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Abstract

For each vertex s of the subset S of vertices of a graph G, we define
Boolean variables p, q, r which measure existence of three kinds of
S—private neighbours (S-pns) of s. A 3-variable Boolean function
f = f(p,q,r) may be considered as a compound existence property
of S—pns. The set S is called an f-setof Gif f =1 foralls € §
and the class of all f-sets of G is denoted by ;. Special cases of
Q; include the independent sets, irredundant sets, open irredundant
sets and CO-irredundant sets of G.

There are 62 non—trivial families 2y which include the 7 families
of a framework proposed earlier by Fellows, Fricke, Hedetniemi and
Jacobs.

The functions f for which {2y is hereditary for any graph G are
determined, the existence and properties of f-Ramsey numbers (ana-
logues of the elusive classical Ramsey numbers) are investigated and
future directions for the theory of the classes 2, are considered.

1 Introduction

The open (closed) neighbourhood of the vertex subset S of a simple graph
G = (V,E) is denoted by N(S) (N[S]) and as usual, for s € V, N({s})
and N[{s}] are abbreviated to N(s) and N{s).

The basic ingredients of this work are three properties which make a
vertex s (informally) important in a vertex subset S of a graph G. It will
also help the intuition to replace the word “important” by “essential” or

JCMCC 31 (1999), pp. 15-31



“non-redundant”. Each property depends on the existence of one of the
three types of S—private neighbour (S—pn) t for s, which we now formally
define.

For s € S, vertex t is an:

(i) S-self private neighbour (S-spn) of s
if £ = s and s is an isolated vertex of G[S]

(ii) S-internal private neighbour (S—ipn) of s
ifte §—{s} and N(t)nS = {s}

(iii) S—ezternal private neighbour (S—epn) of s
ifteV—-Sand N(t)NS = {s}.

Observe that each such t is an element of N[s] — N(S — {s}) and that
no s € .S may have S-pns of both type (i) and type (ii).

For additional motivation suppose that transmitters are to be placed
at the vertices S of a graph which models some sort of communications
network where information may pass along edges. If for example, some
s € S has an S-epn ¢, then removal of s from S would reduce the set of
vertices who could receive information directly from transmitters, because
S — {s} cannot transmit to ¢. Thus s is an essential (or non-redundant)
vertex of s.

Several classes of vertex subsets S have been studied whose definition
involves existence of S—pns for every s € S. Firstly, the sets S in which
each vertex is an S-spn, are precisely the independent sets of G. These are
possibly the most well-studied sets in graph theory. The second obvious
example is the class of C'C-irredundant sets of G containing these sets S
for which each s € S has an S-spn or an S-epn.

The CC (which is usually omitted) in the name is due to the fact
that there are two Closed neighbourhoods in the following well-known
characterisation of CC-irredundant sets.

Proposition 1. S is CC—irredundant if and only if for each s € S
N([s] = N[S —{s}] #0.

In the remainder of the paper, we will drop the CC. Irredundant sets
were first defined and studied by Cockayne, Hedetniemi and Miller [2] due
to an important connection with the theory of dominating sets which we
now state.
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Proposition 2. [2]

() The dominating set S is minimal dominating if and only if S is irre-
dundant.

(ii) If S is minimal dominating, then S is maximal irredundant.

The theory of irredundant sets is a most active research area currently
(circa 120 published papers since 1981). The reader is referred to the
extensive bibliography of the book by Haynes, Hedetniemi and Slater [10].

Various authors have studied other classes of vertex sets of this type such
as open irredundant and closed-open irredundant. These classes, about
which very little is known, will be detailed and referenced below. The four
aforementioned classes of sets will be seen to be special cases of the class
2 of f-sets for a suitable function f in a set F of 62 Boolean functions
defined in Section 2. Thus we greatly extend the work of Fellows, Fricke,
Hedetniemi and Jacobs (7], who considered a “private neighbour cube” of
8 classes of sets which are detailed in Section 3. It is anticipated that
each {); has a rich theory analogous to that of the irredundant sets and
further, unifying results of the type: If f is in the subset F’ of F, then
§); has property X, will abound. A result of the latter type is given in
Section 4 where we determine the functions f € F for which the class I
is hereditary for all graphs G. The existence and properties of f—Ramsey
numbers (analogues of the elusive, well-known classical Ramsey numbers)
are discussed in Section 5. Finally in Section 6 we define two parameters
involving §2; and list some areas in which research on these parameters
should prove fruitful.

2 The General Framework

The negation of a Boolean variable 2 will be denoted by Z. For s € S let
p(s,9), q(s,9), r(s,S) be Boolean variables which take the value 1 if and
only if s has an S—pn of type (i), (ii), (iii) respectively. Wherever possible
we use the abbreviations p, ¢, 7 for these variables. Observe that for each
s€ S, p(s,5)Ag(s,S) =0, ie., p, q, r are not independent variables.

Let S(s) = (p,q,7). We will also (imprecisely) say that S(s) = 4, where
i€ {0,1,...,7} is the integer having binary representation pgr and will call
this the integer form of S(s). The condition pAq = 0, however, implies that
S(s) is never (1,1,0) or (1,1, 1), i.e., (in integer form) S(s) € {0,...,5}.
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Example 1. Consider the vertex subset S = {a,b,c,d} of the graph G
depicted in Figure 1. The S-pns of vertices of S are tabulated in Table 1
and we observe

S(a)=(0,1,1), S(b)=(0,0,0), S(c)=(0,0,1) sand S(d)=(1,0,1)

(or using integer form, S(a), S(b), S(c) and S(d) are equal to 3,0, 1 and 5
respectively).

o (= : S

FiGc. 1. Graph G for Example 1

e f g

type (i) | type (ii) [ type (iii)
a b, c e
b
c g
d d h,t

TABLE 1. S-pns of vertices of S for graph G

We now define the most important concept of this work.

Let f be a Boolean function of the three variables p, ¢, 7. The vertex
subset S of G is an f-set of Gif foralls € S, f(p,q.7) =1 (ie., f(S(s)) =
1). The function f may be viewed as a compoud existence/non—existence
property of the three types of S—pn. For S to be an f-set, each s € S has
the property f. The class of all f-sets of G will be denoted by ;(G) and
abbreviated to {2y whenever possible.
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The rows of the truth table of f will be labelled 0, ..., 7, so that the entry
in row i is f(p,q,r), where pgr is the binary representation of the integer
i (e.g., f(1,0,1) is the fifth entry in the table). Recall that for each s € S,
S(s) is never equal to (1,1,0) or (1,1,1). We deduce:

(a) Iftheonly 1's in the truth table for f occur in rows 6 or 7, then Q; = 0.

(b) If f' is formed from f by replacing the values in rows 6 and 7 by 0’s,
then s, = Q.

In addition f = 0 gives Q; = @ and the function g with 1’s in all
rows 0,1,...,5 is uninteresting since for any G = (V, E), §2y contains every
subset of V. Thus we are only concerned with the set F of the 62 non—zero
functions f with O’s in rows 6, 7 and in at least one other row.

For each f € F, let Ay be the set of rows of the truth table of f in which
f = 1. This sets up a 1-1 correspondence between F and the non-empty
proper subsets of {0,1,...,5}. Further, we observe that logical implication
in F and set containment are related by

Proposition 3. Let f,g € F.

f=g ifandonlyif Ay CA,.

Example 2. Let f = (pVg) AT
The subset S is an f-set of G if and only if each s € S has an S—pn of
type (i) or (ii) but no S—pn of type (iii).

In disjunctive normal form
fF=@AaATIV(PAGAT)V (PATAT).

However, since p A g = 0, the first term is false, hence f has 1’s in rows
2 and 4, i.e., Ay = {2,4}. If a,b,c,d is the vertex sequence of Cy, then
4(C4) = {{a,c}, {b,d}}. For the graph G with V = {a,b,c,d} and E =
{ab,bc,ca,da}, Qs (G) = {{b,c}, {b,c,d}}.

3 The Private Neighbour Cube

In this section we consider the seven non-trivial classes of sets given in the
cube structure [7] and observe that each is the class Q; for some function
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f formed from p,q,r and the disjunction operator. In each case we specify
the function f and the set A;. It should be emphasized that our Boolean
variables p, q,r differ from those used in [7].

1. f=p (Ar ={4,5}).
Each s € S € §); is isolated in G[S]. Thus £ is the class of indepen-
dent sets of G.

2. f=q(A;=1{2,3}).
Each s € S € Q; has an S-ipn. Thus ) is the class of sets S such
that G[S] 2 pK2. The edge set of such induced subgraphs has been
called an induced matching by Cameron [1] and a strong matching by
Golumbic and Laskar [9]. In 7], the authors call S a strong matching
set.

3. f=r(4;={1,3,5}).
Each s € § € Qs has an S—epn. Thus S is an f-set if and only if
for each s € S, N(s) — N|[S — {s}] # 8. Since there is an Open and
Closed neighbourhood involved in this characterisation, such sets are
called OC-irredundant. They were also named open irredundant by
Farley and Shacham [5] and have also been studied by Favaron [6]
and Hedetniemi, Jacobs and Laskar [11].

4. f=pVvq(A;=1{2,3,4,5}).
Each s € S € Qs has an S-ipn or is isolated in G[S]. Thus §; is the
class of sets S such that G[S] ~ pK; U ¢K;. Fink and Jacobson (8]
have called these sets 1-dependent.

5. f=pVr (A5 ={1,3,4,5}).
Each s € S € €y is an S-spn or has an S-epn. Thus {2 is the class
of irredundant sets of G.

6. f=qVvr (A; ={1,2,3,5}).
Each s € S € §y has an S-ipn or an S-epn. Thus S is an f-set
if and only if for each s € S, N(s) — N(S — {s}) # 0. Due to the
neighbourhoods involved in this characterisation, such sets are called
OO-irredundant. Such sets have been studied in [11] and also by
Farley and Proskurowski [4].

7. f=pVvqVr (Af ={1,2,3,4,5}).
Each s € § € QU has at least one S—pn (of any type) and so these sets
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are characterised by N(s] — N(S — {s}) # 0. Thus S is called CO-
irredundant. Such sets were mentioned in (7, 9] and Ramsey proper-
ties of CO-irredundant sets were studied by Cockayne, MacGillivray
and Simmons [3].

4 When is )y Hereditary?

In this section we determine the subset H of F which contains those func-
tions f € F for which Q(G) is hereditary for all graphs G. The motivation
for this work is the fact that both p and pV r are in .

Theorem 4. If both f and g are in H, then f Ag € H.
Proof. For any graph G, let S € Qyay and T C S. Then for each s € S,

frg(S(s)) =1
= f(S(s)Ag(S5(8) =1
= S€fy and SeQ
= Teflyy and TeQ,

(since €y, Q, are hereditary). Hence for each ¢ € T,

f(T@)) N g(T(t)) =1
= fAag(T@E)=1
= Te Qf,\g .

0O

Corollary 5. Let f,g € H and h be the function in F such that A fNA, =
Ay. Thenhe H.

Proof. Since Ajrg = A;NA,, the result follows immediately from Theorem
4, a

Theorem 6. If f € M, then5 € Ay.
Proof. Let Ay C {0,1,2,3,4}. It is easy to construct G and S € Q7(G)
with |S| > 2 and some s € S not isolated in G. Consider the subset B =

{s} € S. Observe that B(s) = (1,0,1) which implies that f(B(s)) = 0.
Hence B ¢ Q;(G), contrary to hypothesis. m]
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T3 = 53 — {y, 2} Ty = Sy~ {y, 2}

FiGg. 2. Graphs for the proof of Theorem 7

Theorem 7. If Qy is hereditary for oll G and 0 € Ay, then Ay =
{0,1,...,5}.

Proof By Theorem 6, 5 € Ay. We show by contradiction that each
i = 1,2,3,4 is in A;. Specifically, in Figure 2 we exhibit a graph G;
together with vertex subsets T;, S; with T; C S; such that

(a) for all s € S;, Si(s) =0 (integer form) and
(b) there exists z € T; such that Ti(z) =i (integer form).

Note that hypothesis and (a) show that S; € Q; while, if i ¢ Ay, (b)
gives T; ¢ Qs contrary to the definition of H.

In the statement of the next three results, for each function f mentioned,
the set Ay follows in parentheses.
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Theorem 8. Each of the functions p({4,5}), p v r({1,3,4,5}), pV ({2,
3,4,5}), ¢Vr({1,2,3,5}), pVqVr({1,2,3,4,5}) and pV (¢ AT)({2,4,5})
isin H.

Proof. For any graph G, ,(G) and §,v,(G) are precisely the classes of
independent and irredundant sets of G respectively and are known to be
hereditary. If T C S € Q,y4(G), then G[S] and consequently G[T] have
the form AK; U p K, (Section 3). Therefore T' € ,v4(G) and so pV q € H.

Let s € S € Quvr(G). (S is OO-irredundant in G (Section 3)). We
show that S — {s} is also in Q,y,(G). Let z € S — {s}. Since z € S, z has
an S—epn ¢ or an S-ipn t'. In the former case ¢ is also an (S — {s})—epn for
z, while in the latter case either ¢’ # s and ¢’ is an (S — {s})-ipn for z or
t'=sand t' is an (S — {s})-epn for z. Hence S — {s} is OO-irredundant
in G which shows that gV r € H.

Let s € S € Qpygvr (S is CO-irredundant in G (Section 3)). Let
z € §—{s}. If z is isolated in G[S], then  is also isolated in G[S — {s}].
Any S-epn of z is also an (S — {s})-epn for z and if z has an S-ipn ¢/,
then, as in the preceding paragraph t' is either an (S — {s})-ipn or an
(S —{s})-epn for z. Thus S — {s} is CO-irredundant in G which implies
that pvVgVvreH.

Finally let s € S C Q,v(4ar) and z € § — {s}. Then z is isolated in
G|S] or z has an S-ipn but no S-epn. In the former case z is also isolated
in G[S — {s}]. In the latter case since t is not isolated in G[S], x is the
S-ipn for ¢ and the single edge xt forms a component of G[S]. If t # s,
then ¢ is an (S — {s})-ipn for = and removal of s from S does not create
any (S — {s})-epn for z. If ¢t = s, then z is isolated in G[S — {s}]. Hence
in all cases either z is isolated in G[S — {s}] or has an (S — {s})~ipn but
no (S — {s})-epn. Thus § — {s} € Qpv(gnr), i-., PV (gAT) € H. O

Theorem 9. Each of the functions p A r({5}), r({1,3,5}), (p A7) V
a((2.3,5)), PV AT(3,4,5)), (V) Ar((3.5D), (2AD)V (@A7){2,5)
is in H.

Proof. For each function f of the statement, we indicate that A 7= AgNA,
where membership of g and h in H, has already been established. Then
Corollary 5 implies that f € H.
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pAT: {5y = {1,2,3,5} n {4,5}
r: {1,3,5} = {1,2,3,5} n {1,3,4,5}
@Ar)Ve: {235} = {1,2,3,5} N {2,3,4,5}
pVigar): {3,4,5} = {1,3,4,5} N {2,3,4,5}
(pvg)Ar: {3,5} = {1,3,5} n {2,8,5}
(pAT)V(@gAT):  {2,5} = {2,4,5} N {2,3,5}

(]

Theorem 10. None of the functions § A 7({1,5}), pV(@AT)V (TA
7)({1.2,4,5}), pV (@AT)({1,4,5}), (aAT)V (GAT)({1,2,5}) is in K.

Proof. Consider the graph G and set S of Figure 3. For each s € S,
S(s) =1 (strictly (0,0,1)). Hence S € Q5a,(G). However if B =S — {z},
then B(y) = 3 (i.e., (0,1,1)) which implies that B ¢ Q54,(G). Therefore
gAris not in H.

By Theorem 9, the function 7({1,3,5}) € H. Observe that the in-
tersection of {1,3,5} and each of the sets {1,2,4,5}, {1,2,5}, {1,4,5} is
equal to {1,5}. If any of the functions pV (¢ AT) V (7 A7T)({1,2,4,5}),
pV(@GAr){1,4,5}), (gAT)V (GAT)({1,2,5}), were in H, then we could
deduce (by Corollary 5) that gA7({1,5}) € M, a contradiction which com-
pletes the proof. 0O

==

Fic. 3. Graph G for proof of Theorem 10

The class H is now completely determined by the above theorems and
the 12 functions of H are detailed in Table 2.
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label function f A name
by PAT {5}
he | (PAT)V (¢AT) {2,5}
hs (evg Ar {3,5}
by (pAT) VY {2,3,5}
hs r {1,3,5} OC-irredundant
he qVvr {1,2,3,5} | OO-irredundant
hy P {4,5} independent
hs PV (gAT) {2,4,5}
ho pV(gnr) {3,4,5}
hio pVgq {2,3,4,5} | 1-dependent
hyy pVvr {1,3,4,5} | (CC)-irredundant
hio pVqVr {1,2,3,4,5} | CO-irredundant

TABLE 2. The class H

The Hasse diagram of the PO-set H is given in Figure 4 and has
an interesting structure. Let D be the graph consisting of the cycle Cg
together with one major chord (joining the first and fourth vertices in
the sequence). The diagram consists of two disjoint copies Dy, D, of D
with vertex sets {hi,...,h¢} and {hs,... ,hi2} together with a matching
{hihirs|i =1,...,6}. In Figure 4, the matching is drawn with broken lines
to emphasize this structure. We observe that

(i) for each i =1,...,6, h;, hiy¢ are similarly situated on D,, D respec-
tively and h; is obtained from h;y¢ by the replacement of p by p A r
(equivalently Ap, . = Ap, U {4}).

(i) V(D1) = {f € Hlp = [} and V(D,) = {f € H|f = qVr}
(equivalently V(D,) = {f € H|{4,5} C As} and V(D2) = {f €
H|A; € {1,2,3,5})}).
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h1

Fi1G. 4. Hasse diagram for H

5 f—Ramsey Numbers

In this section we consider analogues of the classical Ramsey graph numbers
which involve f-sets. Suppose that each edge of K, is coloured with one of
t (> 2) colours ay,...,a;. For i = 1,...,t, let G; be the spanning subgraph
containing the edges coloured a;. Then (Gi,...,G;) is called a t-edge
colouring of K.

Throughout this section let n,,...,n; > 2. The classical graph Ramsey
number Ry(ny,...,n) is the smallest n such that in every t—edge colouring
(G1,-..,Gk) of K, for some i € {1,...,t}, G; has a pset (i.e., an indepen-
dent set) of cardinality n;. These numbers exist by Ramsey’s celebrated
Theorem [13].

They are usually defined in terms of complete graphs in G; rather than
p-sets in G;. We need the above equivalent definition for purposes of gen-
eralisation.

We now consider the question: For f € F can we analogously define f-
Ramsey numbers? i.e., Do the numbers given by the following “definition”
exist?

The f-Ramsey number Rs(ny,...,n;) is the smallest n such that in every
t-edge colouring (G}, ...,G;) of K, for some i € {1,...,t}, G; contains an
f—set of cardinality n;.
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Theorem 11. Suppose f,g € F, f => g and the number Rf(ny,...,n)
ezists. Then Ry(n,,...,n,) ezists and satisfies

Rg(nl,...,'nt) _<_ Rf(nl,...,nt) .

Proof. Let N = R¢(ny, ...,n;). Then for each t-edge colouring (Gy,...,Gy)
of Ky, some G; has an f-set X; of size n;. But X; is also a g-set. Hence
Ry(my,...,n) exists and is at most N, as required. ]

Corollary 12. Letp=> f € F. Then Ry(ny,...,ns) < Ry(ny, ..., ng).
Proof. Immediate from Theorem 11 and Ramsey’s theorem. a

Theorem 13. Let f € F satisfy f = qVr and Ny, 2 3. Then
Rj(ny,...,ny) does not eist.

Proof. Consider the colouring (Gy, ..., G;) of K, (n > 3) where G; contains
all edges incident with a fixed vertex (i.e., G, Ky n-1), G2 contains all
remaining edges (ie., Go = K,_; UK,)and fori=3,..,t, G; = K, ltis
easily seen that no G; contains a (gVvr)-set of size n; and so Ryvr(n1,...,m4)
does not exist. If f = q V7 and Ry(ny,...n,) exists, then by Theorem 11
Rgvr(ny, ..., ;) exists, a contradiction and the result follows. ]

It is interesting to note (using Corollary 12 and Theorem 13) that f-
Ramsey numbers do (do not) exist for f in the left hand side (right hand
side) of the Hasse diagram for H (Figure 4). Since A, = {4,5} and Agy, =
{1,2,3,5}, there are sixteen functions covered by each of Corollary 12 and
Theorem 13. The existence of f~-Ramsey numbers for the remaining thirty
values of f will be determined in later work.

In order to establish the final result about f-Ramsey numbers, we re-
quire a preliminary result. Let

T={feF|l2ie Ay =2+1€ Ay, fori=0,1and 2} .

Theorem 14. S is an f-set of G[U] implies S is an f-set of G for all
graphs G and allU C V(G) if and only if f € T

Proof.  Since more than one graph is involved, we need to use different
notations for Boolean variables and for S(s). For example ¢(s, S, H) will
denote the Boolean variable which measures the existence of an S—ipn for s
in the graph H. Furthermore the notation S(s, H) will denote (p(s, S, H),
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q(s,S,H), 7(s,S, H)).
For any graph G and any U C V(G)

p(s,S,G[U]) = »(s,5,G)
9(s,8,GU)) = 4q(s,5,G) (1)
and r(s,5,GU]) = 1=7(5,5G)=1

However 7(s, S, G[U]) = 0 need not imply that (s, S,G) = 0, since s might
have an S—epn in G but not in G[U].

Let f € T, suppose that S is an f-set of G[U] where U C V(G) and
let s€ S. If r(s,S,G[U]) # 0, then by (1) f(S(s,G)) = f(S(s,G[U])) = L.
If 7(s, S, G[U]) = 0, then (using the integer form) S(s, G[U]) = 2 for some
i=0,1o0r 2 andso 2i € A;. Then S(s,G) = 2i or 2i+1 both of which are
in Ay, again f(S(s,G)) = 1. Therefore S is an f-set of G.

Conversely suppose f ¢ 7. Then for some i € {0,1,2} 2i € Ay but
2i+1¢ As. Choose any graph H with vertex set U, an f-set S of H and
s € S such that S(s, H) = 2i. (Note: this implies r(s, S, H) = 0) Form the
graph G from H by adding a single new vertex = and the single edge zs.
Then S(s,G) = 2i+1 and so f(S(s,G)) = 0 by hypothesis. Hence S is not
an f-set of G. O

We now show that the well-known recurrence inequality for classical
Ramsey graph numbers may be generalised to certain f-Ramsey numbers.
Only two colour numbers are considered here but (as in the classical case)
there is an obvious extension to t (> 2) colours.

Theorem 15. Ifp= f and f €T, then

(a) Ry(t,m) < Ry(I—1,m)+ Ry(l,m—1)

(b) If both terms on the right of (a) are even, then the inequality is strict.

Proof. (a) Let L = Ry(I—1,m), M = Rz(l,m — 1) and (B,Y) be any
2-edge colouring of G = K4 u where the edges of B, Y are coloured blue,
yellow respectively. Among the edges joining a fixed vertex z at least L
are blue or at least M are yellow. Suppose (without loss of generality) that
X is a set of vertices which join  with blue edges. By definition of L,
the 2-edge coloured graph G[X] has a blue f-set Sp of size m or a yellow
f-set Sy of size I — 1. In the former case, since feT, Sgis an f-set of
B of size m. In the latter case, since f € 7, Sy is an f-set in Y of size
1 —1. Consider T' = Sy U {z}. Since all edges between z and Sy are blue,
for each s € Sy, T(s,Y) = Sy(s,Y) and so f(T'(s,Y)) = f(Sy(s,Y)) =1.
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Moreover T(z,Y) = (1,0,0) or (1,0,1) and this implies (since p = f)
that f(T'(z,Y)) = 1. We conclude that T is an f-set of Y of size I which
completes the proof.

(b) This proof is identical to that used to establish the result for f =p
and is omitted. ]

The Hasse diagram of the functions of Theorem 15 is drawn in Figure 5.

pvgVvr pVgVvr

pVyg

FiG. 5. Hasse diagram for {f € Tlp = £}

The inequalities of Theorem 14 have been used in the calculation of
values of Rf(ny,...,n;) for f=pVr (i.e., irredundant Ramsey numbers)
(see [12]) and for f =pVqVr (i.e., CO-irredundant Ramsey numbers) (see
(3]). Calculation of these numbers has proved to be at least as difficult as
computations of the classical Ramsey numbers.

6 Parameters: future research

Following the theories of the independent sets (%) and irredundant sets
(%v+), we define the parameters ¢s(G) and C;(G) (abbreviated to cs, Cy
wherever possible) to be the smallest and largest cardinalities of a maximal
f-set of G. The word “maximal” is of course superfluous in the definition
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of C;. For f = p (f = pVr) the parameters cg, Cy are the well-studied
upper and lower independence numbers (irredundance numbers) usually
denoted by %, 8 (ir, IR).

We finally list a few directions for further research.

1. Let f = g. It is obvious that Cy < C,. Since a maximal f-set need
not be a maximal g-set, we cannot deduce a relationship between cy¢
and c,. However we know that any maximal independent set of a
graph is also maximal irredundant (see e.g. [10]) and so cyvr < ¢
(i.e., ir < i). Are there other f, g for which ¢;, ¢y may be related?

2. Calculation of ¢s, Cy for various functions f and classes of graphs.

3. Complexity of computation of cg, Cy for various functions and classes
of graphs. Are there results of the form: If f€ 7' C Fand G isina
class G of graphs, then the complexity of computing ¢, Cy for G is
X?

4. Determination of the class of (cs,Cy)-graphs i.e., these graphs for
which ¢; = Cy.

5. Find bounds for ¢;, Cy involving other parameters. Simpler results
might involve minimum (maximum) degree, number of vertices and
edges etc.

6. Consider the obvious analogues of colourings and chromatic numbers.
Define the f—chromatic number of G as the smallest order of a proper
f-colouring of G, i.e., a partition of V(G) into f-sets.

7. Further calculations of f-Ramsey numbers.

8. Behaviour of ¢y, C; under various graph operations such as edge
addition or removal, products etc. Notions of criticality.
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