The ratio of three domination parameters in some classes of claw-free graphs

Odile Favaron

LRI, Bât. 490, Université Paris-Sud
91405 Orsay cedex, France
email: of@lri.fr

Vladislav Kabanov*

Institute Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences S. Kovalevskaja 16, 620219 Ekaterinburg, Russia

email: vvk@imm.uran.ru

Joël Puech
LRI, Bât. 490, Université Paris-Sud
91405 Orsay cedex, France
email: puech@lri.fr

Abstract

A graph G is claw-free if it does not contain any complete bipartite graph $K_{1,3}$ as an induced subgraph, and closed claw-free if it is the line-graph of a triangle-free graph. The inflation H_I of a graph H is obtained from H by replacing each vertex x of degree d(x) by a clique $X \simeq K_{d(x)}$. Every inflated graph $G = H_I$ is closed claw-free. The minimum cardinalities $\gamma(G)$, ir(G) and rai(G) of respectively a dominating set, a maximal irredundant set and an G-annihilated irredundant set of any graph G satisfy rai(G) $\leq G$ ir(G) $\leq G$. The motivation of this paper is that for inflated graphs, it is known that the difference $\gamma(G) - G$ can be arbitrarily large but not how large the ratio $\gamma(G)/G$ can be. We show that $\gamma(G) \leq G$ arai(G)/2 for every claw-free graph G and study the sharpness of the bounds $1 \leq \gamma(G)/G$ ir(G) $\leq \gamma(G)/G$ in the four classes of claw-free graphs, closed claw-free graphs, inflated graphs and line graphs of bipartite graphs.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion of his 60th birthday.

^{*}partially supported by the Russian Fund of Fundamental Researches (grant 96-01-00488)

1. Introduction

The graphs G = (V(G), E(G)) we consider here are simple and finite of order |V(G)| = n(G). The degree, neighborhood, closed neighborhood of a vertex x of G are respectively denoted by d(x), N(x), N[x] (with $N[x] = N(x) \cup \{x\}$). If $S \subseteq V(G)$, G[S] is the subgraph induced in G by S and $N[S] = \bigcup_{x \in S} N[x]$.

A set X of vertices of G is dominating if every vertex of $V(G) \setminus X$ has at least one neighbor in X. The minimum cardinality of a dominating set is denoted by $\gamma(G)$. If x is a vertex of a subset X of V(G), the set $N[x] \setminus N[X \setminus \{x\}]$ is called the X-private neighborhood of x and its elements are the X-private neighbors of x. Note that x belongs to its X-private neighborhood if and only if it is isolated in G[X]. The other X-private neighbors of x are in $V(G) \setminus X$ and are called external. The vertex x of X is irredundant in X if its X-private neighborhood is not empty, redundant otherwise. The set X is *irredundant* in G if all its vertices are irredundant. If an irredundant set X is maximal for the inclusion, then for every vertex u which is not dominated by X there exists a non-isolated vertex y of X which is redundant in $X \cup \{u\}$. That means that u dominates every X-private neighbor of y. We say that u annihilates y. We denote by R the set of vertices of G which are not dominated by X. The irredundant set X is R-annihilated if every vertex of R annihilates some vertex of X. The concept of R-annihilated irredundant set was considered in [7] (where it was called semi-maximal irredundant set) and in [3]. The minimum cardinality of a maximal (resp. R-annihilated) irredundant set of G is denoted by ir(G) (resp. rai(G)). Since every maximal irredundant set is Rannihilated, we have rai(G) \leq ir(G) for any G. Moreover, it is well known that every minimal dominating set is a maximal irredundant set. Hence $\operatorname{rai}(G) \leq \operatorname{ir}(G) \leq \gamma(G)$ and thus $1 \leq \frac{\gamma(G)}{\operatorname{ir}(G)} \leq \frac{\gamma(G)}{\operatorname{rai}(G)}$ for all graphs G.

The inflation or inflated graph H_I of a simple graph H is obtained as follows: each vertex x_i of degree $d(x_i)$ of H is replaced by a clique $X_i \simeq K_{d(x_i)}$ and each edge (x_i, x_j) of H is replaced by an edge (u, v) of H_I in such a way that $u \in X_i$, $v \in X_j$, and two different edges of H are replaced by non-incident edges of H_I . There are two different kinds of edges in H_I . The edges of the cliques X_i are colored red and the X_i 's are called the red cliques (a red clique X_i is reduced to a vertex if x_i is a pendant vertex of H). The other ones, which correspond to the edges of H, are colored blue and form a perfect matching of H_I (note that every clique of order more than two is red). Every vertex of H_I belongs to exactly one red clique and one blue edge. Since the graph H is simple, two red cliques are linked by at most one blue edge. We adopt the following notation: if x_i and x_j are two adjacent vertices of H, the endvertices of the blue edge of H_I replacing

the edge (x_i, x_j) of H are called $x_i x_j$ in X_i and $x_j x_i$ in X_j , and this blue edge is $(x_i x_j, x_j x_i)$.

A graph is claw-free if it does not contain any claw, i.e. any complete bipartite graph $K_{1,3}$, as an induced subgraph. The line graphs of simple graphs are claw-free and among them, the class of line graphs of trianglefree graphs has played a particularly interesting role since the introduction of Ryjácěk's closure in claw-free graphs [11]. These line graphs, which are called closed claw-free graphs, are characterized by the fact that the neighborhood of each vertex induces one or two vertex-disjoint cliques. From this characterization, we can see that inflated graphs are closed claw-free graphs. More precisely, the inflated graph H_I of H is the line graph of the subdivision S(H) of H obtained by inserting a new vertex on each edge of H. Since S(H) is bipartite, the inflated graphs are not only closed claw-free but are more precisely line graphs of bipartite graphs. Line graphs of triangleless graphs and of bipartite graphs have been studied by Hedetniemi and Slater in [9]. We denote by \mathcal{CF} (resp. \mathcal{CCF} , \mathcal{LB} , \mathcal{I}) the class of clawfree graphs (resp. closed claw-free graphs, line graphs of bipartite graphs, inflated graphs). Clearly $\mathcal{I} \subset \mathcal{LB} \subset \mathcal{CCF} \subset \mathcal{CF}$.

In [6], it is shown that, contrary to a conjecture given in [5], the difference $\gamma(G) - \operatorname{ir}(G)$ can be arbitrarily large even if G is an inflated graph. In the family constructed to prove this result, the ratio $\gamma(G)/\operatorname{ir}(G)$ is arbitrarily near to 5/4. A natural question is to ask how large this ratio can be. This problem has already been considered in several other classes of graphs. It is known [1, 2] that $\gamma(G)/\operatorname{ir}(G) < 2$ for any graph. Damaschke [4] and Volkmann [12] respectively proved that $\gamma(G)/\operatorname{ir}(G) < 3/2$ in any tree and $\gamma(G)/\operatorname{ir}(G) \leq 3/2$ in any block graph and in any graph with cyclomatic number at most 2. Later, V. E. Zverovich [13] obtained the bound 8/5 in the class of block-cactus graphs, which was conjectured in [12]. The references of related results can be found in [8].

In this paper, we prove that in the class of claw-free graphs, 3/2 is an upper bound not only on $\gamma(G)/\text{ir}(G)$ but also on $\gamma(G)/\text{rai}(G)$ (the example of the inflation of a clique K_{3k} given at the end of the next section, and for which ir(G) = 3k - 1 and $\text{rai}(G) \leq 2k$, shows that it is relevant to distinguish between $\gamma(G)/\text{ir}(G)$ and $\gamma(G)/\text{rai}(G)$ in all our classes of claw-free graphs). We also show that in the class \mathcal{LB} of line graphs of bipartite graphs, and thus in \mathcal{CCF} and in \mathcal{CF} , the value 3/2 can be attained even by $\gamma(G)/\text{ir}(G)$. While in the subclass \mathcal{I} of inflated graphs, this value is never attained by $\gamma(G)/\text{rai}(G)$, but can be arbitrarily close, even for $\gamma(G)/\text{ir}(G)$. So in a sense, the bound is sharp.

2. The ratio $\gamma(G)/\text{rai}(G)$ in the class of claw-free graphs For an R-annihilated irredundant set X of G, let Z be the set of isolated

vertices in G[X] and $Y = X \setminus Z$, B(x) the set of the external private neighbors of the vertex x of X and $B = \bigcup_{x \in X} B(x)$, Q the set of the vertices of G having at least two neighbors in X, and $R = V(G) \setminus (B \cup Q \cup X)$ the set of the vertices of G which are not dominated by X. Since X is irredundant, $B(y) \neq \emptyset$ for every $y \in Y$, and since the irredundant set X is R-annihilated, every vertex $u \in R$ is adjacent to every vertex of B(y) for some $y \in Y$. We denote by R(y) the set of vertices of R annihilating y.

Lemma 2.1 Let X be an R-annihilated irredundant set of a claw-free graph G. With the above notation, the following properties hold.

- 1. Every component of G[Y] is a clique. For $y \in Y$, we denote by C_y the component of G[Y] containing y.
- 2. For every $y \in Y$, the set B(y) is a clique.
- 3. For every $y \in Y$, the set $B(y) \cup R(y)$ is a clique.
- 4. If a vertex q of Q is adjacent to $y \in Y$, then q is adjacent to every vertex of C_y or to every vertex of B(y).

Proof: These properties are easy consequences of the fact that G is clawfree, and have already been observed elsewhere (see for instance [6]). We just give a short proof of them.

- 1. If (y_1, y, y_2) is an induced path of Y and $y' \in B(y)$, then $G[y, y_1, y_2, y']$ is a claw.
- 2. Suppose y' and y'' are two nonadjacent vertices of B(y) and let $y_1 \in \mathcal{C}_y \setminus \{y\}$. Then $G[y,y',y'',y_1]$ is a claw.
- 3. Suppose u and v are two nonadjacent vertices of R(y) and let $y' \in B(y)$. Then G[y', y, u, v] is a claw. Hence R(y) is a clique, and since each vertex of R(y) dominates each vertex of B(y), $R(y) \cup B(y)$ is also a clique.
- 4. Suppose the vertex q of Q is adjacent to $y \in Y$ but not to $y_1 \in C_y \setminus \{y\}$. Then q is adjacent to every vertex $y' \in B(y)$ for otherwise $G[y,q,y_1,y']$ is a claw.

Theorem 2.2: The inequalities $1 \le \frac{\gamma(G)}{\operatorname{ir}(G)} \le \frac{\gamma(G)}{\operatorname{rai}(G)} \le \frac{3}{2}$ hold for any graph G in \mathcal{CF} .

Proof: Let G be a claw-free graph. Since $ir(G) \le \gamma(G)$ for any graph, the lower bound is obvious.

To get the upper one, we consider an R-annihilated irredundant set X of G and use the notation defined above. For every component C of G[Y], we choose a vertex $y_C \in C$ and for every vertex $y \in C$, we choose a vertex $y' \in B(y)$. Let $A_C = \{y_C\} \cup \{y', y \in C\}$ and $A = \bigcup_C A_C$. Then $|A_C| = |C| + 1 \le 3|C|/2$ and thus $|A| \le 3|Y|/2$.

Claim: The set $D = A \cup Z$ is a dominating set of G.

Proof of the Claim: The set $Z \cup \{y'; y \in Y\}$ dominates X, and also $B \cup R$ since each $B(y) \cup R(y)$ is a clique by Lemma 2.1. Let q be any vertex of Q. If q is not dominated by D, then q has at least two neighbors in $Y \setminus A$. Let y_1 be such a neighbor of q, and C the component of Y containing y_1 . Then, by Lemma 2.1(4), the vertex q is adjacent to y_C or to y_1' , a contradiction. Therefore, D also dominates Q.

We have constructed a dominating set D of G of order $|Z| + |A| \le |Z| + 3|Y|/2 \le 3|X|/2$ and thus $\gamma(G) \le 3|X|/2$. When X is a minimum R-annihilated irredundant set of G, that is, when $|X| = \mathrm{rai}(G)$, we get $\gamma(G) \le 3\mathrm{rai}(G)/2$.

The lower bound 1 on $\gamma(G)/\text{rai}(G)$ is clearly attained in the class \mathcal{LB} as shown for instance by cliques which are line graphs of stars and for which $\gamma(G) = \text{rai}(G) = 1$.

In the class \mathcal{I} , the observation that the equality $\gamma(H_I) = \operatorname{ir}(H_I)$ was often satisfied was the grounding of the conjecture of [5] claiming that this equality held for every graph H. Although this conjecture has been disproved, it has been shown that the equality $\gamma(H_I) = \operatorname{ir}(H_I)$ holds if H is any tree [10] or any clique [6]. Hence for the inflations G of cliques or trees, $\gamma(G)/\text{ir}(G) = 1$, but this is not necessarily true for $\gamma(G)/\text{rai}(G)$. Consider for instance the tree T obtained from three paths P_3 of vertex sets $\{a_1,a_2,a_3\}$, $\{b_1,b_2,b_3\}$ and $\{c_1,c_2,c_3\}$ by adding the two edges (c_3, a_3) and (c_3, b_3) . Its inflation T_I satisfies $\gamma(T_I) = \operatorname{ir}(T_I) = 6$ and as $\{c_3a_3, c_3b_3, a_2a_1, b_2b_1, c_2c_1\}$ is an R-annihilated irredundant set, rai $(T_I) \leq$ 5. For inflated cliques, the ratio $\gamma(G)/\text{rai}(G)$ can even be nearer to 3/2than to 1 as shown by the following example. Consider the inflation G of a clique K_{3k} of vertex set $\{x_1, x_2, \dots, x_{3k}\}$: it is known [6] that $ir(G) = \gamma(G) = 3k-1$; on the other hand, the set $\{x_{3i}x_{3i-1}, x_{3i}x_{3i+1}\}_{1 \le i \le k}$, where the subscripts are taken modulo 3k, is an R-annihilated irredundant set and thus rai(G) $\leq 2k$. However, the lower bound $1 \leq \gamma(G)/\text{rai}(G)$ is also attained in \mathcal{I} as can be seen by the inflation of a cycle C_{3k} , for which it is easy to check that $\gamma = rai = 2k$.

The sharpness of the upper bound 3/2 is studied in the following two sections.

3. Sharpness of the upper bound 3/2 on $\frac{\gamma(G)}{\operatorname{ir}(G)}$ in the class \mathcal{LB}

Theorem 3.1 Infinitely many graphs of \mathcal{LB} satisfy $\frac{\gamma(G)}{\operatorname{ir}(G)} = \frac{3}{2}$.

Proof Consider the graph L_k obtained from a cycle C_{6k} of vertex set $x_1y_1z_1u_1v_1w_1x_2y_2z_2u_2v_2w_2\cdots x_ky_kz_ku_kv_kw_k$ by adding 3k vertices $\{r_i, s_i, t_i\}$ for $1 \leq i \leq k$ with each r_i adjacent to x_i and to y_i , each s_i adjacent to z_i and to u_i , and each t_i adjacent to v_i and to w_i . The graph L_k is the line graph of the graph M_k obtained from a cycle C_{6k} of vertex set $a_1b_1a_2b_2\cdots a_{3k}b_{3k}$ by attaching a pendant vertex at each vertex a_i . Since M_k is bipartite, L_k belongs to \mathcal{LB} .

For L_k , $\{r_i, s_i, t_i\}_{1 \le i \le k}$ is a minimum dominating set and $\{z_i, u_i\}_{1 \le i \le k}$ a maximal irredundant set. Therefore $\frac{\gamma(L_k)}{ir(L_k)} \ge \frac{3}{2}$ and thus $\frac{\gamma(L_k)}{ir(L_k)} = \frac{3}{2}$ by Theorem 2.1.

4. Sharpness of the upper bound 3/2 on $\frac{\gamma(G)}{\operatorname{ir}(G)}$ in the class $\mathcal I$

First we prove that if G is an inflation, the ratio $\frac{\gamma(G)}{\text{rai}(G)}$ cannot be exactly 3/2.

Theorem 4.1 If G is an inflated graph, then $\frac{\gamma(G)}{\text{rai}(G)} < \frac{3}{2}$.

Proof: Let $G = H_I$ and suppose that $\gamma(G) = 3\text{rai}(G)/2$. Let X be an R-annihilated irredundant set of rai(G) elements, and $D = A \cup Z$ the dominating set of at most 3|X|/2 elements constructed in Theorem 2.2. By the assumption $\gamma(G) = 3|X|/2$, D has $\gamma(G) = 3|X|/2$ elements. From the proof of Theorem 2.2, this implies that $Z = \emptyset$ and that for every component \mathcal{C} of Y, $|\mathcal{C}|+1=3|\mathcal{C}|/2$, i.e. $|\mathcal{C}|=2$. If every neighbor in Q of some vertex y of Y is adjacent to a vertex of $X \setminus C_y$, or if y has no neighbor in Q, then, by Lemma 2.1(4), $A \setminus \{y\}$ dominates G, in contradiction to $|D| = \gamma(G)$. Hence for every vertex y of Y, some neighbor q of y in Q is adjacent to the two vertices of C_y . In the inflated graph G, the clique $\{q\} \cup C_y$ has order at least three and is thus a part of a red clique. Hence the edge (y,y') is blue and since it forms a maximal clique, B(y)=y'. Therefore the clique $R(y) \cup B(y)$ is red and all the neighbors of y in Q belong to the red clique containing $\{q\} \cup C_y$. Similarly, the second vertex of C_y is joined by a blue edge to its unique private neighbor. The same situation holds for every component of X. Since the red cliques of G are disjoint, the set Q is partitioned into parts of red cliques, each of them containing one component of X. Hence the number of red cliques of G is at most three times the number of components of X, that is at most 3|X|/2. On the other hand, if $G = H_I$ then the number of red cliques of G is equal to the order n(H) of H, and it is proved in [5] that $\gamma(H_I) \leq n(H) - 1$ for any graph H. We get thus $\gamma(G) < 3|X|/2$, in contradiction to the assumption $\gamma(G) = 3|X|/2$. Therefore $\gamma(G)$ is strictly less than 3rai(G)/2.

However the following example shows that in the class (\mathcal{I}) , the ratio $\gamma(G)/\text{ir}(G)$ can be arbitrarily near to 3/2. In this sense we can say that the upper bound 3/2 on $\gamma(G)/\text{ir}(G)$ is sharp.

For an integer $k \geq 2$, the graph H_k consists of k+1 internally disjoint paths (a,c,b) and (a,x_i,y_i,z_i,b) for $1 \leq i \leq k$, plus all the edges (y_i,y_j) for $1 \leq i \neq j \leq k$ (so that $H_k[y_1,y_2,\cdots,y_k]$ is a clique). Its inflation G_k consists of 2k+1 disjoint paths $(ax_i,x_ia,x_iy_i,y_ix_i)$ for $1 \leq i \leq k$, $(y_iz_i,z_iy_i,z_ib,bz_i)$ for $1 \leq i \leq k$ and (ac,ca,cb,bc), k(k-1) other vertices y_iy_j , $1 \leq i \neq j \leq k$, all the red edges forming the k+2 red cliques $G_k[ac,ax_1,ax_2,\cdots,ax_k]$, $G_k[bc,bz_1,bz_2,\cdots,bz_k]$ and $G_k[y_ix_i,y_iz_i,\{y_iy_j\}_{1\leq i\neq j\leq k}]$ for $1 \leq i \leq k$, and finally the k(k-1)/2 blue edges (y_iy_j,y_jy_i) for $1 \leq i \neq j \leq k$. Figure 1 shows the graphs H_3 and G_3 where the red (blue resp.) edges are represented by thin (thick resp.) lines.

Theorem 4.2 The inflated graph G_k described above satisfies $\frac{\gamma(G_k)}{\operatorname{ir}(G_k)} \geq \frac{3}{2} - \frac{1}{k+1}$.

Proof The set $\{ca, cb, y_1x_1, y_1z_1, y_2x_2, y_2z_2, \dots, y_kx_k, y_kz_k\}$ is obviously a maximal irredundant set. Hence, $\operatorname{ir}(G_k) \leq 2k+2$.

On the other hand, let D be any dominating set of G_k . We denote by B_i the set of the k+1 vertices of G_k coming from the vertex y_i of H_k , that is $B_i = \{y_i x_i, y_i z_i, \{y_i y_j\}_{1 \le j \ne i \le k}\}$.

If $D \cap B_i = \emptyset$ for some i, say $D \cap B_1 = \emptyset$, then, in order to dominate each vertex y_1y_j , $2 \le j \le k$, D must contain $\{y_2y_1, y_3y_1, \cdots, y_ky_1\}$. The set D must also contain x_1y_1 and z_1y_1 to dominate y_1x_1 and y_1z_1 , and at least one vertex of each set $\{x_ja, x_jy_j, y_jx_j\}$ and $\{z_jb, z_jy_j, y_jz_j\}$, $2 \le j \le k$, to dominate the vertices x_jy_j and z_jy_j . Finally, D contains at least two more vertices to dominate $\{ax_1, ac, ca, cb, bc, bz_1\}$. Hence $|D| \ge 3k + 1$.

If $D \cap B_i \neq \emptyset$ for all $1 \leq i \leq k$, then, to dominate x_ia and z_ib , D must contain at least one vertex in each set $\{ax_i, x_ia, x_iy_i\}$ and $\{bz_i, z_ib, z_iy_i\}$ for $1 \leq i \leq k$. Moreover, D contains at least one more vertex to dominate $\{ca, cb\}$. Hence, as above, $|D| \geq 3k + 1$.

Therefore, taking for D a minimum dominating set of G_k , we find $\gamma(G_k) \geq 3k+1$ and thus, $\frac{\gamma(G_k)}{\operatorname{ir}(G_k)} \geq \frac{3k+1}{2k+2} = \frac{3}{2} - \frac{1}{k+1}$.

Since $\gamma(G_k)/\text{ir}(G_k)$ tends to 3/2 when k (that is, when the order of G) tends to $+\infty$, this proves that the bound 3/2 on $\gamma(G)/\text{ir}(G)$, established in the class of claw-free graphs, is best possible even in the class of inflated graphs.

Figure 1:

References

- [1] R. B. Allan and R. Laskar, On domination and some related concepts in graph theory, in: Proc. 9th Southeast Conf. on Comb., Graph Theory and Comp. (Utilitas Math., Winnipeg, 1978) 43-56.
- [2] B. Bollobás and E. J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) 241-249.
- [3] E. J. Cockayne, O. Favaron, C. M. Mynhardt and J. Puech, Packing, perfect neighbourhood, irredundant and R-annihilated sets in graphs, Austral. J. Combin. 18 (1998) 253-262.
- [4] P. Damaschke, Irredundance number versus domination number, Discrete Math. 89 (1991) 101-104.
- [5] J. E. Dunbar and T. W. Haynes, Domination in inflated graphs, Congr. Numer. 118 (1996) 143-154.
- [6] O. Favaron, Irredundance in inflated graphs, J. Graph Theory 28 (2) (1998) 97-104.
- [7] O. Favaron and J. Puech, Irredundant and perfect neighborhood sets in graphs and claw-free graphs, Discrete Math. 197-198 (1-3) (1999) 269-284.
- [8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, 1998.
- [9] S. T. Hedetniemi and P. J. Slater, Line graphs of triangleless graphs and iterated clique graphs, Lecture Notes in Mathematics 303 (1972) 139-147.
- [10] J. Puech, Lower domination parameters in inflated trees, Research Report 97-57, Math. Depart., Université Paris-Sud. Submitted.
- [11] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory B 70 (1997) 217-224.
- [12] L. Volkmann, The ratio of the irredundance and domination number of a graph, Discrete Math. 178 (1998) 221-228.
- [13] V. E. Zverovich The ratio of the irredundance number and the domination number for block-cactus graphs, J. Graph Theory 29 (3) (1998) 139-149.