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Abstract

Let 7(G) denote the number of vertices in a longest path of the
graph G = (V,E). A subset K of V is called a P,-kernel of G if
r(G[K]) < n — 1 and every vertex v € V(G ~ K) is adjacent to an
end-vertex of a path of order n — 1 in G[K]. A pastition {A, B} of
V is called an (a, b)-partition if 7(G[A]) < a and 7(G[B]) < b. We
show that any graph with girth greater than n - 3 has a P,-kernel
and that every graph has a Py-kernel. As corollaries of these results
we show that if 7(G) = a + b and G has girth greater than @ ~ 2 or
a < 6, then G has an (a, b)-partition.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion of his 60th
birthday.

1 Introduction

Let G = (V, E) be a finite simple graph. We denote the number of vertices
in a longest path (which need not be an induced path) in G by 7(G). The
girth g(G) and the circumference ¢(G) are, respectively, the length of a
shortest and a longest cycle in G. The cycle of order n and the path of
order n are denoted by C,, and P, respectively. We shall call a vertexv € V
a P,-terminal vertez of G if v is an end-vertex of a P, but not of a Py41
in G.

If S is any subset of the vertex set V(G), we denote the subgraph of G
induced by S by G[S]. We denote the distance between two vertices v and
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w by d(v, w), and we define the distance between a vertez v of G and a subset
S of V(G) by d(v,S) = min{d(v,z)|z € S}. The open neighbourhood of a
vertex v is defined as the set of vertices N(v) = {u € V(G)|uv € E(G)}.
Further, for any subset A of V(G), the open neighbourhood of A is the set
N(A) = UzealN(a), and the closed neighbourhood of A is the set N[A] =
N(A) U A, A block of a graph G is a maximal nonseparable subgraph of
G. A block with exactly one cut-vertex of G is an end block of G. Further
graph theoretic definitions may be found in [5].

A class P of graphs is called a hereditary class if every subgraph of a graph
in P is also in P.

Given any pair of positive integers (a,b), we call a partition {4,B} of
V(G) an (a,b)-partition if 7(G[A]) < a and 7(G|[B]) < b. K G can be (a,b)-
partitioned for every pair of positive integers (a,b) satisfying a + b = 7(G),
we say that G is 7-partitionable. The following conjecture is stated in [1],
(2] and [3].

Conjecture 1 Every graph is 7-partitionable.

In 1968 Chartrand, Geller and Hedetniemi [4] defined the k-chromatic
number of a graph G, xi(G), as the smallest number of sets in a par-
tition {V1,V3,...,Va} of V(Q) such that 7(G[V;]) < k for each i. This
is clearly related to our problem. In fact, the upper bound xi(G) <
{(r{(G) — 1 - k)/2] + 2, given in Theorem 2 of [4] can be improved to
xk(G) < [7(G)/k] if Conjecture 1 is true.

For any graph G, a subset K of V(G) is called a P,-kernel of G if
1. 7(G[K])<n-1and
2. every vertex v € V(G ~ K) is adjacent to a P,_;-terminal vertex of
GIK].

Note that if 7(G) < n, then V(@) is a P,-kernel of G, and if 7(G) > n
equality is necessary in (1) above. Further, a maximal independent set of
vertices is a P;-kernel for any graph, and similarly the vertices of a maximal
matching, together with any isolates, furnish any graph with a Ps-kernel,

The following conjecture is stated in [3] and in [6].
Conjecture 2 Every graph has o P,-kernel for every integer n > 2.

We shall call a subset S of V(G) a P,-semikernel of G if

(1) 7(G[S)) <n-1and
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(2) every vertex in N(S)— S is adjacent to a P, ;-terminal vertex of G[S].

Conjecture 3 Every graph has a Py-semikernel for every integer n > 2.
Agein we see that equality is necessary in (1) above if 7(G) > n. Note that
a graph has a P,-kernel if and only if each of its (connected) components
has a P,-kernel; therefore we shall only consider connected graphs in the
sequel.

In this paper we investigate relationships among path partitions, kernels
and semikernels as well as relationships among the three conjectures stated
above. We provide two classes of graphs for which Conjecture 2 holds, and
obtain results concerning path semikernels which have important conse-

" quences for both path kernels and path partitions. Our main result (which
is proved via P,-semikernels) is that every graph with girth greater than
n — 3 has a P,-kernel. A consequence of this result is that every graph G
with girth greater than [ﬁzﬂj — 2 is r-partitionable. We also prove that
every graph has a P,-kernel for n < 7, which implies that every graph G
with 7(G) < 13 is 7-partitionable.

2 Relationships among path kernels, semik-
ernels and partitions

We have the following relationship between path kernels and path parti-
tions.

Proposition 2.1 Let G be a graph with 7(G) = a + b, where a and b
are positive integers. If G has a P,y1-kernel or a Pyyy-kernel, then G is
{a,b)-partitionable.

Proof. Suppose G has a P,y-kernel K. Since b is positive we know that
7(G) > a, and thus 7(G[K]) = a. Now suppose G — K has a path of order
greater than b. Let 2 be an end-vertex of such a path. Then z is adjacent
to a P,-terminal vertex of G[K]. But then G has a path of order greater
than a + b, contradicting our assumption that 7(G) = a + b. This proves
that (G — K) < b, and hence {K,V(G) — K} is an (a,b)-partition of G.
a

Corollary 2.2 If Conjecture 2 is true, then Conjecture 1 is true.

We do not know whether the converse of Proposition 2.1 is true.
Obviously, any P,-kernel of a graph is also a P,-semikernel of the graph,
but the converse does not hold. However, in [7] it is proved that if, for some

n, every graph has a P,-semikernel, then every graph has a P,-kernel. We
prove a slightly stronger result.
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Proposition 2.3 Let P be a hereditary class of graphs and n > 2 any
tnteger. If every graph in P has o P,-semikernel, then every graph in P
has a P,-kernel.

Proof. The proof is by induction on the order of the graph. Suppose G is
a graph in P and S is a P,-semikernel of G. If {V(G)| < n, then 7(G) < n
and the vertex set of G is a P,, kernel of G. Now assume 7(G) > n.

If G — N[S] is empty, S is a P,-kernel of G. Otherwise, since the graph
G — N{[S] is in P, it also has a P,-semikernel and hence, by the induction
hypothesis, G — N[S] has a P,-kernel K. Since there are no edges between
S and K, the set SU K is a P,-kernel of G. O

Corollary 2.4 If every graph has a P,-semikernel for n > 2, then every
graph has a P,-kernel for n > 2,

‘We also have the following useful relationship between semikernels and path
partitions.

Proposition 2.5 Suppose G is a graph with 7(G) = a+b; 1 <a < b. If
G has a Pyyy-semikernel, then G is (a,b)-partitionable.

Proof. Let So be a Pyy;-semikernel of G. Again, since a is positive, we
know that 7(G) > b, and hence that 7(G[Sp]) = b. Put

S; = {v € V(G)!J(U,So) = i}.

Recall that we assume G is connected. Suppose that for some j, G{S;] has
a path of order greater than a. Let v; be an end-vertex of such a path.
Then there is a path vj,vj-1,...v; in G with v; € S;;i = 1,...j. Since
S1 = N(S¢) — So, the vertex v; is adjacent to a Py-terminal vertex in So.
But then G contains a path of order greater than a + 5. This contradiction
proves that

7(G[Si]) < aforalli > 1.
Now put

A= |J SiandB= |J s.
; odd i even

Then {A, B} is an (a,b)-partition of G. O

We do not know whether the converse of Proposition 2.5 is true.

3 Graphs that have P,-kernels for all n

In [2] we proved that several classes of graphs are r-partitionable. Our
attempts at finding classes of graphs that have P,-kernels for all n were

140



less successful. For example, it is obvious that Hamiltonian graphs are 7-
partitionable, but we know very little about the existence of P,-kernels in
Hamiltonian graphs. In {2] we also proved that if every block of a graph G
is either K3 or is Hamiltonian, then G is r-partitionable. For path kernels
we have the following analogous result.

Theorem 3.1 If every block of a graph G is either a complete graph or a
eycle, then G has a P,-kernel for every integer n > 2.

Proof. Consider any integer n > 2. The proof is by induction on the order
of G. If |V(G)| < n, then the veriex set of G is a P,-kernel of the graph.

If G has only one block, then G is a complete graph or a cycle. If G is a
complete graph, then any n — 1 vertices furnish a P,-kernel. If G is a cycle,
a Pp-kernel can be constructed by taking subpaths of length n — 1 (or less
for the last) and skipping every n*® vertex.

Now suppose G has more than one block. Let B be an end-block of G. We
consider two cases:

Case 1. B is a complete graph: Let v be any vertex in B except the cut-
vertex of G in B. By the induction hypothesis, G — v has a P, -kernel K.
If v is adjacent to a P,_;-terminal vertex in K, then K is a P,-kernel of
G. X not, then v is not a P,-terminal vertex of G[K U {v}]). But if there
were & P, in G[K U {v}] then, since B is an end-block and B is a complete
graph, there would be a P, in G{K U {v}] with v as end-vertex. Thus
T(G[K U {v}]) < n ~ 1, and hence K U {v} is a P,-kernel of G.

Case 2. B is a cycle: Let z be the cut-vertex of G in B. By the induction
hypothesis, G — (B ~ z) has a P,-kernel K'. If 2 ¢ K’, let P be the path
B — 2, and let K consist of all the vertices in K’ and all the vertices in
P except for every n’th vertex of P. If z ¢ K', let k be the order of a
longest path in K’ with end-vertex z. If |[B{ < n —k,let K = K'UB. If
|B] > n — k&, let Q be the path B — z = by, b,,...,b,, with b; adjacent to
2. Initialize X with the union of K’ and the first n — 1 — k vertices of the
path Q. Skip the next vertex of Q. If there are more than n — 1 subsequent
vertices in Q, add the next n — 1 vertices to K and skip the next vertex
of Q. Continue in this way until the number of vertices remaining in Q is
less than or equal to n — 1. Let ¢ =min{k — 1,n — 1 — k}. If there are no
more than ¢ vertices remaining in Q, add them to K. Since ¢ < k — 1, these
vertices together with z and the first subpath of B will not create a path
of order n. If there are more than ¢ vertices remaining in Q, add the last ¢
vertices of Q to K. Skip b._., then add those remaining vertices of Q not
previously skipped to K. In each case, K is a P,-kernel of G. O

We have two immediate corollaries to Theorem 3.1.
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Corollary 3.2 If G is ¢ graph with circumference ¢(G) < 3, then G has a
P, -kernel for every integer n > 2.

Corollary 3.3 If G is a graph without even cycles, then G has a P,-kernel
for every integer n > 2.

Proof. If a connected graph has no even cycles then each of its blocks is
either a K; or an odd cycle. O

In {2] we proved that a join of any two graphs is r-partitionable. We now
prove that a join of edgeless graphs has a P,-kernel for every n > 2.
Theorem 3.4 Let G be a complete multipartite graph. Then G has a P,-
kernel for every integer n > 2.

Proof.” Every graph has a P,-kernel and a Ps-kernel (recall the comment
following Conjecture 2). So we may assume 4 < n < 7(G). Let V;,...V;, be
the partite sets of G. If G has a path P of order n—1 with its end-vertices in
two different V;, then every vertex of G — V(P) is adjacent to an end-vertex
of P, and so V{(P) is a P,-kernel. We may therefore assume that every path
of order n — 1 in G has its two end-vertices in the same partite set. Let P
be a path of order n — 1 with both end-vertices in V;, say. If every vertex of
Vi is in P, then V(P) is a P, _;-kernel of G. Therefore we may assume that
there is a vertex u € V] that is not in P. Let P be the path 2, ...2,_;.
Suppose, for some i < n — 3, neither «; nor z;,; is in V;. Then the path
Zy...Z;UZiyy ... 2p—2 is a path of oxrder n — 1 with end-vertices in different
Vi, contradicting our assumption. This proves that z;,2s,...2n-3,2n_1
are all in V;. Therefore n — 1 is odd and more than half of the vertices of
P lie in V;. Now put K = V(P)U V;. Then 7(G{K]) = n — 1 and every
vertex in G — K is adjacent to an end-vertex of P. Thus K is a P,-kernel
of G. O

4 Cycle lengths and path kernels

We see in Corollary 3.2 that if a graph has no large cycles, then it has
a P,-kernel for every integer n > 2. In this section we explore further
connections between the cycle structure of a graph and the existence of
path kernels. First we note an obvious result.

Proposition 4.1 If C is an (n — 1)-cycle in a graph G, then C is a P,-
semikernel of G.

As an immediate corollary of the above result and Proposition 2.5, we have
the following result, which appeared as a theorem in [2].

Corollary 4.2 Let G be a graph with 7(G) = a+b;a <b. IfG has a
b-cycle, then G is (a,b)-partitionable.
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Our next goal is to show that if a graph has no small cycles, then the graph
has path kernels. We begin with some lemmas on semikernels.

Lemma 4.8 If G is a graph with girth g(G) = n — 2, then G has a Pp-
semikernel.

Proof. We may assume that 7(G) > n. It is straightforward to prove
that every graph has a P,-kernel for n < 5 and it is proved in [7] that
every graph has a Ps-kernel. We therefore assume that n > 6. Let C be
a (chordless) (n — 2)-cycle in G. Initially, we let S be the set of vertices
of C,welet B=V(G)—- S and A = 0. We now describe a method of
moving vertices from B to S and to A without creating a P, in G[S],
until eventually N(S) N B = 8, while every vertex in A is adjacent to a
P,,_;-terminal vertex of S.

STEP 1: If N(S) N B = 0, then stop. Otherwise, choose one vertex, say z,
of C that has a neighbour in B and move all B-neighbours of z to S.

STEP 2: Mark all the P,_;-terminal vertices of G[S] and then move all
their B-neighbours to A. Then return to STEP 1.

Since g(G) = n — 2 and we are assuming that n — 2 > 4, no vertex in
V(G)-V(C) is adjacent to two different vertices of C and no two neighbours
of the same vertex of C are adjacent to one another. Thus moving vertices
to S in the prescribed manner will not create a P, in G[S], since every
vertex that we move to S will be adjacent to only one vertex of 5 and that
vertex is a Pn_j-terminal vertex of G[S]. (Recall that the B-neighbours
of all P,_;-terminal vertices of G[S] were moved to A in Step 2.) When
B N N(S) becomes empty, then N(S) — S = A, and so S will be a P,-
semikernel of G. O

Lemma 4.4 IfG is a graph and g(G) > n—1, then G has a P,,-semikernel.
Proof. We may assume 7(G) > n—1, and let P be a path of ordern—1in
G with vertices 21,...,241. Fori =2,...{25%|, put
A;={ve G- Pldv,z;) <i—1}
and fori = [%],...,n -2, put
A;={veEG-Pldv,2;) <n—-1-1i}.
Note that 4; N Aj = @ for ¢ # j, since G has no cycles of length less than

n.

Now put

S=UtJA;UP
Then the distance between any two vertices in S is less than n—1 and (since
g(G) > n—1) there are no cycles in S. Thus S is a tree and 7(G[S]) = n—-1.
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Also, every vertex in N(S) — S is adjacent to a P,_;-terminal vertex in S.
Thus S is a P,-semikernel of G. O

Since the class of graphs with girth equal to n — 2 is not a hereditary
class, we cannot apply Proposition 2.3 directly to the result of Lemma 4.3.
However, graphs with girth not less than n — 2 do form a hereditary class
50 We cal now prove:

Theorem 4.5 If G is a graph with g(G) > n — 2, then G has a Py-kernel.
Proof. 1t follows from Lemma 4.3, Lemma 4.4 and Proposition 4.1 that if
G is any graph with g(G) > n — 2, then G has a P,-semikernel. Now we
apply Proposition 2.3 and the theorem is proved. O

Since every tree has infinite girth we have

Corollary 4.8 If T is a tree, then T has a P,-kernel for all n.

Applying Proposition 2.1, we further obtain

Corollary 4.7 Let G be a graph and suppose 7(G) =a+bwithl1 <a <b.
If 9(G) > a — 1, then G is (a,b)-partitionable.

Corollary 4.8 If G is a graph such that g(G) > [L(zﬂj -1, then G is
T-partitionable.

The following result is proved in {2].

Theorem 4.9 Let G be a graph and suppose 7(G) =a+b with1 < a<b.
If (G) < a+1, then G is (a,b)-partitionabdle.

As a consequence of Theorem 4.9 and Corollary 4.7 we have

Corollary 4.10 If G is a graph with ¢(G) — g(G) < 3, then G is 7-
partitionable.

Proof. Suppose 7(G) =a+bwithl <a<b I g(G)>a-—1,thenGis
(a, b)-partitionable by Corollary 4.7. If g(G) < a — 1, then ¢(G) < a+1
and then G is (a,b)-partitionable by Theorem 4.9. O

5 The existence of P,-kernels for small values
of n

Recall that every graph has a P;-kernel and a Ps-kernel. It is also straight-
forward to prove that every graph has a Pj-kernel and a Pj-kernel. It is
proved in {7}, by means of an elaborate 10-page proof, that every graph has
a Pg-kernel. We can construct a shorter proof for the latter by making use
of Proposition 2.3, Lemma 4.4, and Proposition 4.1. Using these results we
can also prove
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Theorem 5.1 Every graph has a Pr-kernel.

Proof. In light of Proposition 2.3 it is sufficient to prove that every graph
has a P;-semikernel. Let G be any graph with 7(G) > 7. In view of
Theorem 4.5 and Proposition 4.1, we may assume that G has girth less
than 5 and that G does not have a Cs.

Consider the graphs in Figures 1-3 below. In each sketch the darkened
vertices represent Ps-terminal vertices. (There may be more, depending on
whether other adjacencies occur, e.g. in H; the vertex z, will also be Pg-
terminal if 25 is adjacent to z5.) We first present the cases that we need to
consider and then we describe a procedure for constructing a Py-semikernel
that applies to all cases.

Case 1. G has a Cs, but no Cg: Since G is connected and has a P;, the
graph of Figure 1 must be a subgraph of G.

Case 2. G has a C4, but no Cs or Cg: Again since G is connected and
has a path of order seven, at least one of the graphs in Figure 2 will be a

subgraph of G.

Case 3. G has a Cs, but no Cy, Cs or Cq: At least one of the graphs in
Figure 3 will be a subgraph of G.

Now let $ = H,, where s is the smallest integer such that H, is a subgraph
of G.

Thus if § = Hs, we may assume that 2, and z4 have no neighbours in G
other than each other and z; and z3, since otherwise G would have H, as
a subgraph. Similarly, when considering H;, Hy or Hjy, we assume that z,
and 24 have no common neighbours, otherwise Hg is a subgraph of G. And
in subgraph Hs, z; and z5 have no common neighbours, since otherwise
H; is a subgraph of G.

For subgraphs H,, H;, H, or Hs, we may assume that no vertex outside the
subgraph is adjacent to two consecutive vertices of the 4-cycle (otherwise
a Cy occurs). Finally, in Hy, we may assume that no vertex is adjacent to
both z; and z5 (otherwise Hy occurs). Also in this case z3 is not adjacent
to zs, otherwise H; occurs.

Initially we let B = V(G) — S and A = 0. Then we move vertices from B
to S and to A according to the following procedure.

STEP 1: Identify all the P;-terminal vertices of $ and move all their B-
neighbours to A. If N(S) N B = @, then stop. Otherwise proceed to STEP
2.

STEP 2: If two vertices z and y in S have a common B-neighbour, then
move one common B-neighbour of z and y to S and return to STEP 1.
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H,
Figure 1: Cs but no Cq

Otherwise proceed to STEP 3.

STEP 3: If some Ps-terminal vertex 2 of S has a B-neighbour, then move
one B-neighbour of z to S and return to STEP 1. Otherwise proceed to
STEP 4.

STEP 4: If some P;-terminal vertex z of § has a B-neighbour, then move
one B-neighbour of z to S and return to STEP 1. Otherwise go to STEP
2.

We claim that when N(S) N B becomes empty, S will be a Pr-semikernel
of G. Clearly, every vertex in A will be adjacent to a Pg-terminal vertex
in S. It remains only to show that 7(G[S]) = 6, so our next goal is to
demonstrate that no Py could have been created in S.

STEPS 3 and STEPS 4 are only performed when no vertex in B is adjacent
to more than one vertex of S or to any Pe-terminal vertex of S. Performing
STEPS 3 or 4 will therefore not create a Py in G[S]. A close scrutiny of
the different cases also shows that a Pr will not be created in STEP 2:

In Case 1, if z; is adjacent to 5 or z4, then 3 is a Pg-terminal vertex.
Suppose that at STEP 2 there is a vertex b in B that is adjacent to two
vertices in S. Then since STEP 1 has been executed at least once and since
G has no Cg, b must be adjacent to 2; and to 23 or z4, say to zs. And
z is not adjacent to zs or to z4 (otherwise the B-neighbours of 23 would
have been moved to A in STEP 1). We can therefore add b to S without
creating a Py. And b as well as 24 become Pg-terminal vertices of S, so all
their B-neighbours will then be moved to A. Thus in subsequent iterations
STEP 2 will only be executed if a vertex in B is adjacent to z; as well as
to z3. So performing STEP 2 will never create a P in G[S].

In Case 2, suppose at STEP 2 that B has a vertex b adjacent to more than
one vertex of S. In H», we may assume that b is adjacent to z; and zs.
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Figure 2: C4 but no C; or Cg

We can therefore add b to S without creating a P;. And b as well as 24
become Pg-terminal vertices of S, so all their B-neighbours will then be
moved to A. Thus m subsequent iterations STEP 2 will only be executed
if a vertex in B is adjacent to z; as well as z5. So performing STEP 2 will
never create a Py in G[S]. i S is Hy, STEP 2 will not be performed since
we assumee in that case that H; does not occur and that the graph has no
Cs. If S is H,, b must be adjacent to z; and zs and the proof that STEP
2 does not create a P; in G[S] is the same as that for the case when § =
H,. If S is Hs, b must be adjacent to 2; and zs, for otherwise S is Hj or
H,. And again the proof that STEP 2 does not cause a P is identical to
the proof for § = H,.

Suppose S is any of the graphs in Case 3. Initially, no vertex in B is
adjacent to two different vertices of S, since we are assuming that G has
no C;. However, we note that 2, is a Ps-terminal vertex, so suppose that
in STEP 4, a B-neighbour, say b;, of ; is moved to S. if S is Hq, Hy,
or Hg, there may then be a vertex in B that is adjacent to z; as well as
to b;. I this is the case, when we execute STEP 2, we move one common
B-neighbour (call it b;) of z; and b, to S. This will not create a P; in
G[S], and both b; and b, will then become P;-terminal vertices of S. If S
is Hy, no vertex of B will be adjacent to both b, and 2,, for otherwise S
would contain Hg. Thus in all cases our procedure will not create a Py in
G[S). o

Corollary 5.2 If G is a graph with 7(G) < 13, then G is T-partitionable.

Proof. If 7(G) = a + b with a < b, then a < 6. Since G has a P,-kernel for
all n < 7, it now follows from Proposition 2.1 that G is (a, b)-partitionable.
m}
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Figure 3: Cs but no C4, Cs or Cs

6 Summary of conjecture status

Settling any of the three conjectures is an interesting problem which is still
in process. Actually proving the truth of Conjecture 3 would, of course,
suffice to finish the other two problems. On the other hand, since the proof
of the truth of these conjectures is extremely elusive, the authors alternate
between the search for a proof and the search for a counterexample. Since a
counterexample to Conjecture 1 would suffice, suppose there exists a graph
G that is not r-partitionable. Then there exists a pair (a,b) of positive
integers such that 7(G) = a + b and G is not (a,b)-partitionable. We may
assume a < b. Then results in this paper together with results from [2] give
the following properties of G:

. G has no Hamilton path and is not the join of any two graphs,
a>86,

1B<7(G) < V()] -1,

.+ 3< A(G) < |V(G)| —a—1 (where A denotes the maximum degree),
G has a cyclic block which is not Hamiltonian,

. G has an even cycle and an odd cycle, but G does not have a b-cycle,
G has sufficiently large cycles: ¢(G) > a + 1, and

G has sufficiently small cycles: g(G) < a — 1.

®» N e ;s w P o
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