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Abstract

A tree T consisting of a line with edges {(1,2),(2,3),-:-,(n —1,n)}
and with edges {(1,a1),(1,a2), -+, (1,ax)} (a star) attached on the left,
is called a broom. The edges of the tree T are called T-transpositions. We
give an algorithm to factor any permutation o of {a1,a2,--,ax,1,2,--, n}
as a product of T-transpositions, and prove that the factorization pro-
duced by the algorithm has minimal length.

1 Introduction

Let T = {t1,ts,--,tm} be a set of distinct transpositions in the symmetric
group S,. Cayley [1] proved that T is a minimal generating set for S, if and
only if m = n — 1 and the ¢; form the edges of a tree with n vertices. Ifo €S,
and if o is written as a product of members of T, then this product is called
a T — factorization of ¢, and the minimum length of such a product is called
the T — rank of o; a T- factorization of o whose length is the T-rank of o, is
called a minimal 7-factorization. If T is a line (two vertices of degree 1 and
n-2 vertices of degree 2) or a star (one vertex of degree n-1 and n-1 vertices of
degree 1), then algorithms are known which produce minimal T-factorizations,
and the computation of T-rank is almost trivial in the case of a star (see, e.g.
[6]), and straightforward in the case of a line (see [2]).

For general trees T, comparatively little is known about T-rank or minimal
T-factorizations. Some upper and lower bounds for T-rank are given in 3],
and a general factoring algorithm is given in [5], which —although it does not
always produce minimal factorizations—is easily implemented on a computer,
is quite fast, and usually comes fairly close (indeed, for the line and the star, it
is minimal).

In this paper we describe an algorithm which gives minimal T-factorizations
when T is a broom (a line with a star attached at one end). Easy examples show
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that the general algorithm of [5] is not always minimal. However, by studying
these flactorizations and attempting to reduce them, it became apparent that
we must make greater use of the geometric structure of the broom, in order to
avoid the excesses of the general algorithm.

We begin by describing the algorithm, and then observe that a T-factorization
produced by the algorithm has certain properties. Next, taking these properties
one by one, we show that any T- factorization can be rewritten, rearranged,
and gencrally transformed, in such a way that the result of the rearrangement
is a T-[actorization of no greater length, and having the property in question.
Then, having arrived at a T-factorization having all of a crucial set of proper-
ties, we show that it can always be rewritten so that it agrees with the minimal
T-factorization produced by the algorithm in at least one transposition on the
far right side; then by induction it follows that every T-factorization can be rear-
ranged, without increasing its length, to agree with the minimal 7'- factorization
produced by the algorithm. The details of the argument depend heavily on the
nature of the minimal algorithms for the line and the star, and we discuss these,
and a few other things, in Section 2. In Section 3 we describe the algorithm,
and list ihie pertinent properties of a T-factorization produced by the algorithm.
In Section 4, we describe nine transformations used to get a factorization in a
useful form, which is then used in Sections 5 and 6 to derive the final result. In
Section 7 we discuss the T-rank.

2 Preliminaries

In this section we give some preliminary definitions, and notation to be used
throughout the paper, and state briefly some well-known properties of factor-
izations of permutations on the line and the star.

Definition 2.1 Let T be a finite tree, with vertex set V(T') = {1,2,---,m} and
edge sel 15(T) = {[a1,b1], -, [am—1,bm=1]}. The transpositions (ai,b;) are the
T- transpositions, and we may also refer to them (an abuse of language) as
“edges of T'”.

Definition 2.2 If o is any permutation in Sy, and if 0 =ty -+ -ty where each
t; is a ‘I'-transposition, then t; ---t, is a T-factorization of o, of length k. If
o = tg -t i3 a T-factorization of minimal length, then the factorization is
said to be minimal, and the integer k is the T-rank of 0. If 6 =t} -- -1 is any
T- factorization, then E(ty---t,) s the set of those edges of T, {t1,t2,--,tx},
which appear in the factorization.

Definition 2.3 A line is a tree T with vertex set V(T') = {1,2,---,n} and
edge sel 12(T) = {|1,2],(2,3},---,[n — 1,n]}. A star is a tree T with V(T) =
{1,a1,a9,---,a} and E(T) = {[1,a1],[1,a2],---, (1, ax]}; the vertex 1 is the
cenler of the star. A broom s a tree T with V(T) = {a1,02,--,ax,1,2,---,n}
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and E(T) = {[1,a1),[1,a2), -+, [L, ek, [1,2],[2,3], -, [n—1,n]}. ForabroomT,
we refer to the subgraph with vertices {1,2,---,n} as the line L, and the subgraph
with edges [1,a1],[1,az2), -, [1,ax] as the star S, and we define a partial order
< on T such that if z,y € L, then x < y means that x is smaller thany, and if
z€L, thena; <z foralli=1,2,---,k.

For a permutation on a tree T which is either a line or a star, there are known
algorithms to produce minimal factorizations, and also methods to compute the
T-rank. We summarize these briefly here. For details, see Knuth [2] for the line,
and Portier and Vaughan [6] for the star.

If o is a permutation on a line L = {1,2,---,n}, then an inversion pair of &
is a pair {i,5} such that i < j and o(i) > o(j). The L-rank of ¢ is the number
of inversion pairs of o. An adjacent inversion pair of ¢ is an inversion pair of the
form {i,i+ 1}; if o is not the identity then there must be at least one adjacent
inversion pair {4, + 1}. If o has L-rank m > 1, and if {i,7+ 1} is an inversion
pair, then ¢ = 01 (i, i+ 1), where o; has L-rank m — 1, and {,4+ 1} is not an
inversion pair of g;. A convenient factoring algorithm for the line is the “fix
left- hand vertex” algorithm. Suppose the L-rank of o is m, and o(i) = ¢ for
i=1,2,---,7—1, and o(j) # j. Then o(k) = j for some k > j, m 2 k - j,
and we can write o = 7(j,7 + 1) + 1,5 + 2).....(k — 1,k) . Then 7(3) =i for
i=1,2,.--,7, and the L-rank of 7 is m — (k — j).

If o is a permutation on a star S with edges [1,a],[1,a2],--+,[1,ax], let
Ci,---,C, be the disjoint cycles of o, and put §(c) = 0 if (1) = 1, and
§(c) =2if o(1) # 1. Let M(o) be the number of members z of V(S) such that
o(z) # . Then the S-rank of o is M(o) +r —6(c) . If C is a cycle on the star
S, and C(1) # 1, say C = (1,a1,4az,-*,a;), then C can be factored minimally
in only one way, as C = (1, a;)(1,aj-1) -+ (1,a2)(1, a1).

If C is a cycle on the star S, and C(1) =1, say C = (a1, a2, ,a;), then C
can be factored minimally in precisely j ways, as

(1, 8:)(1, @imq) - -~ (1, a2)(1, 61 )(1, 05)(1, 2j-1) -+ (1, @i41)(1, @3)

If o is a product of disjoint cycles C, ---C;, then a product (i.e., concate-
nation) of minimal factorizations of the cycles C;, is a minimal factorization of
o.

In this paper, we shall be considering only trees T' which are brooms (and
of course their associated line and star trees), and we will not use the prefix T,
but refer only to “rank”, “factorization”, and so on.

3 The Algorithm

Throughout this section, T is a broom with vertices {1,2,---,n, a1, ooy ak}
where L = {1,2,:-+,n} forms a line, and S = {1,4a,,++,a;} forms a star. Put
A={ay,---,ax}.
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Definition 3.1 Leto be a fized permutation on T and suppose thato = C,....C;
as a product of disjoint cycles. If C; is a permutation of {a;,---,ar} we say
that C; is an A-cycle of o; if C; is a permutation of L, we say that C; is an
L-cycle of o and if C; is neither an A-cycle nor an L-cycle, then C; i3 a mized
cycle of 0. Put C(j,k) = (k,k+1)(k+ 1,k +2)......( = 2,5 — 1)(§ — 1,5) for
k,j€ L and k < j, and if k = j we agree that C(j, k) is the identity (no edges).

Step 0. This step may be described as: take out all the disjoint A-cycles
of o, factor them minimally, and write them on the far left of the (eventual)
minimal factorization: that is, we write ¢ = Xo; where X is the product of all
the disjoint A-cycles of o. Since X is a permutation on the star S, its minimal
factorization is easily given, and the algorithm proper is applied only to ¢y, that
is, to a permutation without A- cycles. Replace o by o; and go to Step 1.

Step 1. (Now o has no A-cycles.) If o has mixed cycles, then go to Step 2.
If o has no mixed cycles, then o is a permutation of L, and then factor o using
any minimal algorithm for the line L. End.

Step 2. (0 has no A-cycles.) If o has no A- cycles, and o has mixed cycles,
then proceed as follows. Choose the smallest z in L such that o(z) < o(a;) for
some a; € A. Suppose that max{o(a;)} = k = o(b) whereb€ A. Thenk e L
(since o does have mixed cycles), and one of the mixed cycles C of ¢ contains a
segment of the following form: C = (.-, m,b1,b2, -+, br—1,b,k,---); m;k € L
and b;,b € A (i.e. a(m) =by, o(by) = bs,---,0(b~1) =b, o(b) = k,---). Then
put

o= 01(1’ b)(ly b -1)(1) br-—2) T (1» b2)(1) bl)C(zs 1)

Replace o by o, and go to Step 0.

The factorization of o produced by this algorithm has the following form:
(*) o= XZamC(:cm, l)a'm—lc(xm-—h 1) tte QIC(SBI, 1)0‘00(370, 1)

Theorem 3.2 The form (*) produced by this algorithm has all of the following
properties:

(P1) X is the product of all the disjoint A-cycles of o (written minimally)

(P2) Z is a permutation of L (written minimally)

(P8) For i = 0,1,---,m, o; is a cycle on the star S (written minimally)
which satisfies ;(1) # 1.

(P4) If a € A and X(a) # a, then (1, a) does not appear in «; for all <.

(P5) If o; = (1,b;).....(1,b2)(1, by) where r > 2, then forj=2,---,r, (1,b;)
does not appear in any oy witht > 1.

(P6)l<zg<z1<29<--<ZTpy

(P7) If1 £j <k <m+1, then Z(j) < Z(k), i.e. Z has no inversions
between 1 and m + 1.

132



Proof: P1, P2, P3, and P4 are obvious from the statement of the algorithm.
To see that PS5 is true, suppose that Step 2 gives

o= 0'1(1, b)(lv br—l)(l’ br—Z) Tt (ls b2)(11 bl)C(:B, 1)'

Since a(by) = by, o(bs) = bs,---,0(br—1) = b, then evidently b, b3,--+,br—1,b
are all fixed by o1, and the edges (1,b2),- -+, (1,b) will never appear in the steps
of the algorithm for o,. For P6 and P7, suppose that o has no disjoint A-cycles,
and that Step 2 is applicable twice; say

g =0 (1’ b)(ls b —l)(11 br—?) ''''' (1’ b2)(1’ bl)C(“—'o, 1)1

a1 = a2(1,¢)(1, cs—1)(1, €s—2).-oo.(1, €2)(1, €1)C(z1, 1);

ie. 0 = 0201C(z1,1)a0C(z0,1). By Step 2, we had max{o(a;)} = k € L,
say, and zo was the smallest integer in {1,2,---,n} such that o(z¢) < k. Now
o1(b1) = a(xo), 01(1) = a(b) = k, 01(b2) = by,---,01(b) = b. For all other
a; € A, 01(a;) = o(a;), and z is least in {1,2,--,n} such that oy(z;) is less
than max{o1(a;)}. Since 01(1) = k, then 2, > 2.

Suppose first that max{o;(a;)} = o1(b1) = o (z0). If z1 < 20, then oy(z;) =
o(zy — 1), and so o(z; — 1) < o{zo) < k. But since z; — 1 < =g, this con-
tradicts the choice of zy at the first application of Step 2. Now suppose that
max{cy(a;)} = 01(c) # o(zo). Then o;(c) = o(c), and we have o(z; — 1) <
o(c) < k (by the choice of k in the first application of Step 2), and again
z1 — 1 < z¢ contradicts the choice of xg. Then z; > zp. If Step 2 is ap-
plicable a third time, we get zo > z;, and so on, and so by induction P6
holds. If max{o(a;)} = o1(b1) = o(zo), then 02(2) = k and 02(1) = o(zo),
and so 02(1) < 02(2). If max{oi(a:)} = o1(c) # o(zo), then 02(2) = k and
o2(1) = o(c), and again g9(1) < 03(2). If Step 2 is applicable a third time, then
we will have 03(1) < 03(2), and since 03(2) = o2(1) and 03(3) = g2(2), we have
03(1) < 03(2) < 03(3), and so on. Then by induction P7 is satisfied.

The idea behind this algorithm is based on the geometry of the tree T.
Picture T laid out with the star S on the far left, and the line L extending
to the right, and labelled with two sets of labels {a;,---,ax,1,2,---,n}: black
labels are fixed, and red labels can move, but only by interchanging two red
labels across an edge of T. We want a sequence of moves whose final result
has red label z sitting at black label o(z), for all vertices  of T. Suppose
eg. that o(1) = 3, and for i = 1,2,3, o(a;) > 3. If red label 1 remains
on L throughout our sequence of moves, then red label 1 will have to trade
places (i.e., cross) with all three of the red labels a;, a2, a3; each of these moves
contributes a transposition to the factorization of o we end up with. But if red
label 1 is moved to sit at one of the vertices of S, and while it sits there, the red
labels a4, ag, a3 are moved out to L, then red label 1 might avoid crossing with
at least two of ay, as,as—thus possibly we might have a shorter factorization.
Furthermore, if we move out the a;, az, a3 so that the one with largest image
moves out first, we might also avoid extra crossings (i.e., extra transpositions).
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4 The Basic Transformations

In order to show that the algorithm of Section 3 actually produces a minimal fac-
torization of o, we will eventually show that if we begin with any factorization,
say ¢ = ty---t;, it can be rearranged, rewritten, and generally transformed
into another factorization ¢ = sg---s; such that s; is actually the rightmost
transposition appearing in the factorization produced by the algorithm. Then
the desired result follows by induction. In this section, we describe nine transfor-
mations which are used to change any factorization of o into a more manageable
form (factorization), which of course is still equal to the original o.

If 6 =t,, -t is a factorization, then each ¢; is either an edge of the line L,
or an edge of the star S. So we can write

(FO) o=ty - t1 =XZarTr0r_1Tr—1 "+ Q110070

where the ¢; belonging to o; or to X are edges of the star S = {1, a1, ...,ax},
and the t; belonging to 7; or to Z are edges of the line L = {1,2,...,n}; e.g.
if t,t9,-,t; € E(S), and t;41 € E(L), then 19 has length 0 (no edges), and
ag = t;---t; has length i (i edges). Evidently X, Z, and 7o might have length 0
(no edges), but if o is not the identity, there must be some portions of FO with
positive length (having edges).

Definition 4.1 Let 0 =t ---t1. The total number of edges t; in {t1, -+ ,tm}
belonging to the star S, is called the A-length of the factorization and the total
number of edges belonging to the line L is called the L-length. In (F0), the o
are called the A-factors, and the 7; are the L-factors. The total length of the
segment CpTrOtp_1Tr—) * - @1T100To i3 called the ALF-length (for A,L-Factor
length). The number of A-factors is called the height of the factorization.

We will define nine transformations, which may be applied to a factorization
of o in form F0, producing another factorization of o. We give no explicit proofs
of the equality of the factorizations; in each case this is either very obvious, or
can be seen by straightforward computation.

The first three transformations affect only the L-factors. None of them
change the A-length, and only T1 changes (reduces) the L- length.

(T1) If Z or any 7; is not minimal, replace it by a minimal factorization
(T2) If 0 < i € r and 7;(1) = 1, replace a;7; by Tic;

(T3) If (1) # 1, and 7i(k:) = 1, write 73 = 7;C(ki, 1) minimally, and re-
place a;7; by 7! a;C(ki, 1).

In T2, we use the fact that if 7;(1) = 1, then it commutes with o;, and
in T3, we are calling on an aspect of minimal factorizations on the line L, i.e.
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if 7(1) # 1, and 7(k:) = 1, and we write ; = 7} C(k;, 1) minimally, then
77(1) =1, and so 7 commutes with a;.

We will say that a transformation is “possible” for the factorization ¢, - - - 81,
to mean that it actually produces a different rewriting of ¢m - - -¢1; in the case
of T1, that would be a shorter rewriting, and for T2, a mere “rearrangement”.
For instance if Z and all the 7; are already minimally written, then we would
say that T1 is “not possible”.

Lemma 4.2 Let 0 =ty -+ t1 = X ZorTrQr_17r—1 ++ - 01T100T0 be given. Then
by a finite sequence of tranformations T1, T2, T8, we can rewrite tm---11 as

(F1) 0 =X2ZB:C(ks,1)Bs—1C(ks—1,1) - B1C(k1,1)BoC (Ko, 1)

where s < r, the length of (F1) is < m, and none of the transformations T1,
T2, TS are possible. The ALF-length of F1 is no more than the ALF-length of
Fo.

Proof: First, apply T1 to Z and to all the ;. Then, apply T2 consecutively,
from right to left. Repeat this process, until no T1 or T2 is possible. Since T1
reduces total length, and T2 reduces the number of L-factors, then after finitely
many repetitions, no more T1 or T2 are possible, and we have s L-factors with
s < r, the total length is < m , and the ALF-length has not been increased.
At this stage, no L-factor fixes 1, with the possible exception of the rightmost
L-factor 7g, which may be the identity. Now apply T3 consecutively from right
to left; each L-factor is replaced by a factor of the form C(k, 1), and the number
of L-factors is unchanged (at each application of T3, we “push left” a permuta-
tion of L which fixes 1). Continue the whole process as long as possible; there
can be only finitely many repetitions. The length and the ALF-length do not
increase.

The second set of transformations primarily affect the ;. The basic idea
here is this: for any permutation of the star S, a minimal factorization can be
given as the product of minimal factorizations of its disjoint cycles. If a cycle
C on S fixes the center 1, then this cycle commutes with all the 7; and with Z,
and also commutes with any «; which fixes all the elements moved by C. On
the other hand, if any o; moves an element which is also moved by C, then o;C
and Ca; are not minimal. So, in the factorization of o, such a cycle C can be
either moved all the way to the left (next to X) by commuting, or else it can
be moved either to the left or the right by commuting until it is sitting next to
some oy such that o;C (respectively, Ca;) is not minimal.

(T4) For X or any o, replace it by a minimal factorization in the form of
a product of disjoint cycles.

(T5) (Move cycle to X (far left)) If0 <i <r, and if a; = C; - - - C as a product
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of disjoint cycles, and C(1) = 1, and if for all k # i we have E(ax)NE(C;) = 0,
then replace X by a minimal factorization of XC{, and a; by Cy --- C.

(T6) (Move cycle left) If 0 < i < r —1, and if ¢; = C;---C; as a product
of disjoint cycles, and C1(1) =1, and ¢ < 7, and if for all ¢ < k < j, we have
E(ax) 0 E(Cy) = 0, while E(a;) N E(C,) # @ then replace a; by the minimal
factorization of o;Cy and o; by Cy - - - C;.

(T7) (Move cycle right) If 1 < ¢ < r, and if &; = Cy---C; (respectively,
X = Cy:-Cy) as a product of disjoint cycles, Ci(1) = 1, and j < i, and if
for all j < k < i (respectively, all j < k < m) we have E(a,)N E(C;) = 9 while
E(a;) N E(C)1) # 0, then replace a; by the minimal factorization of Cye; and
o (respectively, X) by Cy - -- C,.

It should be noted that if a;(1) # 1 for all i =0, 1,2, - - -, m, then none of the
transformations T4-T7 will change the number of A-factors, and the L-factors
will remain unchanged.

Lemma 4.3 Leto =ty -ty = XZa,7r0p_1Try -+ - ) T1 09T be given. Then
by a finite sequence of tranformations T1—T7, we can rewrite t,, ---t; as

(F2) o= X1218,C(ks,1)Bs-1C(ks—1,1) - $1C(k1,1)BoC ko, 1)

where s < r, the length of F2 is < m, the ALF-length of F2 is no more than
the ALF length of F0, and none of the transformations T1-T7 are possible.
Furthermore, X is a product of disjoint A-cycles of o, and the factorization F2
satisfies the properties P2, P3, PJ.

Proof: We may begin with a factorization in the form F1. Since T4, T6
and T7 all reduce length, these are possible only finitely many times in any
sequence. Since TS either reduces length or ALF-length, then T5 is possible
only finitely many times. After carrying out T4— T7 as far as possible, some of
T1—T3 may become possible; but if this should happen then either the height
has been reduced, or the total length, or the ALF-length, has been reduced. So
eventually we must arrive at a form in which all of T1I—T7 are not possible.
Since T6 and T7 are not possible, then E(X;) N E(G;) = 0 for all i, and so P4
holds, and X is a product of disjoint A-cycles of . Since T5, T6, T7 are not
possible, then every «; satisfies P3. Since T1 is not possible, P2 holds.

Finally, transformation T8 permits the rearrangement of the C(k;, 1) needed

for property P6, and transformation T9 is used for property P5. We shall see
that, once we have these, we can deduce P1 and P7.

T8: Let ¢ = XZa,C(ky,1)ap_1C(ky-1,1)---a1C(ky,1)agC(ko,1). Sup-
pose forsomei, 0 <7 < r-1,1 < kiyy < k;, and that o; = (1,51)(1,b2) - - - (1, 5,),
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bj € A. Replace C(k,‘+1, l)agC(k,', 1) by (l,b,)C(k;,l)aiC(kﬁ.l -1, 1)

T9: Suppose ¢ = X ZoypTrQp—1Tr—1 - @1Ti0To. Suppose 0 < ¢ <r -1 and
= (1,b1)(1,b2)---(1,b,), with b; € A and all distinct, and s > 1. Suppose
for somel <t<s-1,(1,b) € E(a,,) for some » > i. Suppose that u is the
least integer such that « > i and E(au) N {(1,b:)---(1,bm)} # 0.
Replace a, by the minimal factorization of a,(1,b)(1,be1)...-(1,bs)(1, b¢)
and replace o; by (1,51)(1,b2) -+ - (1,bs).

Lemma 4.4 Let 0 = XZo,.C(ky,1)ar—1C(kr—1,1) - a1 C(k1,1)oC(ko, 1) =
tm -+ -1y be factored in form F2, where T1—T7 are not possible. Then by a finite
sequence of transformations T1—7T8, o can be factored in the form

(F3) o=X12,8,C(xs,1)B5-1C(x5-1,1) - - - 1C(z1,1)FoC (0, 1)

where s < r, the length is < m, the ALF-length is not increased, and none of
T1-T8 are possible. This factorization satisfies properties P2, P38, P4, and P6.

Proof: Suppose a T8 is possible; for some i, 0 < ¢ < m — 1, we have
1 < kiy1 < ki, and a; = (1,b1)---(1,b),b; € A and the b; are all distinct. So,
we replace C(kit1,1)05C(ki, 1) by (1,b)C(ki, 1)05C (kigr — 1,1).

In the result, the sequence of integers (ko,---, k) is modified in only two
places; k;; is replaced by k;, and k; by ki;1 — 1. Note that the maximal value
of the k; is not increased. The (new) i-th A-factor is e;4+1(1,b;), and it may
happen that one of T4—T7 is now possible. Each of these reduces ALF-length,
and so there can be only finitely many T8 transformations which are followed
by any of T4—T7. If ki = 2, then C(1,1) is the identity (no edges), and in
this case we “lose” an L-factor; the height has been reduced, and again some
of T4—T7 may become possible (with a consequent reduction of ALF-length).
Clearly there can be only finitely many T8-transformations which reduce height.
The T8 transformations which do not reduce height, and are not followed by
any of T4—T7, have the effect (more or less) of “rearranging adjacent members
of the sequence (kg, ..., k) by size”, and since none of T1—T8 can increase the
maximal value of the k;, again there can be only finitely many of these.

Thus, we may continue to apply T1-T8 until none remain possible, and the
result follows.

Lemma 4.5 Let 0 = XZa,.C(ky,1)ar—1C(kr—1,1) -+ a1 C(k1,1)gC(ko, 1) =
tm -+ -t1 be factored in form F3, where T1—T8 are not possible. Then by a finite
sequence of transformations T1—T9, o can be factored in the form

(F4) o0 =X1218:C(xs,1)Bs-1C(xs-1,1) - -- f1C(x1,1)B0C (0, 1)

where s < r, the length is < m, the ALF-length is not increased, and none of
T1—T9 are possible. This factorization satisfies properties P2, P8, P4, P5 and
Pé.
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Proof: Suppose ag = (1,b1)--- (1,by), b; € A and the b; are all distinct. and
u > 1. Suppose a T9 is possible at g, and t is least with 1 <t <v -1 and
(1,b:) € E(cy,) for some u > 0. Suppose that u is the least integer such that
u > 0and E(a,) N {(1,b),---(1,bm)} #9.

Replace o, by the minimal factorization of ay(1,b:)(1,be41)....(1,bs)(1,b;)
and call it 6, and replace o; by (1,b1)(1,b2) -- - (1,b¢). The result has the same
length as the original. One (or more) of T4—T7 may now be possible (at 6,);
if so, they will reduce the ALF-length, and if not, then we have a factorization
with the same sequence of L-factors, new A-factors (8o = (1,b1)---(1,b), and
8.) in the O-th and u-th places, and where f; satisfies property P5. Continuing
this process from right to left, only finitely many T9’s are possible.

This form F4 has several nice properties that make it very suitable for further
modification in the direction of the final form of the algorithm of Section 2. We
first show that the form allows a partial prediction of the values o(a) for a € A,

and use this to show that a factorization in form F4 has all of the properties
P1—Ps.

Lemma 4.8 Supposeo = XZc,C(kr,1)ar_1C(kr—1,1)--1C(k1,1)a0C(ko, 1)
is factored in form F4. Ifa € A, and if (1,a) € E(X) and if i is the least integer
such that (1,a) € E(c;), and if a; = (1,b1) -+ (1,b;), then:

(i) ifa=1"by, theno(a)=Z(r+1-1) €L

(%) ift>1andifl <j<tanda=bj theno(a)=bj_1 € A

Proof: For 0 < s < r, write 8§, = a;C(z,,1).....a0C(zg,1). Then for all
y> T 85(y) =y Ifs <randl <y <z, and if §;(2) = y, then, since
To41 > Ts, We have 8,41(2z) =y + 1. It follows that 6,(z) =y +r—s>1, ie.
6.(z) € L, and then o(z) = Z(z) is also in L. Now if the first appearance of
(1, a) immediately precedes a C(z;41,1), then we will have §;(a) = 1, and then
o(a) = 1+ r —i. If the first appearance of (1,a) immediately precedes some
(1,b) in o; (where b € A), then by P5, (1,b) does not appear in any «; (or in
X) for any j > 4, that is o(a) = b.

Theorem 4.7 Suppose that o i3 factored in form Fj. Then the factorization
satisfies all of properties P1—P6.

Proof: In view of Lemma 4.5, we need only show P1, i.e. that X is the
product of all the disjoint A-cycles of o.

We have 0 = XZa,C(kr,1)otr-1C(kr—1,1) - - - 1 C(ky, 1)ogC (Ko, 1) and by
P6, x, > z,—1 > -+ > x1 > zo > 1. Suppose that ag = (1,by)---(1,). Then
a(b)) = Z(r+1) € L, and so b, belongs to a mixed cycle of . If £ > 1, then we
have o(bs) = by—1,---,0(ba) = by by P5, and so all of by, - -, b; belong to some
mixed cycle of . Thus oy is disjoint from any of the A-cycles of o. Then the
A-cycles of o are the same as the A-cycles of

gy = XZa,-C(kr, l)ar._lc(k,_l, 1) e aIC(kl, 1)
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and the result follows by induction.

Corollary 4.8 If o has no mized cycles, then given any factorization of o,
transformations T1—T9 can be applied to produce a factorization of o in the
form X Z, where X is a product of disjoint A-cycles, and Z is a permutation
of L. In particular, if ¢ has no mized cycles, and we write 0 = XZ where X
is the product of the disjoint A-cycles of o, and Z is the product of the disjoint
L-cycles of o, then the rank of o is the sum of the S-rank of X and the L-rank
of Z.

Proof: The first statement follows from the proof of Theorem 4.7. Suppose
we have any minimal factorization of ¢. Then the transformations T1—T9
produce a factorization in the form X Z of no greater length, which must then
itself be minimal, and the result follows.

5 Blocks and Z-ordering

Definition 5.1 Suppose that o has a mized cycle. Then there exist z,y €
L, and by,---,by in A such that o(z) = by, 0(bs) = by—y,---,0(b2) = by, and
o(b1) =y. Then the sequence [by,be—1,- -, b1] i3 a block of . We will also refer
to the product (1,b,)(1, b2)....(1,b;) as a block of 0.

In this section, we show that a factorization in form F4, can be further
modified to a factorization which is not only in form F4, but also has property
P7, and its right-most A-factor is a complete block of o.

In the factorization produced by the algorithm of Section 2, the right-most
A-factor is a particular block of o. In this section, we first show that we can
always transform any factorization in form F4, into another, also in form F4,
but with its right-most A-factor being some block of ¢, using the transformation
T10 described below. (If we call T9 a “right-to-left” operation, then T10 is its
“left-to-right” sibling.) Then we show that such a factorization can always be
rearranged to satisfy P7 also.

T10: Suppose for some i, 1 <7 <7, a; = (1,b1)(1, b2).....(1,bm), with b; € A,
and all distinct, and m > 1. Suppose for some 1 <t <m —1, (1,b) € E(a)
for some v < 4. Suppose that u is the greatest integer such that v < ¢ and

E(ay) N {(1,b1)-....(1, b))} # 0.

Replace a; by (1,5.)(1,bs4.1) - - - (1, b,) and replace o, by the minimal fac-
torization of (1,b:)(1,b1)(1,52).....(1, be)axy.
Lemma 5.2 Suppose that o is factored in form F{,

0=ty -ty = XZa,C(ky,1)0r-1C(kr_1,1) - - - @1 C(ky, 1)axgC (Ko, 1).
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Then by a finite sequence of transformations T1—T10, o can be factored in the
form

(F5) o0 =X1Z1,C(25,1)B8,-1C(x5-1,1) - - B1C(x1,1)BoC (0, 1)

where s < r, the length is < m, the ALF-length is not increased, and none
of T1—T9 are possible, and By is a block of 0. This factorization satisfies
properties P1—Pé6.

Proof: Suppose that ag = (1,b1)---(1,b;). Then o(by) = Z(r +1) € L
and so b; belongs to some block of o. If this block has length t then we are
done (by P5, we have o(b;) = by—1,--,0(b2) = b1), so we suppose that ay is
part of a block of length n > ¢, [bn,---,bt,---,b1). Then by, ---,byy must all
appear in various o, with » > 0, and since o(by+1) = by, we must also have b,
appearing in some a,. Let u be the least integer such that (1,b;1,) € E(aw.),
say a, = (l)cl) Tt (1’ cv)'

By Lemma 4.6, ¢; # bi+;. By P5, none of the ¢; can be equal to any
of by,---,bi—1. Since o(byy+1) = by, then by Lemma 4.6, if ¢; = bey1, then
ci—y = b, i.e. i >1and sov > 1. So ¢y has the form

o = (1,e1) -+ (1,6)(1, b )(1, beq1) -+ (1, Betie) (1, Ciph42) -+ (1, 00)

for some integers jk with £ > 1. Put § = (1,b)---(1,be4x), and define v by
oy = (11 cl) o (11 Cj)é‘)’.

Now let w be the least integer which is less than u and such that (1,b;) €
E(c). We claim that if w # 0, then (1,b;) must appear on the far right of
Qy, i.e. ay = (1,d1).....(1,d;)(1,b) for some (distinct) d; € A. To see this,
put gy = aCl(kw,1)---oC(ko,1) and p2 = XZa,C(kr,1)-- - aws+1C(kwt1),
and note that (since w < u) p1(bs+1) = be4+1. Suppose that w >0 and o, =
(1,dy).....(1,d;) with j > 1. If b, = dy with k < j, then for some = we have
p1(z) = by = di and by P5, pa(dy) = di so that o(z) = pa(p1(z)) = di = be.
But then, x = by, contradicting the fact that py(be+1) = beyi-

We will apply T10 to the following segment of the original factorization:

64C (K, 1)aut - - Clhwa1, 1)cu

replacing 6 by 8 = (1, byyx), and oy, by By = (1, by k)80, factored minimally.
Note that if 7 > 1, then none of the (1,d;) appear in e, (by P5), and for
i=1,2,---,t =1, none of (1,b;) appear in either a, or a,, (by P5). Then since
(1, be+x)6 is an A-cycle, fixing 1, and disjoint from (1,d,).....(1, d;), we have:

Buw = (11 bt+k)6aw

(L, berr)(1, be)(1, be1)(1, bet2) -+ (L, bey k)

(13 bt)(li bt+l) tce (1) bt+k)(1, bt)(l! dl) e (11 d])(la bt)
(L, d1)eee (1, d5)(1,Be) (1, ber) -+ - (1, ek ) (1, Be)(1, be)
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= (1) dl)(lidJ)(lf bt)(l:bH-l) """ (11 bt+k)

and this last factorization is minimal. Now in the original F4 factorization of
o, we replace a, by (1,¢1)....(1, ¢;)B3v, and @y by Bu. The result has the same
length as the original, and the same L-factors, and still has all the properties of
an F4 factorization; and now the first (rightmost) appearance of b4 is in the
w-th A-factor, where w < u. If w # 0, then we can repeat the process above on
the new factorization; each time, the first appearance of b,4q is further to the
right. Thus we may assume without loss of generality, that w = 0. If w = 0,
then the new fg is (1,b;).....(1, be+x), which is longer than ag = (1,b1).....(1, ;)
by at least one transposition (since k > 1), and (3 is still an initial segment of
the same block of o. If the new §p is not a complete block of o, then the whole
process above can be repeated. At each repetition, the “new” By acquires at
least one more transposition, and each “new factorization” has the same length
as the original, and all the properties of F4; since the blocks of o have finite
length, then in finitely many repetitions we arrive at a factorization which is an
F4, and in which the rightmost A-factor is 2 complete block of .

Corollary 5.3 Let
g = XZa,-C(k,., l)a,._lc(k,._l, 1) s O!],C(kl, l)aoC(ko, 1) =tm--- tl

be factored in form F{. Then by a finite sequence of transformations T1-T10,
o can be factored in the form

(F6) o0 =X,2,8,C(x5,1)B5-1C(25-1,1) - -+ 1C(x1,1)oC (0, 1)

where s < r, the length is < m, the ALF-length is not increased, and none of
T1-T8 are possible, and 3; is a complete block of

0; = X12,8,C(24,1)Bs-1C(25-1,1) - - - B; C(z4, 1).

The factorization (F6) satisfies properties P1- P6, and is also an F4- factoriza-
tion.

Proof: This is an easy consequence of the lemma above.

We will show next, that an F6-factorization can be rewritten into another
Fé6-factorization with property P7. The basic idea is to show that we can succes-
sively “remove” adjacent inversions of Z in {1,2,-.-,r+1}; if Z has no adjacent
inversions in {1,2,---,7+1}, then it has no inversions at all in {1,2,---,7+1}.
We use the well-known property of permutations on the line: if (i — 1,1) is an
inversion of Z, then there is a minimal factorization of Z which has the form
Z*(i —1,1%).

Definition 5.4 Let 0 = XZa,.C(kr,1)ar—1C(kr_1,1) - 21 C(k1,1)coC(ko, 1)
be in form F6. If this factorization has the property that Z has no inversions in
{1,2,---,7 + 1}, we say that the factorization is Z-ordered.
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Recall that C(k +3,7) = (4,7 + 1), + 2).....(k + 5 — 1,k + j) for positive
integers j, k .

Lemma 5.5 Suppose that  is a permutation of the star S. If 2 < j < k, then
(i —1,5)eC(k,1) = oC(k,1)(j - 2,5 - 1).

Proof: It is straightforward to compute that the given expressions are equal.
Theorem 5.8 Suppose that o is factored in the form F6,
(*) o=XZa,Clkr,1)ar-1C(kr-1,1)---0;C(k1,1)0C(k0,1) =t -+ 13
Then this can be rearranged to give a factorization of o in the form
(F7) o= X1218:C(xs,1)B5-1C(x5-1,1) - - - B1C(z1, 1) FoC (20, 1)

which has length < m, s < r, has all the properties of form F6, z, < k., and
Zy has no inversions in {1,2,---,s+1}.

Proof: In view of Corollary 5.3, it is sufficient to show that we can trans-
form the factorization into a factorization of form F5 which either has one less
inversion in {1,2,---,7+ 1}, or else has smaller length or height. We carry out
the argument for the case when (r,7 + 1) is an inversion of Z (the argument is
essentially the same for any inversion (i 4+ 1,%) with ¢ < r). So, we can write
Z = Z*(r,r +1). Note that, since k, > kr_y > ... > ko > 1, we have k; > i +1
fori =0,1,---,r. Then by successive applications of Lemma 5.5, we can “move”
(r,7 + 1) to the right, to get

0 = X Z*arClke, otr—1C(kr—1,1) - -+ C(ka, 1)(1, 2)a1 C(ky, 1) C (Ko, 1)

We now consider the rightmost segment, § = (1,2)a;1C(k1, 1)aoC(ko, 1), by
cases, according to the structure of ag and ;.
Case 1. ag = (1, b;)....(1, b:)(1,a), and &1 = (1, a). Then we have:

& =(1,2)(1,a)(1,2)(1,b1)....(1,b¢)(1, a)C(k1, 2)C(ko, 1)

= (1, bl)""(11 bt)(L 2)(11 a’)(lv 2)(17 a’)C(kh 2)C(k07 1)

= (1, b1)(L,b)(1a)(1, 2)C(k1, 2)C ko, 1)

= aoC(kl, 1)C(ko, 1) = aoC(ko + 1,2)C(k1, l) = C(ko +1, 2)000(’61, 1).

At the penultimate equality, we used Lemma 5.5 (since kg < k;); the last
equality follows since ap and C(kq + 2,1) are disjoint. Now, applying Lemma
5.5 successively, we can “move” the factor C(ko + 1,2) to the left, getting

o = XZ*C(zo + 7 + 1)arClkr, 1)ar_1Clkr_1,1) - - - 22C(k2, 1)aoClk1, 1).

The length has been reduced by 2, and the height by 1, and since the original
ap was a block of o, this factorization is of form F5.
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Case 2. ap = (1,b1)---(1,by)(1,a) and a; = (1,¢1)---(1,¢)(1,a),t > 1.
Then all the b; and ¢; (and a) are distinct, and we have

= (11 2)01(1, 2)000(,‘71: 2)C(ko, 1)
(1,b1) -+ (1,b,)(1,2)3(1, 2)(1, @)C(ky, 2)C (Ko, 1)
(1’ bl) e (17 bu)(l, 2)(1a cl) tte (11 c&)(lt a)(I: 2)(19 a)C(kly 2)C(k01 1)
(1,b1) -+ (1,b4)(1,@)(1,2)(1, €1) - -+ (1, € )(1, @)(1, @)C( k1, 2)C (Ko, 1)
(1’ bl) v (11 bu)(lv a’)(l’ 2)(1’ 01) e (11 ct)C(klv 2)C(k07 1)
(1,b1)---(1,b,)(1,2)C(k1,1)(1,¢1) - -+ (1, ¢.)C ko, 1)

= oC(k1,1)(1,¢1) - (1, ¢)C(ko,1)

mowwnu>

Then the “new” factorization of o has the same L-factors (and the same
height), the length has been reduced by 2, and the 0-th and 1-st A-factors only
have been changed. We need only to show that in fact [c1,-- -, ¢] is a block
of . From the original factorization (*) of o, we have o(ko) = ¢, 0(c:) =
¢—1,"++,0(cy) = r, and since kg,r € L, then indeed [¢y,...,¢;] is a block of o.
Then this factorization is in form F5.

Case 3. Recall that 0; = X Za -+ C(zi,1) and §; = ;- - - C(zp, 1). We sup-
pose for this case that ag = (1,5)---(1,by) and a; = (1, ¢1)....(1, ¢r), by # ct.
Then all the b; and ¢; are distinct, so that (1,2)a;(1,2) commutes with ag, and
we get

§ = (12)a1(12)agC k1, 2)C ko, 1) = ao(12)e; (12)C (ky, 2)C (Ko, 1)
ao(12)(1, ¢1) - -+ (1, € )(1, 2)C (K1, 2)C(ko, 1)

ao(l, Cg)(l, 2)(1, Cl) v (1, Cg_.l)(l, Cg)C(kl, 2)0(160, 1)
ao(1, ¢ )C(k1,1)a1C(ko, 1)

Here, we have from (*), that oq is a block of o, and ¢; is a complete block
of 0;. We need to show that a3 is also a block of ¢, i.e. that for some z,y € L
we have o(z) = ¢, 0(ct) = ¢t—1,-+-,0(c2) = e1,0(c1) = y. From the original
factorization (*), and the fact that c; is not equal to any b;, we know that
o(e)) = ¢—1,---,0(c2) = ¢1,0(¢c;) = r, and it only remains to show that o(x) =
¢ for some z € L. So, suppose that o(z) = ¢, and note that =z # ¢; for any
1=1,2,---,t. Since o(z) = 1(6o(z)), and «; is a block of &;, then &o(z) € L.
If z # ¢; but = € A, then we would have §p(z) = = & L, a contradiction. Thus
z € L, and o is a block of 0. Now the new factorization has the form F5.

Corollary 5.7 Ewvery factorization of ¢ can be rearranged to a factorization
which has the form F6, and which satisfies all of properties P1-P7.
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6 Minimality of the Factorization

In this section, let o be fixed, and suppose the factorization produced by the
algorithm is:

(*) o= Xzamc(zma l)a‘m—lc(xm—l, 1) v alc(zls I)QUC(an 1)'
If we also have a factorization of ¢ in the form F'6, which is Z- ordered, say
(x%) o= X1Z15.C(kr,1)Br-1C(kr-1,1)- - - B1C(k1,1)BoC (Ko, 1),

then the sequence kg, k1, - - -, k» may be different from the sequence zo, -+, Zm,
and the sequence oy, ..., may differ from the sequence fo, ..., B-. We will
show that the factorization (**) can be modified (without increasing length) to
“agree with (*) on the far right”. Then, by induction, it will follow that (**)
can actually be transformed (without increasing length) into (*). But we could
assume that (**) is minimal, since every factorization can be transformed into
a form F'6 which is Z-ordered; then (*) must also be a minimal factorization.
We first give some of the properties of (**).

Lemma 6.1 Suppose that o has at least one mized cycle, and is factored in
form F6 and is Z-ordered;

o = X1216:C(kr, 1)Br-1C(kr-1,1) - - - B1C(k1,1)BoC ko, 1).

This factorization has the following properties:

(a) X1 =X

(b) Ifz € L and o(z) € A, then x = k; for some i

(c) kr = max{o~!(a;)la; € A}

(d) Ifa € A and o(a) € L, and if the rightmost appearance of (1,a) is
in Bi, then either B = (1,a) or B; has the form (1,a)(1,d1)---(1,d;), and
o(a) = Zy(r +1-1i)

(e) Bo = @0

(f) o(ko) < max{o(a:)la; € A}

(9) xo < ko

Proof: Statement (a) follows from Theorem 4.7. For (b), recall that
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8; = BiC(ki,1)Bi-1C (ki-1,1) - - - B1C(k1,1)BoC (Ko, 1)

If z € L and o(z) € A, then o(z) = é-(z). Suppose that z # k; for any i. If
z >k, , then 6.(z) = x, and if k; < = < kit1, then &.(z) = ki + (r—i+1) € L;
either way, o(z) = Z,(6,(z)) € L, and (b) follows.

For (c), we have 8, = (1,b1)---(1,b), and &,(k;) = by = o(kr). Since
k. > -+ > kg > 1, it follows from (b) that (c) holds.

For (d), suppose a € A and o(a) € L, and the rightmost appearance of (1, a)
is in B;. 'Then &;_1(a) = a. Suppose that B; = (1,b1)---(1,b;). If ¢ =1, then
(d) hOldS; ift>1landa= bj,j >1, then 6,'(0.) = 6,(63) = bj—l = 6,-(0.) = 0’(0.),
contradicting o(a) € L. So it must be that a = b;. Then §;(a) = 1, and so
6-(a) = —i+ 1 and o(a) = Z,(r — i +1). This proves (d).

For (e), suppose that fo = (1,e1)-(1,¢;). Then 6(c;) = v+ 1. For all
a € A such that o(a) € L, 6.(a) = r—i+1 for some i (from (d)), and if a # c1,
then i > 1. Thus for all a with a # c; and o(a) € L, §,(a) < 6-(c1) =7+ 1.
Since the factorization is Z-ordered, Z; has no inversions in {1,2---,7 + 1}, so
if i > 1, then Zy(r +i—1) < Zy(r +1), i.e. o(a) < o(cy). Since fy is a block
of o, then it is actually the first block chosen by the algorithm, i.e. fo = ao.

For (f), suppose that 8o = (1,c1)---(1,¢;). Then 8o(ko) = ¢; € A, and
it follows (as in (d)) that 6,(ko) = = < r (recall that z < r means that either
z € Aor1 < z <r). Then since the factorization is Z-ordered, o(ko) = Z1(z) <
Zy\(r) < Zy(r + 1) = o(cy), and this proves (f).

Now (g) follows trivially from (f), since o was chosen to be the least member
of L with o(zg) < max{o(a:)}.

Remark. If kg = zo, then we already have the desired “agreement” on the
right. The next order of business is the case zg < ko; we will show that we can
modify the factorization so that the rightmost L-factor is C(zo, 1).

Theorem 6.2 Suppose that o is factored in form F6 and is Z-ordered;

g = XlZlﬁrC(kr, l)ﬂr—lc(kr—l: 1) e ﬁlc(kla 1)ﬁ00(k0) 1)'

Suppose that zg < ko, and a0 = (1,¢1)---(1,c¢). Then without increasing
length, this factorization can be transformed into

0 = X126, C(kr,1)Br—1C(kr-1,1) - -- B1C(ky1, 1)(1, €1)C(ko, 1)BoC (2o, 1).

Proof. Since zq < kg, then kg > 2, and for all y,1 <y < ko, we have
6.(y) = r +1+y, and in particular §.(z¢) = 7 + 1 + zo. By choice, zo is
least in L such that o(z¢) < max{o(ai)} = o(c;), and so if 1 < y < zo, then
a(y) > a(c1) > o(zo). Thus (r + 1+ zo,7 + o) is an inversion of Z;, and we

can write Z; = Z;(r + 1 + zo, 7 + zo); if zo > 1, then (r + zo,7 + 2o — 1) is an
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inversion of Z}, and we can write Z{ = Z}*(r +zg,7 +z¢ — 1), and so on. That
is, we can write Z; = Z,C(r 4+ 1 + 0,7 + 1). )

Now we use the elementary fact that, for any permutation 7 and any trans-
position (a,b), we have 7(a,b) = (7(a), 7(b))r. Applying this (successively) to
the transpositions of C(r+1+xo,7+1) in the factorization C(r+1+zg,r+1)é;,
we get

C('I‘ + 1+ zo,7 + 1)67‘ = 5,-(3:0, Zo — 1)("”01 Tg — 2) e (1'0, 1)(:501 cl)
= 6,-(1, Cl)(l, 2)(2, 3) ..... (:Eo -1, mo)
= 67‘(1)61)0(3:091)

Now we have

0 = X122B,C(kr, 1)Br—1C(kr—1,1) - - /1 C(k1,1)BoC kg, 1)(1, ¢1)C (0, 1)
and clearly the length remains the same. Rewrite the right-hand segment as
BoC(ko,1)(1,¢1)C(z0,1) = (1, c1) - (1, ee)(1, 2)(1, €1)C ko, 2)C (o, 1)

= (L e)(1,2)(1,¢1) -+ (1, ¢)C(ko, 2)C(zo,1)
= (17 ct)C(kos l)ﬂOC(zo, l))

and now we have rewritten the original factorization of ¢ in the form

0 = X1228:Clke, 1)Be—1Ckr1,1) -+ B1C(ky, 1)(1, ¢1)C (ko, 1)BoCo, 1).

and the length has not been increased.
Theorem 6.3 The algorithm of Section 2 produces a minimal T-factorization.

Proof: If o has no mixed cycles, the result is stated in Corollary 4.8. If ¢
has mixed cycles, then every minimal factorization of o will have height at least
1, and as we have just seen, such a factorization can be transformed (without
increasing length) into another factorization whose right-most segment is the
first “step” of the algorithm. The result follows by induction.

7 The rank of a permutation on a broom

For a broom T, we have not been able to find an exact formula or counting
method, to determine the rank of a permutation, other than actually carrying
out the algorithm. In order to discuss this problem we first need a definition.
This definition applies to any tree T'.
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Definition 7.1 Let o be factored as 0 = tm ---t1, and let = be a verter of T.
Fori=1,2,---m, define g; = t;---t; and z; = oi(z). Put zo = z. Then
the ordered sequence R(x) = (zo,1,%2,-*,Tm) s called the trajectory of
determined by the factorization tm - -t1. If z; # Tiy1, then [zi, Tity] s an edge
of T, and the number of edges of T in the trajectory of z, is called the length
of the trajectory, and denoted by |R(z)|. The smallest possible value for |R(z)I,
over all possible factorizations of o, is denoted by M(z,0), or just M (z) if o s
understood. The sum over all z of M(z,0) is denoted by M(0).

The path of z, denoted by P(z), is the (unique) path in T from x to o(z),
and |P(z)| s the number of edges in this path.

The next definition is stated only for a broom; however, the notion of path-
containment can be generalized to any tree.

Definition 7.2 The path-containment numbers I(z) are defined as follows.
If z < o(x), then I(z) = {y 1y <z and o(y) > o(z)}| and if o(z) <,
then I(z) = [{y:y >z and o(y) <o(z)}l-

Since z; = t;(zi—1), then clearly for every i = 0,1,---,m -1, precisely two
of the trajectories will have their i-th and (i — 1)-st entries unequal, and so the
sum of the lengths of all the trajectories is just 2m, i.e. twice the length of the
factorization t,, - - -¢;, and obviously M(c)/2 is a lower bound for the rank of
c.

If the tree T is a line (a very restricted geometry), then in any minimal
factorization, the length |R(x)| of the trajectory of z must be exactly the number
of inversion pairs of the form {z,y}, and it can be shown (see [4]) that this
number is just |P(z)| + 2I(z) = M(z,0). Furthermore, for any = € T, in any
factorization (minimal or not), |R(x)| is always at least as large as | P(x)|+21 ().
We may say that for a line, a factorization is minimal if and only if all the
trajectories have minimal length, and in particular, M(c)/2 is the rank.

If the tree T is a star, however, this last statement is not generally true. For
instance, if o is a product of two disjoint cycles both fixing the center vertex,
a minimal trajectory for the center has length 2 and the minimal trajectory for
a non-fixed point has length 2. A minimal factorization for this o can always
be arranged so that any given trajectory has length 2 more than the minimum,
and the rest have minimal length. There is an overall “excess” of 2, which could
appear in any of the trajectories; this is very different from the situation for a
line. In general, if any o has no more than one disjoint cycle fixing the center,
then the rank of o is just M(c); if there are j > 2 cycles fixing the center, then
the rank is M(0)/2+j5 —1.

For a permutation o on a broom T, we always have rank(¢) = M(0)/2+ E,
where E is the “excess”. In the factorization given by the algorithm of Section
2, the length of each trajectory is either minimal, or exceeds the minimum by
2, and E is the number of trajectories for this factorization, which are not of
minimal length. If there are 7 disjoint A-cycles, this contributes j -1 to E, and

147



(in the factorization of the algorithm), the only other trajectories which may fail
to have minimal length are those R(z) with z € L and o(z) € A. Thus, E can
never exceed |A|, and if ¢ has j disjoint A-cycles, E cannot be less than j — 1.
Within these bounds, however, if & has more than one block, it appears that
all possibilities can occur. In fact, even if two permutations ¢ and 7 have the
same A-cycles, and the same blocks, E(c) and E(7) may differ by any amount
allowable within the given bounds. In practice, in order to compute E(o), we
need almost all the information used to find the factorization of the algorithm.
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