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Abstract

Sharp invariant relationships involving various types of domination numbers are found
between a graph and its line graph.
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1 Introduction

The line graph L(G) of graph G = (V, E) has vertex set E(G) with two
vertices adjacent if and only if the corresponding edges in G are adjacent.
In this note we relate graphical parameters of G and L(G), with domination
invariants playing a central role. Line graphs have been characterized by
Beineke [2] in terms of nine forbidden induced subgraphs, one of which
is the claw K, 3. Faudree, Flandrin, and RyjdZek [4] have produced an
extensive survey of claw-free graphs and their properties.

A subset S of V(G) dominates G if every vertex not in S is adjacent
to at least one vertex of S. The domination number ¥(G) is the size of a
smallest dominating set. Other types of domination involved in this pa-
per are connecled domination in which S induces a connected subgraph,
independent domination in which S induces an empty subgraph, total dom-
ination in which every vertex is adjacent to a vertex in S, paired domination
in which each vertex of S is adjacent to a unique other vertex of S, and
2-domination in which every vertex not in S is adjacent to at least two
vertices of S. The corresponding domination numbers are designated 7.,
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Yi» Tt» Yp» and 72, respectively. Information about these invariants can be
found in greater detail in Haynes, Hedetneimi, and Slater [5]. Allan and
Lasker [1] showed that the domination and independent domination num-
bers of claw-free graphs (and hence line graphs) are equal, a characteristic
which will be useful in discussions below.

Other invariants employed here include the vertez cover number ag rep-
resenting the smallest number of vertices such that each edge is incident to
at least one of them, the vertez independence number B, representing the
largest size of an independent set of vertices, and the edge independence
number B representing the largest size of an independent set of edges.
Additional invariants will be defined as needed.

2 Results

Throughout this section we usually represent sets of edges of graph G by
capital letters with the corresponding set of vertices in L(G) represented
by the same letters primed. The initial result relates the domination and
independent domination numbers of the line graph of G to both the ver-
tex cover and edge independence numbers of G. The symbol #;(G) is the
smallest size of a maximal independent set of edges in G.

Theorem 1 For any graph G, ao(G)/2 < 7[L(G)) = %(L(G)) = i1(G) <
B1(G) = Bo[L(G)).

Proof: Let X’ be a minimum dominating set of L(G). In G the edge
set X has the property that any edge not in X is adjacent to an edge
in X. Thus the 2|X| = 2|X’| = 29[L(G)] vertices which are endpoints
of the edges of X form a vertex cover of G, thus showing the leftmost
inequality. The fact that y[L(G)] = ¥:[L(G)] follows from the Allan and
Lasker result mentioned in the Introduction, and that 8;(G) = Go[L(G))]
from the definition of line graph. Suppose now that X’ is a minimum
independent dominating set of L(G). Then X is an independent set of
edges in G, and it is maximal since every edge not in X is adjacent to an
edge of X. Furthermore |X| must be the minimum size of such a maximal
set of edges since any maximal independent set X of edges in G results
in X’ being an independent dominating set of L(G). This establishes the
equality between 7;[L(G)] and i,(G). The proof is completed by noting
that certainly #1(G) < 51(G). O

Corollary 2 If G kas no isolated vertices, 1(G)/2 < 1,(G)/2 < 1:[L(G)).

Proof: The proof to Theorem 1 shows that a minimum independent dom-
inating set X’ of L(G) corresponds to an independent set of edges X in G
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whose end vertices form a vertex cover. They also are a paired dominating
set if no vertex of G is isolated. O

Sharpness for the upper bounds of Theorem 1 is given by Kon. The
corona of graphs G and H, written G o H, is obtained by creating a copy of
H for each vertex of G and connecting that vertex of G to every vertex of
its associated copy of H. Sharpness for the lower bounds for both Theorem
1 and Corollary 2 is given by G = Pa o Ky where Py is the path on
2k vertices. It is easy to see that ao(G) = ¥(G) = %(G) = 2k and
1[L(G)} = k.

No upper bound for 7[L(G)] is possible in terms of y(G). Consider
the wheel W34 with 2k vertices on the cycle. It has ¥(Wak41) = 1 but
Y[L(Waes1)) = k-

When X is a set of vertices of G, <X> represents the subgraph of G
induced by X, c(X) is the number of components in <X>, and é(X) is
the number of those components containing at least one edge. With this
notation, an upper bound for ¥[L(G)] based on the vertex cover number of
G can be determined.

Lemma 3 Let X be a vertez cover of a graph G having no isolated vertices.
Then 9[L(G)] £ 1X| - &(X)-

Proof: Consider a spanning forest of the &X) nontrivial components of
<X>. The number of vertices in these components is |X| — [¢(X) — &(X)]
so the number of edges in the forest is {|X| — [¢(X) — &X)]} — &X) =
|X| = ¢(X). These edges correspond in L(G) to a collection of vertices
which will be a part of a dominating set. The only vertices of L(G) not
dominated by this collection correspond in G to edges covered by the trivial
components, of which there are ¢(X) — &X). For each of the vertices
comprising these trivial components, an edge can be found in G incident
to the vertex which, in turn, corresponds to a vertex in L(G). The set of
such vertices of L(G) dominates any remaining vertices. Thus 7[L(G)] £
[1X] = e(X)] + [e(X) — &(X)). O

Corollary 4 For any graph G, 7[L(G)] < ao(G) — maz[é(X)] where the
marimum is taken over all minimum verlez covers X of G.

Sharpness for Lemma 3 and Corollary 4 is shown by the graph G} con-
structed from a path Pars2 = <a1,b1,¢1,82,...,Ck, ar41, k41> by adding
pendant edges a;z; and b;y; for 1 < i < k+1. Figurel shows G3 and its line
graph. In this figure, if G has an edge joining vertices u and v, we designate
the corresponding vertex in L(G) by the symbol uv. It is straightforward
to show that a minimum vertex cover of Gy is X = {a;,b; : 1 <i < k+1}
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Figure 1: The graph G3 and its line graph

and that |[X|=2k+2, E(<X>) = {a;b; : 1 < i < k+1}, é(X) = k+1, and
7[L(Gk)] = k + 1 with the vertices a;b; forming a dominating set.
Several bounds can be found for the connected domination number of

L(G).

Theorem 5 For any connected graph G having n vertices, ap(G) — 1 <
Yel(G)] <n—2.

Proof: Let X’ be a minimum connected dominating set of L(G). The
subgraph induced by X in G is a tree whose vertices form a vertex cover of
G. Thus the number of these vertices is at least ag(G) so |X|, the number
of edges in the tree, is at least ag(G) — 1, establishing the first inequality.
Consider any spanning tree of G and remove from it a degree one vertex.
Every edge of G, including the removed one, has at least one endvertex
in the reduced tree. Let X be the n — 2 edges of this tree. Then X’ is a
connected dominating set of L(G). O

The complete graph K, since ao(Kn) — 1 = n —2, demonstrates sharp-
ness of both bounds and incidently shows v.[L(K,)] = n — 2.

Theorem 5 can be improved. The symbol x(G) represents the vertex
connectivity number of graph G.

Theorem 6 For any connected graph G having n vertices, either v.[L(G))
= ao(G) — 1 or ao(G) < 7[L(G)] < n — ¥(G).

Proof: Assume 7.[L(G)] # @o(G) — 1. Then Theorem 5 gives ao(G) <
7e[L(G)]. Let B be a set of Bo(G) independent vertices of G, and let Y
be a largest subset of B for which G — Y is connected. Such a Y exists
since G is connected. Suppose Y = B. Then G - Y is connected and has
ao(G) vertices. Thus the ag(G) — 1 edges in any spanning tree of G — Y
correspond to a connected dominating set of vertices in L(G). It follows
that 9.[L(G)] = ao(G) — 1, a contradiction.
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Thus we must have t = |Y| < |B| = Bo(G). Then B —Y is a set of
Bo(G) — t vertices in G — Y which are independent and none is adjacent
to any vertices of Y. Because Y is a maximum subset of B which does
not disconnect G — Y, the removal of any vertex of B — Y must disconnect
G - Y, implying 5(G) < t + 1. Since the n — ¢ — 1 edges in a spanning
tree of G — Y correspond to a connected dominating set of vertices in G, it
follows that 1.[L(G))] < n—t—-1<n—-x(G). O

The complete bipartite graph X, m yields sharpness for Theorem 6 and
also shows v.[L(Km m)] = m. The following corollary results from the fact

that n = ag(G) + Bo(G)-

Corollary 7 For any connecled graph G, v.[L(G)] = ao(G) — 1 if £(G) >
Bo(G).

A relationship exists between the connected domination numbers of G
and L(G). The minimum degree of G is §(G).

Theorem 8 Lel G be a connected graph. Then 74.(G) < 7.[L(G)] + 1.
Furthermore, if §(G) > 2, then 7.(G) < ¥.[L(G)).

Proof: As before, consider the tree in G induced by the edges X corre-
sponding to a minimum connected dominating set X’ of L(G). The vertices
of this tree, of which there are 4.[L(G)] + 1, form a connected dominating
set of G. Further, if §(G) > 2, any single degree one vertex in this tree is
unneeded to dominate G. O

The path P, on n > 4 vertices shows sharpness for the first bound since
Ye(Pn) = n =2 and 7.[L(Pa)] = 7e(Pn-1) = n—3. Any cycle demonstrates
sharpness for the second bound.

We have seen that lower bounds for 7.[L(G)] can be based on the vertex
cover number of G. An upper bound in terms of ao(G) also exists. The
following lemma is the basis for this result.

Lemma 9 Let G be a connected graph and X be any vertez cover of G.
Then .[L(G)] < |X|+ ¢(X) — 2.

Proof: Let C,,Cs,...,Cmn be the components of <X> where m = ¢(X).
Since G is connected, adding no more than m—1 vertices to X can create a
new connected vertex cover X of G with at most | X|+m — 1 vertices. The
edges in any spanning tree of the subgraph induced by these | X| vertices
correspond to | X|—1 = | X|+m—2 vertices of L(G) which form a connected

dominating set. O

The graph G} described earlier demonstrates sharpness of this lemma
since | X| = 2k +2, ¢(X) = k+1, and 7.[L(G)] = 3k + 1. A series of results

are now easy corollaries.
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Corollary 10 Let G be a connected graph. Then v.[L(G)] £ @o(G) +
min[c(X))—2 where the minimum is taken over all minimum vertex covers

Corollary 11 Let G be a connected graph. Then v[L(G)] < 2a0(G) - 2.

Proof: Immediate since ¢(X) < |X|. O
Sharpness of the preceding corollary is shown by Par41, where k& > 2.

Corollary 12 Let G be a connected graph having at least one connected
minimum verter cover. Then v.[L(G)] = ao(G) — 1.

Proof: Follows from Theorem 5 and Lemma 9. O

The corona of any cycle with K; demonstrates sharpness of the pre-
ceding bound. Next we examine a bound involving the total domination
numbers of a graph G and its line graph. Let X be a minimum total dom-
inating set of L(G). Dutton and Brigham [3] show that any component of
<X>, designated K,(,:), is constructed from a K,,, m > 2, by adding s pen-
dant edges, 0 < s < m, with at most one incident to any vertex of the Km.
Then the edges in G corresponding to the vertices of K induce, except
possibly when m = 3, a K ,, with s of its edges subdivided. If m = 3,
these edges could form a triangle, but only if s = 0. It is now possible to
proceed to the next result.

Theorem 13 Suppose neither G nor L(G) have isolated vertices and X is
a minimum total dominating set of L(G). Then 1(G) < 1:[L(G)] + ¢(X).

Proof: Let K& be a component of <X>. The corresponding edges in G
are incident to at most s +m+ 1 vertices. The vertices arising from all the
components form a total dominating set of G of size at most | X |+ ¢(X) =
1[L(G)] + ¢(X). O

The next corollary follows since ¢(X) < |X|/2.

Corollary 14 Suppose neither G nor L(G) have isolated vertices. Then
1(G) < 3%[L(G)).

Sharpness of the preceding theorem and corollary is given by the graph
H; constructed from a path

P4k+3 =<al;bl,clld1)a2) .. wakybk:ck:dk;ak-l-lybk-}-lyck-i-l) '

by adding pendant edges a;z;, b;y;, and c;z; for 1 <i < k+ 1. Figure 2
shows H, and its line graph. For Hy, X = {aib;, bici : 1 <i <k +1} forms
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Figure 2: The graph H2 and its line graph

a minimum total dominating set of L(G) of size 2(k+1) and ¢(X) = k+1.
Furthermore, {a;,;,¢; : 1 < i < k+ 1} forms a minimum total dominating
set of G of size 3(k + 1).

The next result gives a lower bound on 72[L(G)). If uv is a vertex of
L(G), we will say that u and v are in uv.

Theorem 15 For a graph G having no isolated vertices, v(G) < 12[L(G))-

Proof: Let X’ be a minimum 2-dominating set of L(G) and Y’ be a max-
imum sized independent set of vertices of L(G) — X' of the form ab with
b not in any vertex of X/. If Y’ = 0, set ¢ = 0. Otherwise Y’ = {asb; :
1<i<t}) Let X, = N(Y')nX'. Since X’ is a 2-dominating set and
b; is not in any vertex of X', a; must be in at least two vertices of X{.
Hence, because Y’ is an independent set of vertices and no K 3 can occur,
|X4{| > [Y’] = t. Define Z C V(G) to be a set containing ay,az,...,0:
and exactly one of v or w for each vertex vw € X’ — X{. Observe that
1Z] <t +|X' — X}| =t + 7(L(G)] — IXi| £ 72[L(G)]. The result will be
proven by showing Z is a dominating set of G.

Suppose w € V(G) is not dominated by Z. Then w ¢ Z and, for any
u € N(w), u ¢ Z. Thus wu ¢ X’ — X{. This means wu must have been
a candidate for inclusion in Y’ and was excluded because it is adjacent to
some a;b; which is in Y’. If w = b;, a; is a neighbor of w in G and hence
dominates it, a contradiction. If u = b;, wu is not dominated in L(G),
another contradiction. It follows that u = a; which is in Z. This final
contradiction establishes 7(G) < |Z| £ 12(L(G)]. O

Sharpness is achieved by the corona of the cycle C, with K.
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