u < w < v if and only if w € {u,v}.

A semilattice (V, <) is a median semilattice if satisfies the following
axioms:
(€1) every order interval is a distributive lattice;
(2) fuVw, vVwand wV u exist, then u Vv V w exists for any
u,v,weV.

Then (V, <) is a median semilattice if and only if its covering graph G<
is a median graph. Note that two different median semilattices can have
the same median graph as covering graph. Conversely, let G = (V, E) be
a median graph with interval function I and let z be a fixed vertex in G.
We define the ordering <, on V by u <, v if u € I(2,v). Then (V,<,) isa
median semilattice with universal lower bound z.

In the finite case this yields a one-to-one correspondence between the
median semilattices and the pairs (G, z), where G is a median graph and =
is a vertex of G.

Median semilattices were introduced by Sholander [{49] and proven to
be equivalent with his median algebras, median betweenness structures and
median interval structures. The equivalence with median graphs follows
from the result of Avann [2] on median algebras and median graphs. A
direct proof of the above result in the finite case is given in Mulder [38].

5.5 Hypergraphs and convexities

A copair hypergraph (V, £) consists of a set V' and a family £ of subsets
of V such that A € £ implies V'\ A € £. As usual, its graph G¢ = (V, E¢)
is given by

w € Eg <= uv#vand({A €& |u,ve A} = {u,v}.

A copair hypergraph (V, £) is a maximal Helly copair hypergraph if it
satisfies the conditions:
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(h1) & has the Helly property;
(h2) if A¢ &, then EU{A,V \ A} does not have the Helly property.

Then a copair hypergraph (V, £) is maximal Helly if and only if its graph
G¢ is a median graph. Conversely, let G = (V, E) be a median graph, and
let £ consists of the sets W, for uv € E. Then (V,£) is a maximal Helly
copair hypergraph.

This result was proven by Mulder and Schrijver in [42] using Theorem
5 (v); see also Mulder [38] and Barthélemy [14].

Note that, if we take the closure £* of € by taking all intersections, then
&* consists precisely of the convex sets of G¢. Thus we get an alternative
formulation of the above result as follows.

A convexity (V,C) consists of a set V' and a convexity C being a family
of subsets of V closed under taking intersections. Its graph Ge¢ = (V, E¢)
is given by

weFEe <= uv#vand {A€C|uve A} ={uv}.

The above result reads then: in a convexity (V,C) the family of convex sets
C has the Helly property and the separation property S, if and only if its
graph Gc is a median graph (cf. Bandelt and Van de Vel [52]).

5.6 Join geometries

A join geometry (V,o) consists of a set V and a join operator o :
V x V — P(V) satisfying at least uou = {u}, u € uov, uov =vou, and
uo(vow) = (uow)ow, for all u,v,w € V. Its graph G, = (V, E,) is given
by

w € B, <= u#vandvov={u,v}.

For subsets U, W of V, we write U oW for the union of all vow withu e U
andw € W. If U = {u}, we write uo W instead of UoW. A set C in a join
geometry (V, o) is convex if C o C = C. Join geometries were introduced
and extensively studied by Prenowitz and Jantosciak [46]. A join geometry
(V,0) is a join space if it satisfies the following conditions:
(S4) (Kakutani separation property) if C, D are disjoint convex sets in
(V, 0), then there is a convex set H C V such that C C H and
DCV\ H and V\ H is also convex;
(JHC) (Join-hull commutativity) if C is a convex set then Con({u} U
C)=wuoC,foruinV.

Then the convex sets in a join space (V, o) have the Helly property if and
only if its graph G, is a median graph. Conversely, let G = (V, E) be a
median graph with interval function I, and define the join operator o on V'
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by uwov = I(u,v). Then (V,0) is a join space with convex sets having the
Helly property.

This result is essentially due to Van de Vel [52], see also Bandelt and
Mulder [11] and Van de Vel [53]. We also refer to Nieminen [45] who
observed that median algebras are join spaces for the natural join operator
vov = I(u,v).

5.7 Conflict models

A conflict model (X, <, A) consists of a set X, a partial ordering < of
X and a set of edges A such that (X, A) is a graph. As usual, a subset
Y of X is an ideal whenever z € Y and y < z impliesy € Y, and Y is
independent whenever there are no edges in (X, A) between vertices of Y.
One can construct a graph G = (V, E) from a conflict model (X, <, A) as
follows: the vertex-set V of G consists of all independent ideals of (X, <, A),
and we connect two vertices Y and Z by an edge whenever they differ in one
element (i.e. have symmetric difference of size 1). Using the equivalence of
(4) and (v3) in Theorem 5 one can easily deduce that G is a median graph.
This fact was first observed by Barthélemy and Constantin [15].

Now the problem arises how to construct a conflict model (X, <, A) from
a median graph G = (V, E) such that G can be reconstructed as above from
(X, <, A). Barthélemy and Constantin [15] gave a nice construction, which
amounts to the following. Let G = (V, E) be a median graph, and let z be a
fixed vertex of G. The set X consists of the sets {Wyp, Wi, }, with ab € E.
Here we do not count multiplicities, i.e. if uv is an edge between Wy,
and W, then it defines the same set as ab. We say that {Wuv, Wyu} and
{Woap, Wi } cross if the four intersections W, Wy, where p € {uv,vu} and
q € {ab, ba} are nonempty. Now let z = {Wyy, Wi} and y = {Wab, Wea}
be two distinct non-crossing elements of X. We put

z <y if, say, z € Wy, N Wop, and Wy, C W,

zy € A if z and y are incomparable with respect to <.

Note that crossing elements of X are incomparable as well as non-adjacent.
Barthélemy and Constantin [15) proved that the so obtained conflict model
(X, <, A) reproduces G by the above construction. These conflict models
(X, <, A) constructed from median graphs have the following additional
property

(pl)ifzy € A and z <u,y < v, then uwv € A.

Barthélemy and Constantin named conflict models satisfying (p1) sites. In
computer science, they are known as conflict event structures, cf. [22].
The main result of Barthélemy and Constantin [15] reads then as follows:
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there is a one-to-one correspondence between the sites and the pairs (G, z),
where G is a median graph and z a vertex of G.

6 Concluding remarks

Almost all results above also hold when we allow the set V' to be infinite.
For the structures in Section 5, we have to postulate discreteness to make
sense of the relation to (infinite) median graphs. Furthermore, we have to
postulate some other finiteness condition, which amounts, for instance, in
the interval structure case that intervals are finite. The only intrinsic finite
characterization of median graphs is Theorem 5 (v): G is a median graph if
and only if it can be obtained from the one vertex graph by the expansion
procedure. But all structural properties obtained in the proof by Mulder
[36, 38] also hold for the infinite case. The theorem should then read as
follows: a graph G is a median graph if and only if it can be obtained from
a median graph G’ by convex expansion, unless G is K (as in Fig. 2 to
Fig. 1).

Those characterizations above that are proved in the literature only for
the finite case can easily be proved for the infinite case as well using the
following fact: the convez closure of a finite set in a median graph is finite.
This fact is observed e.g. in Chepoi [18]. For example, McMorris, Mulder
and Roberts [35] use induction on the number of expansions to prove that a
median graph satisfies the convexity axiom (K) for profiles. By restricting
oneself to the convex closure Con(w) of the vertices in the profile =, one
only has to consider a finite number of expansions, viz. those involved in
Con(w), i.e. pairs Wy, Wy, with ab an edge in Con(n).

Of course, we do not pretend that we have exhausted all possible charac-
terizations of median graphs and all related median structures. This paper
just presents the state of the art in a unified and structured way.

Notes added in proof

Since this paper has been written, several new aspects of median graphs
were discovered.

Chepoi [19] characterized median graphs within a new framework. Let
us just briefly outline his ideas, for details see the cited paper. A cubical
complez is a set of cubes on any dimensions which is closed under taking
subcubes and nonempty intersections. The underlying graph of a cubical
complex has its O-cubes as vertices and its 1-cubes as edges. A cubical
complex is a cubing if the following condition holds: if three (k + 2)-cubes
share a common k-cube, and pairwise share common (k + 1)-cubes then
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they are contained in a (k + 3)-cube. Now, Chepoi proved that the graphs
of cubings are exactly the median graphs.

Imrich, Klavzar and Mulder [29] demonstrated that median graphs are
closely related to triangle-free graphs. In particular it is shown that the
complexities of recognizing median graphs and of recognizing triangle-free
graphs are closely related and that intuitively speaking there are as many
median graphs as there are triangle-free graphs.

In [32] an Euler-type formula for median graphs is presented which in-
volves the number of vertices, the number of edges, and the number of cut-
sets in the cutset coloring of 2 median graph. The formula is an inequality,
where equality is attained if and only if the median graph is cube-free.

Finally, in [33] it is shown that Theorem 6 (v) can be relaxed as follows:
A connected graph is a median graph if and only if every interval of G of
length at most 2 is weakly gated. Here a subgraph H of a graph G is weakly
gated in G, if, for every v € V(G), there exists a unique vertex z € V(H),
which minimizes the distance between v and the vertices of H.
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