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ABSTRACT. Let A = {A;,.., A} be a partition of [r] and F =
{S1,..,Sm} be a intersecting family of distinct nonempty sub-
sets of [n] such that A and F are pairwise intersecting fami-
les. Then 1] < 3 [Toe (@41 — 2) + gy (M2~ 2)).
From this result and some properties of intersection graphs on
multifamilies, we determine the intersection numbers of 3, 4,
5-regular graphs and some special graphs.

1 Introduction

In this paper, we consider finite undirected simple graphs. For a vertex set
C, N(C) denotes the set of vertices which are adjacent to vertices of C and
do not belong to C and is called the neighborhood of C, and denote N({u})
by N(u). We denote the set {1,2,..,,n} by [n]. Let F = {5,,5,,..,5,} be
a family of distinct nonempty subsets of a set X. Then S(F) denotes the
union of sets in 7. The intersection graph of F is denoted by Q(F) and
defined by V(Q(F)) = F, with S; and S; adjacent whenever i # j and
Si N S; # 0. The intersection number w(G) of a given graph G is the min-
imum cardinality of a set S(F) such that G is an intersection graph on
F. We have some results on the relations between graphs and families (
(1],[4],[5],[8],[11]). In these papers, we consider the minimal families whose
intersection graphs are special graphs. For example, the families on com-
plete graphs are intersecting families, the families on complete bipartite
graphs are Latin squares, and so on ([3],[9]). These results depend on the
quality of the graphs. However these results do not contribute to deter-
mining the intersection numbers of other graphs, for example, triangle-free
graphs, Kj-free graphs, regular graphs and so on. Therefore we consider
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another class of graphs in this paper. That is, graphs K,, + N; corre-
spond to families {S; C [n](i = 1,.,m)|SiNS; # 0,5 N A;j # 0} U
{Ai € n)(E =1,.,D|Ain A; = B, A; U..U A; = [n]}. This family is the
key family of this paper. The intersection numbers of K, 4+ /V; are used for
estimating the intersection numbers of many graphs. That is, we classify
graphs by the configuration of subgraphs isomorphic to K, + N; to deter-
mine the intersection numbers. And we obtain the intersection numbers of
K4-free graphs, 3,4,5-regular graphs and so on. Terminology and notation
of combinatorics and graph theory can be found in [2], [5] and [10].

2 Intersection numbers of multifamilies

First we consider multifamilies of nonempty subsets of a set X, namely its
elements need not be distinct. As is the case with families, we can define
intersection graphs with respect to multifamilies and intersection number
with respect to multifamilies wy,,(G). For a graph G, @ = {Q4,..,Qn} is a
total clique cover (tcc) if and only if every Q; is a complete subgraph of G,
UP, V(@:) = V(C) and UL, E(Q:) = E(G).

Theorem 2.1 For a graph G, wn(G) = ming.icc of ¢|Q|.

Proof: Let F = {S1,S2,..,Sp} be a multifamily of nonempty subsets of a
set X such that Q(F) = G, S(F) = {a1, .., n} and n = wn(G). Let A(a;) =
{Sjle: € S;}, Q(as) = Q(A(a:)) and Q(F) = {Q(a1), .., Q(an)}. Then Q(F)
is a total clique cover of G and wy, (G) = |Q(F)| = ming.tcc of c|2|-

Conversely, let Q@ = {Q1,..,@Qn} be a total clique cover of G such that
|2| = ming.sce of ¢|R|. We define that S(v) = {Q:|lv € V(Q;)} for each
v € V(G) and F(Q) = {S(v)|v € V(G)}. Then Q(F(Q)) = G and wn, (G) =
m'lnn(}')gng(}-)l < |US(v)e.1-'(Q) S(”)' = |Q| = MiNR:tec of GIRI a

This result is a well-known duality between a representation of a graph by
a family of subsets and a clique cover ([6], [7]). We will routinely identify the
elements a; of S(F) with cliques Q(a;) of G as was done in this proof. By
Theorem 2.1, we are now in a position to give some examples of intersection
numbers.

Example 2.2 Let G be a 2-cell embedable graph whose regions are trian-
gles. wm(G) S w(B) < ao(G*) = [V(C*)|=Bo(G*) < (1—5my) X [V(G™)),
where G* is the dual graph of G, ap(G*) is the vertex covering number of
G*, Bo(G*) is the vertez independence number of G* and x(G*) is the
chromatic number of G*. a

Example 2.3 For a connected mazimal plane graph G ezcept Ky, fo(G*) >
V(GO and |V(G*)| = 2 x |V(G)| — 4. Hence by Example 2.2, wm(G) <
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w(G) < % x (J[V(G)| — 2). If a mazimal plane graph G is an Euler graph,
then G* is 2-colorable, and Ezample 2.2 then implies w,(G) < w(G) <
IV(G)| —2. o

The following result is a well-known result on structural matters which
lead to differences between w(G) and wp,(G).

Proposition 2.4 ([6]) Let G be a connected graph and F = {S(v)lv €
V(G)} be a multifamily such that Q(F) = G, S(F) = {a1,..,6n} and n =
wm(G). For vertices u and v with S(u) = S(v), u and v are adjacent and
N(u) — {v} = N(v) — {u}. o

In general, the converse of Proposition 2.4 is false. However adding a
condition to the consequence of the proposition, its converse becomes true.
The next results give a class of graphs satisfying the condition.

Proposition 2.5 Let G be a connected graph and F = {S(v)|v € V(G)}
such that Q(F) = G, S(F) = {a1,.+8n} and n = wy,(G). For vertices u
and v such that N(u)—{v} and N(v)—{u} are both independent sets, u and
v are adjacent and N(u) — {v} = N(v) — {u} if and only if S(u)= S(v).

Proof: Since the sufficiency is true by Proposition 2.4, we show the ne-
cessity. If S(u) # S(v), then there exists a clique @ which belongs to
S(u) — S(v) (or S(v) — S(u) ). Since N(u) — {v} is an independent set,
Q = {u,w} and w € N(u) — {v} = N(v) — {u}. Thus there exists either
a clique A; = {v,w} or a clique A = {u,v,w} in {a;,..,a,}. Then in the
former case ({ay,..an} — {Q, A1}) U {Az2} is a tcc of G and in the latter
{a1,.,0:} — {Q} is a tcc of G, which contradicts the minimality of the
multifamily F. o

The relation ~ on the vertices of graph G is defined by u ~ v iff {u,v} €
E(G) and N(u)—{v} = N(v)—{u}. This relation is an equivalence relation.
So we obtain the following result. For a graph G, we denote the edge set
{{u,v} € E(G)|N(v) — {v} = N(v) — {u}} by En(G).

Proposition 2.6 ([6]) For any graph G, the subgraph generated by En(G)
i3 a union of complete graphs. O

3 General results

The results in Section 2 lead to the following facts. The subgraph of G
whose vertex set consists of two classes one of which consists of the vertices
corresponding to the same set S(v) and the other is its neighborhood is
isomorphic to K, + N;, where K,, is a complete graph with m vertices and
N, is a totally disconnected graph with ! vertices. Thus we need values of
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w(Km + Ni) and wp,(Km + Ni). We can see easily that wp (Km + N;) = L
But it is not easy to get the value of w(K,, + N;). So we consider the family:
{Sl, vy Sy Al oy Al} such that each S;, A; C [n], SN Sj #0,8:n A_-,' #0,
A;iNA; =0, and U§=1 A; = [n]. Then K, + N is the intersection graph of
this family, where S; corresponds to a vertex of K,, and A; corresponds to
a vertex of N;. We have the following result.

Theorem 8.1 Let A= {A,,.., Ai} be a partition of [n] and F = {S},..,Sm}
be an intersecting family of distinct nonempty subsets of [n] such that A
and F are pairwise intersecting families. Then |F| < %H:=1(2M"| -2)+
Esgm (Ties(@44 - 2)).

Proof: For each element S; of 7, we can partition S; into S; 1 U... U Sy,
where @ # S;; C A;(j = 1,.,1) and so S;; N Ax = O(j # k). First we
con51der the case such that S; contains no A;. If S; € F, then S; = (4; —
S;,1)U...U(A;—S;;) does not belong to F, since S;NS; = @. So the number
of sets S; which contain no A; is less than or equal to 4 [];_, (2!4¢/-2). Next
we consider the case such that for some k, S; x = Ak Then S; satisfies the
condition such that S; ; is nonempty for each J # k. Thus the number of sets
S; which contain some A; is less than or equal to 35 sy (I Tiep- g(214¢l —

2)). Therefore |F| < 3 3 [Lica (@4 —2) + Esg[zl (TLies(@4! - 2)). o
For a; € A; and a partition {Al, . Ai} of [n] such that |A4;] >,...,>
|4 > 0, F = {({a1} US) U Uiz Si)IS1 G A1 — {1}, 0 # Si C Ai(i #
n}u (Uw;escm{(uues AU (Uje—-s Si19 7é S; G A;}). Then F satisfies
the conditions of Theorem 3.1 and |F| = (214111 — 1) x []; _2(2M'l -2)+
Descl) (H‘E[‘]_S(zl&l =2)) = 3 [, @4 -2)+ T [z](n;es(zl A -2)).
Thus Theorem 3.1 is best posslble We call the above | family the standard
family. For natural numbers al >..2a >0 wherea; +..+a;=n, we
denote the maximal value of 1'[‘_1(2“' 2)+X sC[xl(Hzes(z'“ 2)) by
m(l,n).
Facts. (1) m(l,n) <m(l,n+1).
(2) Let m = [3] and n = k x m + (I — k) x (m — 1). Then m(l n)
(2”‘—1)’°x(2"“‘ —1)i-k_2(2m-2)kx (2™~ 1-2)*and a; =,..,= ax =
and ag4y =, ., =g =m—1. |:|
We have the following result by the above facts. For an edge subset

S C E(G), < S >g denotes the subgraph generated by S and for a vertex
subset S C V(G), < S >v denotes the subgraph generated by S.

Proposition 3.2 w(Kp + Ni) =7 if m(l,n—1) <m < m(l,n). o
Proposition 3.3 Let G be a connected graph and Ci, .., Cx be components
of < En(G) >E . If there ezist no edges joining vertices of C; and vertices
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of Cj for each C; and C;(i # j) and < N(C;) >v is a union of |
complete graphs a;y, .., i for each C;, then w(G) = wn(G) + E:;ls,-,
where m(l;,n; — 1) < [V(C;)| < m(k,n;) and 8; =n; — ;.

Proof: Let Q = {Q1,..,Qn} be a total clique cover of G such that |Q|
minR.ccc of G|R|, S(v) = {Qilv € V(Qx)} for each v € V(G), and F(Q)
{S(@)Jv € V(G)}. We replace S(v) by

(S(v) = {Q(Ci,, v)(t = 1,.., )} U (Ui=; A, 50, v))

ifve N(Ci‘ ), .y N(Cg,) and v € V(a,-h_,-,), .y V(a.-,,’j,,)
S(Ci,v) ifve V(C)
S(v) otherwise,

S(v)=

where Q(C;, v) are cliques of Q which contain v and vertices of C;, A(as,,j,,v)
correspond to a set A;, j,, and S(C;, v) correspond to a set of the standard
family whose cardinality is m(l, n;). Then F = {S(v)|v € V(G)} is a fam-
ily whose intersection graph is G. Thus w(G) < wn(G) + 2?:1(’"4’ -4L) =
wn(G) + 2::;1 8; by Proposition 3.2 .

Let F = {S(v)[v € V(G)} be a family such that Q(F) & G, S(F) =
{a1,..,an} and n = w(G). Noting that each < C;U N(C;) >y contains
Ky (c:) + Ny, as an induced subgraph, we need n; elements for each < C;U
N(C;) >v by Proposition 3.2. We replace S(v) by

{a.i.l, .y 0.""'.} ifve V(Ct)
S(v)= (S(v) - U{S(u)lu eV(C;,)V..U V(Ci,)Hu {a'ihjl 10 airvjr}
ifv € N(Cy,), ., N(Ci,) and v € V(as,,5,), - V(4. 5.)
S(v) otherwise,
where each q; ; is a complete subgraph < C; U a; ; >v . Then F = {S(v)Jv €

V(G)} is a multifamily and its intersection graph is G. As is the case with
the proof of Theorem 2.1, we can define a total clique cover Q(f') w(G) -

Tic b+ iy i = |Q(F)] 2 wn(G). Thus w(G) 2 wm(G) + Tiey 8. O
Corollary 3.4 Let G be a connected graph with |V(G)| > 3. If all com-

ponents of < En(G) >g are K3, and N(u) — {v} = N(v) — {u} is an
independent set for each {u,v} € En(G), then w(G) = wn(G) + |En(G)).

Proof: By the hypothesis of the Corollary, for each component of Ex(G), s;
is 1. Thus w(G) = w,,,(G)+Z‘E” @l = wm(G)+|En(G)|, by Proposition
3.3. m]

Corollary 3.5 For a connected K4—free graph G with |V(G)| > 4, w(G) =
wm(G) + |En(G)|.

Proof: Since G satisfies the conditions of Corollary 3.4 , w(G) = wm(G) +
|En(G)I.
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4 Regular graphs.

In this section, we consider the intersection number of regular graphs. Con-
nected 1- and 2-regular graphs are K2 and cycles, respectively. So we
can easily obtain their intersection numbers and intersection numbers on
multifamilies. Namely, for a 1-regular connected graph G, w(G) = 3 and
wp(G) = 1. For a 2-regular graph G other than Kj, both w(G) and w,(G)
are equal to the number of its edges. Next we consider 3-, 4- and 5-regular
graphs. For two disjoint subsets Vi, V2 of V(G), the subgraph of G with
vertex set V; U V, whose edge set is the set of those edges of G that have
both ends in V; or one end in V; and other end in Vs is called a quasi-
induced subgraph, and V], V, are called the base set and the neighborhood
set, respectively. For example, Figure 4.1(a) is a quasi-induced subgraph
of the graph shown in Figure 4.1(b), where black circles are vertices of the
base set and double circles are vertices of the neighborhood set. Hereafter,
for a quasi-induced subgraph, black circles denote vertices of the base set
and double circles denote vertices of the neighborhood set. For a graph, Eq
denotes the number of edges which are contained no triangles.

(a) (b)
Figure 4.1

Theorem 4.1 For a connected 8-regular graph G other than K4, wn(G) =
Eo + T, where T is the number of triangles of G.

Proof: Since {e € E(G)|e is contained in no triangles } U {r|r is a triangle
of G} is a total clique cover of G, wn(G) < Eg + T. Since G is a 3-regular
graph other than Ky, each triangle is contained in graphs of type Figure
4.2 (a) or (b) which are quasi-induced subgraphs of G. Thus we need T
triangles and all edges contained in no triangles for total clique covering.
So wn(G) = Eo+T. m]
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() (b)
Figure 4.2

Theorem 4.2 For a connected $-reqular graph G other than Ky, w(G) =
Eo + T + F, where T is the number of iriangles of G and F is the number
of subgraphs isomorphic to K4 — e of G.

Proof: Since G is a 3-regular graph other than Ky, G is Ky-free with
|V(G)| = 4. By Corollary 3.5,w(G) = wm(G) + |En(G)|. For each compo-
nent C of < En(G) >g, < CUN(C) >v is K4 —e. So |En(G)| is F. By
Theorem 4.1, wn(G) = Eg+ T and w(G) = Eg+ T + F.

Combining Theorem 4.1 and Theorem 4.2, we can completely calculate
intersection numbers of 3-regular graphs. And furthermore, w(Ky) = 3,
and w,,(K4) = 1. Next we consider 4-regular graphs.

Theorem 4.3 For a connecied 4-regular graph G other than K, w(G) =
wm(G) + E2 + 2 x E3 — F,, where E; is the number of components of
< EN(G) >g isomorphic to Ka, E3 is the number of components of <
En(G) >g isomorphic to K3 and F, is the number of quasi-induced sub-
graphs isomorphic to the graph in Figure 4.8(c).

vy 00 &

(a) Ga (5) Go (o) G (d) G4
Figure 4.3

Proof: Based on complete subgraphs of < En(G) >g, we classify the

quasi-induced subgraphs which contain a component of < Ex(G) >g . Since
G is not Kj, only the quasi-induced subgraphs of Figure 4.3 are possible.
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The graphs in Figure 4.3(a),(b),(c) contain components of < En(G) >g
isomorphic to K and the graph in Figure 4.3(d) contains a component of
< EN(G) >Eg isomorphic to K3.

For the graphs in Figure 4.3, we have intersection numbers and intersec-
tion numbers with respect to multifamilies as follows:

w(Gﬁ) =4, wm(Ga) =3,

w(Gs) = 5,wm(Gs) = 4,

w(Ge) = 4,wn(Ge) = 3,

w(Ga) = 4, wm(Gq) = 2.

Since each graph in Figure 4.3 is a quasi-induced subgraph of G, we have
w(G) =wm(G)+E2+2 x B3 — F,. O

The next result gives wn,(G) for all 4-regular graphs G except Kz and
the octahedron graph. We can easily see that w,, (octahedron) = 4, so
Theorem 4.3 gives intersection numbers of all 4-regula.r graphs other than
K. We already know that wn,,(Ks) =1 and w(K5) =

WMA

n trianglea n criangles

%) w 6" )

(k) ) “(m) © (n)
Figure 4.4

Theorem 4.4 For a connected 4-reqular graph G other than Kz and the
octahedron graph, wn(G) = Eg + |[{7|7 is a triangle contained no K4}|
+Holo is a Kg}| —(Fy+ Fn+ Fj +2 x F;), where F, .., F; are the number
of quasi-induced subgraphs isomorphic to graphs of Figure 4.4 (g) ,.., (3),
respectively.
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Proof: In terms of complete subgraphs, we classify the quasi-induced sub-
graphs of 4-regular graphs. Since G is neither Ky nor the octahedron graph,
only quasi-induced subgraphs of Figure 4.4 are possible. For each graph of
Figure 4.4 except (g), (h), (i) and (j), its total clique cover is the set of
all its maximal complete subgraphs. For each graph G of Figure 4.4(g),
(h) and (j), wm(G) = |{Q|Q is & maximal complete subgraph of G}| — 1.
And we also easily get that w,, (the graph of Figure 4.4(i)) = [{Q|Q is
a maximal complete subgraph of the graph of Figure 4.4(i) }| — 2. Thus
wm(G) = Ey + |{r| is a triangle contained no K,}| +|{o|o is a K4}|
—(Fg+F+F;+2x F).

Next we consider 5-regular graphs. As the situation is getting more
complicated, we only obtain the intersection numbers. Let R, and S,
denote the graphs shown in Figure 4.5 (a) and (b), respectively. We can
easily obtain that w,(R,) = n+ 4, w(Ron) = 3n + 5,w(Ront+1) = 3n+
6,wm(Sn) = n,w(S2,) = 3n and w(S2n+1) =3n+ 2.

n-K ’s .: n-KA’s

(a) R, (b) Sn
Figure 4.5

Theorem 4.5 For a 5-regular graph G except K¢ and Sy, w(G) = wn(G)+
E‘Z—(Fd+Fh+I?i+Fk+Fn+zR"eHeJr%-l)+2X (E3+E4): where E2’
E3 and E4 are the number of components on < En(G) > such that it is
isomorphic to Ko, K3 and Ky, respectively. F4, Fy, F;, F; and F, are
the number of quasi-induced subgraphs isomorphic to graphs in Figure 4.6
(d),(h),(3),(k) and (n), respectively. H.; is the family of quasi-induced
subgraphs in G isomorphic to graphs in Figure 4.6(e),(f).

Proof: Based on complete subgraphs of < Ex(G) >g, we classify the
quasi-induced subgraphs which contained a component of < Enx(G) >g .
Since G is not Kg, only the quasi-induced subgraphs of Figure 4.6 are possi-
ble. The graphs in Figure 4.6(a),..,(k) contain a component of < Ex(G) >g
isomorphic to K>, the graphs in Figure 4.6(1),..,(n) contain a component of
< EN(G) >p isomorphic to K3 and the graph in Figure 4.6(0) contains a
component of < Enx(G) > g isomorphic to K. For the graphs in Figure 4.6,
we have intersection numbers and intersection numbers on multifamilies as
follows:
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O o e

b) Hy (c) H. (d) Hy
(¢) He = Ron(n 2 1) (f) Hy = Rana(n 2 1) (9) H, (k) Hy,

(G) H, (k) Hi ) B
(n) H, (

Figure 4.6

(m) Hm 0) Ho

w(Hy) =5, wm(Ha) =4,

w(Hp) =7, wm(Hp) = 6,

w(H.) =8, wm(He) =17,

w(Hg) = 6, wn(Ha) =5,

w(He) =3n+5, wn(He) =2n+4,
w(Hy) = 3n+6, wm(Hy)=2n+5,
w(Hg) =4, wm(Hg) =3,

w(Hy) =3, wm(Hp) =3,

W(Hi) =5, wn(H;) =4,

w(H;) = 6, wm(H;) =5,
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w(Hy) =4, wn(Hg) =4,

w(H) =5, wn(H;) =3,

w(Hyp) =5, wn(Hy) =3,

w(H,) =4, wn(H,) =2

Since each graphs in Figure 4.6 is a quasi-induced subgraph, we have
w(G) = wm(G)+ B2 —(Fa+ Fa+ Fi+ Fe+ Fa+ T ey, [31)+2% (Es+
E4). o
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