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Abstract

A graph G is claw-free if it does not contain any complete bipartite graph
K, 3 as an induced subgraph, and closed claw-free if it is the line-graph of
a triangle-free graph. The inflation H; of a graph H is obtained from H
by replacing each vertex r of degree d(z) by a clique X =~ Ky(,). Every
inflated graph G = Hj is closed claw-free. The minimum cardinalities y(G),
ir(G) and rai(G)) of respectively a dominating set, a maximal irredundant
set and an R-annihilated irredundant set of any graph G satisfy rai(G) <
ir(G) £ 7(G). The motivation of this paper is that for inflated graphs, it
is known that the difference 4(G) — ir(G) can be arbitrarily large but not
how large the ratio ¥(G)/ir(G) can be. We show that v(G) < 3rai(G)/2
for every claw-free graph G and study the sharpness of the bounds 1 <
¥(G)/ir(G) < ¥(G)/rai(G) < 3/2 in the four classes of claw-free graphs,
closed claw-free graphs, inflated graphs and line graphs of bipartite graphs.
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1. Introduction

The graphs G = (V(G), E(G)) we consider here are simple and finite
of order |V(G)| = n(G). The degree, neighborhood, closed neighborhood
of a vertex z of G are respectively denoted by d(z), N(z), N[z] (with
Niz) = N(z)U{z}). If S C V(G), G[S] is the subgraph induced in G by S
and N[S] = U,es N(a].

A set X of vertices of G is dominating if every vertex of V(G) \ X
has at least one neighbor in X. The minimum cardinality of a dominating
set is denoted by ¥(G). I z is a vertex of a subset X of V(G), the set
N[z]\ N[X\ {z}] is called the X-private neighborhood of = and its elements
are the X-private neighbors of z. Note that = belongs to its X-private
neighborhood if and only if it is isolated in G[X]. The other X-private
neighbors of z are in V(G) \ X and are called external. The vertex r of X
is irredundant in X if its X-private neighborhood is not empty, redundant
otherwise. The set X is irredundant in G if all its vertices are irredundant.
If an irredundant set X is mazimal for the inclusion, then for every vertex
u which is not dominated by X there exists a non-isolated vertex y of
X which is redundant in X U {u}. That means that u dominates every
X-private neighbor of y. We say that u annihilates y. We denote by R
the set of vertices of G which are not dominated by X. The irredundant
set X is R-annihilated if every vertex of R annihilates some vertex of X.
The concept of R-annihilated irredundant set was considered in [7] (where
it was called semi-maximal irredundant set) and in [3]. The minimum
cardinality of a maximal (resp. R-annihilated) irredundant set of G is
denoted by ir(G) (resp. rai(G)). Since every maximal irredundant set is R-
annihilated, we have rai(G) < ir(G) for any G. Moreover, it is well known
that every minimal dominating set is a maximal irredundant set. Hence
rai(G) <ir(G) < +(G) and thus 1 < X&) < MO 0t graphs 6.

(G) rai(G)

The inflation or inflated graph H; of a simple graph H is obtained
as follows: each vertex z; of degree d(z;) of H is replaced by a clique
X; = Kg(z,) and each edge (z;,z;) of H is replaced by an edge (u,v) of H;
in such a way that u € X;, v € X, and two different edges of H are replaced
by non-incident edges of H;. There are two different kinds of edges in H;.
The edges of the cliques X; are colored red and the X;’s are called the red
cliques (a red clique X; is reduced to a vertex if z; is a pendant vertex of
H). The other ones, which correspond to the edges of H, are colored blue
and form a perfect matching of H; (note that every clique of order more
than two is red). Every vertex of H; belongs to exactly one red clique and
one blue edge. Since the graph H is simple, two red cliques are linked by
at most one blue edge. We adopt.the following notation: if z; and z; are
two adjacent vertices of H, the endvertices of the blue edge of Hy replacing
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the edge (z;,z;) of H are called z;z; in X; and z;z; in X, and this blue
edge is (z;x;,z;z;).

A graph is claw-free if it does not contain any claw, i.e. any complete
bipartite graph K 3, as an induced subgraph. The line graphs of simple
graphs are claw-free and among them, the class of line graphs of triangle-
free graphs has played a particularly interesting role since the introduction
of Ryjacék’s closure in claw-free graphs [11]. These line graphs, which are
called closed claw-free graphs, are characterized by the fact that the neigh-
borhood of each vertex induces one or two vertex-disjoint cliques. From
this characterization, we can see that inflated graphs are closed claw-free
graphs. More precisely, the inflated graph H; of H is the line graph of the
subdivision S(H) of H obtained by inserting a new vertex on each edge of
H. Since S(H) is bipartite, the inflated graphs are not only closed claw-free
but are more precisely line graphs of bipartite graphs. Line graphs of tri-
angleless graphs and of bipartite graphs have been studied by Hedetniemi
and Slater in [9]. We denote by CF (resp. CCF, LB, 7) the class of claw-
free graphs (resp. closed claw-free graphs, line graphs of bipartite graphs,
inflated graphs). Clearly T C £B C CCF C CF.

In [6], it is shown that, contrary to a conjecture given in [5], the differ-
ence 4(G) — ir(G) can be arbitrarily large even if G is an inflated graph.
In the family constructed to prove this result, the ratio Y(G)/ir(G) is arbi-
trarily near to 5/4. A natural question is to ask how large this ratio can
be. This problem has already been considered in several other classes of
graphs. It is known [1, 2] that ¥(G)/ir(G) < 2 for any graph. Damaschke
[4] and Volkmann [12] respectively proved that Y(G)/ir(G) < 3/2 in any
tree and 7(G) /ir(G) < 3/2 in any block graph and in any graph with cyclo-
matic number at most 2. Later, V. E. Zverovich [13] obtained the bound
8/5 in the class of block-cactus graphs, which was conjectured in [12]. The
references of related results can be found in [8].

In this paper, we prove that in the class of claw-free graphs, 3/2 is an
upper bound not only on ¥(G)/ir(G) but also on y(G) /rai(G) (the example
of the inflation of a clique K3y given at the end of the next section, and
for which ir(G) = 3k — 1 and rai(G) < 2k, shows that it is relevant to
distinguish between v(G)/ir(G) and v(G)/rai(G) in all our classes of claw-
free graphs). We also show that in the class £B of line graphs of bipartite
graphs, and thus in CCF and in CF, the value 3/2 can be attained even by
7(G)/ir(G). While in the subclass 7 of inflated graphs, this value is never
attained by 7(G)/rai(G), but can be arbitrarily close, even for 1(G)/ir(G).
So in a sense, the bound is sharp.

2. The ratio y(G)/rai(G) in the class of claw-free graphs
For an R-annihilated irredundant set X of G, let Z be the set of isolated
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vertices in G[X] and Y = X \ Z, B(z) the set of the external private
neighbors of the vertex x of X and B = |J, ¢ x B(x), Q the set of the vertices
of G having at least two neighbors in X, and R = V(G)\(BUQUX) the set
of the vertices of G which are not dominated by X. Since X is irredundant,
B(y) # 0 for every y € Y, and since the irredundant set X is R-annihilated,
every vertex u € R is adjacent to every vertex of B(y) for somey € Y. We
denote by R(y) the set of vertices of R annihilating y.

Lemma 2.1 Let X be an R-annihilated irredundant set of a claw-free
graph G. With the above notation, the following properties hold.

1. Every component of G[Y] is a clique. For y € Y, we denote by C,, the
component of G[Y] containing y.

2. For every y € Y, the set B(y) is a clique.
3. For every y € Y, the set B(y)U R(y) is a clique.

4. If a vertex q of Q is adjacent to y € Y, then ¢ is adjacent to every
vertex of Cy, or to every vertex of B(y).

Proof : These properties are easy consequences of the fact that G is claw-
free, and have already been observed elsewhere (see for instance [6]). We
just give a short proof of them.

1. If (v1,¥,¥2) is an induced path of Y and 3’ € B(y), then Gy, ¥1,y2,%']
is a claw.

2. Suppose ¥’ and y" are two nonadjacent vertices of B(y) and let y, €
Cy \ {v}. Then Gy,v'.y",v1] is a claw.

3. Suppose u and v are two nonadjacent vertices of R(y) and let ¥’ € B(y).
Then G[y',y,u,v] is a claw. Hence R(y) is a clique, and since each vertex
of R(y) dominates each vertex of B(y), R(y) U B(y) is also a clique.

4. Suppose the vertex ¢ of Q is adjacent to y € Y but not to y, € Cy \ {y}-

Then ¢ is adjacent to every vertex y' € B(y) for otherwise Gly,q,%1,¥'] is
a claw. |

'y(G) 7(G)

T <

heorem 2.2 : The inequalities 1 ( G) rai(G) < 3 hold for any
graph G in CF.

Proof: Let G be a claw-free graph. Since ir(G) < v(G) for any graph, the,
lower bound is obvious.

To get the upper one, we consider an R-annihilated irredundant set
X of G and use the notation defined above. For every component C of
G[Y], we choose a vertex yc € C and for every vertex y € C, we choose
a vertex ' € B(y). Let Ac = {yc}U {¢¥',y € C} and A = (J; Ac. Then
|Acl = |C| + 1 < 3|C|/2 and thus |4] < 3|Y]/2.
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Claim : The set D = AU Z is a dominating set of G.

Proof of the Claim : The set ZU {¢’;¥ € Y} dominates X, and also BUR
since each B(y) U R(y) is a clique by Lemma 2.1. Let ¢ be any vertex of Q.
If ¢ is not dominated by D, then g has at least two neighbors in Y \ A. Let
1 be such a neighbor of g, and C the component of Y containing ;. Then,
by Lemma 2.1(4), the vertex g is adjacent to yc or to Y1, a contradiction.
Therefore, D also dominates Q. o

We have constructed a dominating set D of G of order |Z| + |4] <
IZ] + 3]Y|/2 < 3|X|/2 and thus ¥(G) < 3|X|/2. When X is a minimum
R-annihilated irredundant set of G, that is, when |X| = rai(G), we get
(G) < 3rai(G)/2. i B

The lower bound 1 on (G)/rai(G) is clearly attained in the class £B as
shown for instance by cliques which are line graphs of stars and for which
YG) =rai(G) = 1.

In the class Z, the observation that the equality v(H;) = ir(H;) was
often satisfied was the grounding of the conjecture of [5] claiming that this
equality held for every graph H. Although this conjecture has been dis-
proved, it has been shown that the equality v(H;) = ir(H;) holds if H
is any tree [10] or any clique [6]. Hence for the inflations G of cliques or
trees, ¥(G)/ir(G) = 1, but this is not necessarily true for v(G)/rai(G).
Consider for instance the tree T obtained from three paths P; of ver-
tex sets {a),as,a3}, {b1,b2,b3} and {c1,cz,c3} by adding the two edges
(c3,a3) and (c3,b3). Its inflation T satisfies ¥(T7) = ir(T7) = 6 and as
{caaz,c3b3,azay,b2by, cac1 } is an R-annihilated irredundant set, rai(Ty) <
5. For inflated cliques, the ratio ¥(G)/rai(G) can even be nearer to 3/2
than to 1 as shown by the following example. Consider the inflation
G of a clique K3 of vertex set {z),Z2,---,23:}: it is known [6] that
ir(G) = 4(G) = 3k—1; on the other hand, the set {z3:T3i-1, T3:Z3i41 h1<i<hs
where the subscripts are taken modulo 3k, is an R-annihilated irredundant
set and thus rai(G) < 2k. However, the lower bound 1 < 4(G)/rai(G) is
also attained in 7 as can be seen by the inflation of a cycle Cs, for which
it is easy to check that v = rai = 2k.

?
The sharpness of the upper bound 3/2 is studied in the following two
sections.

7(G)
ir(G)

3. Sharpness of the upper bound 3/2 on in the

class LB

Theorem 3.1 Infinitely many graphs of £B satisfy 26 _

ir(G) ~

3
>
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Proof Consider the graph L; obtained from a cycle Cgi of vertex set
T1Y1 21U V1 W) TaYa ZUaVaWo - - - TiYk 2 Uk VLW by adding 3k vertices {ri, s, t:}
for 1 < i < k with each r; adjacent to r; and to y;, each s; adjacent to z; and
to u;, and each t; adjacent to v; and to w;. The graph Ly is the line graph
of the graph M, obtained from a cycle Cei of vertex set ajbyazbs - - - askbsr
by attaching a pendant vertex at each vertex a;. Since Mj is bipartite, L
belongs to LB.

For Ly, {ri, 8i,ti}1<i<k is a minimum dommatmg set and {zi, us}1<i<k

WLe) v(Le) _ 3
a maximal irredundant set. Therefore —— ( (Ls) 2 2 and thus T ~ 2
by Theorem 2.1. |
v(G) .
4. Sharpness of the upper bound 3/2 on Te) in the
class T
First we prove that if G is an inflation, the ratio rZi((GG)) cannot be
exactly 3/2.
1G) _3

Theorem 4.1 If G is an inflated graph, then < =

rai(G)
Proof : Let G = H; and suppose that 'y(G) = 3ra.|(G)/2. Let X be
an R-annihilated irredundant set of rai(G) elements, and D = AU Z the
dominating set of at most 3|.X|/2 elements constructed in Theorem 2.2. By
the assumption (G) = 3|X|/2, D has 4(G) = 3| X|/2 elements. From the
proof of Theorem 2.2, this implies that Z = @ and that for every component
Cof Y, |C|+1=3|C|/2,i.e. |C] = 2. If every neighbor in Q of some vertex
y of Y is adjacent to a vertex of X \ C,, or if ¥ has no neighbor in @, then,
by Lemma 2.1(4), A\ {y} dominates G, in contradiction to |D| = ¥(G).
Hence for every vertex y of Y, some neighbor g of y in @ is adjacent to
the two vertices of Cy. In the inflated graph G, the clique {q} U, has
order at least three and is thus a part of a red clique. Hence the edge
(y,v') is blue and since it forms a maximal clique, B(y) = ¥'. Therefore
the clique R(y) U B(y) is red and all the neighbors of ¥ in Q belong to
the red clique containing {gq} U C,. Similarly, the second vertex of C, is
joined by a blue edge to its unique private neighbor. The same situation
holds for every component of X. Since the red cliques of G are disjoint, the
set @ is partitioned into parts of red cliques, each of them containing one
component of X. Hence the number of red cliques of G is at most three
times the number of components of X, that is at most 3|X|/2. On the
other hand, if G = H; then the number of red cliques of G is equal to the
order n(I) of H, and it is proved in [5] that v(H;) < n(H) — 1 for any
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graph H. We get thus 7(G) < 3|X|/2, in contradiction to the assumption
Y¥(G) = 3|X|/2. Therefore ¥(G) is strictly less than 3rai(G)/2. ]

However the following example shows that in the class (Z), the ratio
¥(G)/ir(G) can be arbitrarily near to 3/2. In this sense we can say that
the upper bound 3/2 on v(G)/ir(G) is sharp.

For an integer k > 2, the graph H}, consists of k + 1 internally disjoint
paths (a,c,b) and (a,z;,yi,2:,b) for 1 <4 < k, plus all the edges (vi,y;)
for 1 <i # j <k (so that He[yn,y2,---,¥x] is a clique). Its inflation
Gy consists of 2k + 1 disjoint paths (ax;, z;a, z;y:,y52;) for 1 < i < k,
(yizi, ziyi, 2ib, bz;) for 1 < i < k and (ac, ca,cb, be), k(k — 1) other ver-
tices yiyj, 1 < i # j < k, all the red edges forming the k + 2 red
cliques G[ac,azy,az, - - -, axy], Gilbe,bzy,bzy, - - - ,bz) and Gilyiz;, yizi,
{viyihicizj<k] for 1 <i < k, and finally the k(k—1)/2 blue edges (vivj, y;¥3)
for 1 < i # j < k. Figure 1 shows the graphs H; and G5 where the red
(blue resp.) edges are represented by thin (thick resp.) lines.

Theorem 4.2 The inflated graph G described above satisfies Gr) >

ir(Ge) —
3__1
2 k+1°

P
Proof The set {ca,cb,y\21,¥121,¥2T2, Y222, - - YkTk, Y2k} is obviously a
maximal irredundant set. Hence, ir(Gy) < 2k + 2.

On the other hand, let D be any dominating set of G. We denote by
B; the set of the k + 1 vertices of Gi coming from the vertex y; of Hy, that
is Bi = {yizi, vizi, {vivj hi<jpick }-

If DN B; = 0 for some ¢, say DNB; = §, then, in order to dominate each
vertex y1y;, 2 < j < k, D must contain {yay1,¥sy1, -, ¥kt }. The set D
must also contain z;y; and 2, to dominate y,z; and y,2z;, and at least
one vertex of each set {z;a,z;y;,y;2;} and {2;b, 2;3;,¥2;},2 < j < k, to
dominate the vertices z;y; and zjy;. Finally, D contains at least two more
vertices to dominate {az,,ac, ca,cb, bc,bz,}. Hence |D| > 3k + 1.

If DN B; # 0 for all 1 <i <k, then, to dominate z;a and 2;b, D must
contain at least one vertex in each set {ax;, z;a,z;y;} and {bz;,z:b, z;y;}
for 1 <i < k. Moreover, D contains at least one more vertex to dominate
{ca,cb}. Hence, as above, |D| > 3k + 1.

Therefore, taking for D( Ca$ ;ninir;l:xm 1dom:i)’nating1 set of Gg, we find

Gk +
Y(Gt) > 3k + 1 and thus, _—ir(Gk)Z_2k+2_§—m' ]

Since 7(Gk)/ir(Gy) tends to 3/2 when k (that is, when the order of G)
tends to +oo, this proves that the bound 3/2 on ¥(G)/ir(G), established
in the class of claw-free graphs, is best possible even in the class of inflated
graphs.
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The graph H3

ac ca c¢cb be
—-o
ax) xja X1¥y1  YiX1 Y121 z1y1 z1b bz
*—eo ° °
Y1¥>
ax; X2 X2¥2 Y2 22y2 Z2b bz
o—o—32%2 —o—o
Ya¥Y3
Y3Y>
*—o —o
ax3  X3a X3¥3  Y3X3 ¥3Z3  23Y3 23b bz;
The inflated graph G3 of H3

Figure 1:
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