Connected Domination Graphs of
Tournaments

David C. Fisher and J. Richard Lundgren!
University of Colorado at Denver, Denver, CO 80217-3364

Sarah K. Merz?
University of the Pacific, Stockton, CA 95211

K. B. Reid?®
California State University San Marcos, San Marcos, CA 92096

Abstract. The domination graph of a digraph is the graph on the
same vertices with an edge between two vertices if every other vertex
loses to at least one of the two. This note describes which connected
graphs are domination graphs of tournaments.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion of his 60th
birthday.

Let D be a digraph. Vertex z beats vertex y (or y loses to z) if (z,y)
is an arc in D. Vertices z and y dominate (or are a dominant pair of) D
if z and y beat all other vertices in D. The domination graph dom(D) is
the graph on the same vertices as D with edges between dominant pairs of
D. A tournament is a digraph with exactly one arc between each pair of
vertices (see Figure 1). See Moon [7], Reid and Beineke [8], and Reid [9]
for more on tournaments.

Domination graphs were introduced in conjunction with “competition
graphs”. The competition graph of a digraph D is the graph on the same
vertices as D with an edge between two vertices if they beat a common
vertex in D. The domination graph of a tournament is the complement
of the competition graph of its reversal [2]. See Lundgren [6] and Kim,
McKee, McMorris, and Roberts [5] for more about competition graphs.

The domination digraph D(T) of a tournament T is the digraph with
the same vertices as T where vertex z beats vertex y in D(T) if z and y
dominate 7 and z beats y in T. Thus, D(T) is the orientation of dom(T)
induced by T (see Figure 1).

This note extends the authors’ previous work [1,2] on domination graphs.
A vertex of a graph is pendant if it has exactly one neighbor. A caterpillar
(see Figure 2) is a connected graph whose nonpendant vertices form a (pos-
sibly trivial) path. This path is the spine of the caterpillar and the number
of edges in the spine is the length of the caterpillar. A star is a graph
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Figure 1: A tournament with its domination graph and domination digraph.

with exactly one vertex adjacent to all others (i.e., a caterpillar of length
zero). A spiked cycle is a connected graph whose nonpendant vertices form

a cycle.
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Figure 2: A caterpillar.

PROPOSITION 1. (from [2]) The domination graph of e tournament is
either a spiked odd cycle perhaps with some isolated vertices, or a graph
whose components are all caterpillars.

PROPOSITION 2. (from (2]) A spiked odd cycle with or without isolated
vertices is the domination graph of some tournement.

PROPOSITION 3. (from (1)) In the directed domination graph of a tour-
nament, a vertez loses to at most one verter and beats at most one verter
that beats other vertices.

PROPOSITION 4. (from [1]) A path with three or more edges is not the
domination graph of any tournament.

In [1], the authors showed that every caterpillar is the domination graph
of an oriented graph (a digraph with at most one arc between each pair
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of vertices). But Proposition 4 shows that some caterpillars are not the
domination graph of any tournament. Theorem 5 describes all connected
graphs that can be domination graphs of tournaments (see Figure 3).

Figure 3: All connected domination graphs of tournaments with 9 vertices

THEOREM 5. A connected graph is the domination graph of a tourna-
ment if and only if it is a spiked odd cycle, a star, or a caterpillar of positive
length with three or more pendant vertices adjacent to one end of its spine.
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PROOF. =. Let T be a tournament where dom(T") = G is connected.
Proposition 1 shows that dom(T') is either a spiked odd cycle or a caterpillar.
So all that needs to be shown is that dom(T") cannot be a caterpillar of
positive length with both ends of its spine adjacent to only one or two
pendant vertices. Suppose G is such a caterpillar. Consecutively label the
vertices of the spine zg, z, ..., zx. Let V; be the set of pendant vertices
adjacent to z; (Figure 2 shows this labeling) with k # 0 and |Vy|, [Vi| €
{1,2}.

Since G is dom(T') for the tournament T, Proposition 3 shows that the
spine of G is a directed path in D(T). Without loss of generality, assume z;
beats z;_; for 1 < i < k. Proposition 3 also implies that with the possible
exception of one vertex in Vi, all vertices in V; lose to z; in D(T'). If a vertex
in Vi does beat zy, label that vertex zj.;, replace Vi with Vi — {Zk+1}s
and let k be what formerly was k + 1. Thus D(T) is oriented as in Figure 4
with |Vo| € {1,2} and |V € {0,1,2}.
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Figure 4: Orientation of a caterpillar.

For 2 <4 < k, since z; beats z;_; and (%2, %;_1) is a dominant pair,
Zi-y beats ;. Then for 3 < i < k, since z;_3 beats z;_; and (Tie1,7;) i 2
dominant pair, z; beats z;_3. Thus for 4 < i < k, since z; beats zi—3 and
(%i-4, Ti—3) is a dominant pair, z;_4 beats z;. Continuing this, we conclude
(see Figure 5):

z; beats x; <= either i — j is odd and positive, or even and negative.
Let y € V;. Since z; loses to { ) Tiza, Tiv2,Tit1,Tigs,- ..}, and (z4,9)
is a dominant pair, y beats {...,Zi—4, Tic2, Tit1, Tits, . . .}. Since relabel-
ing assures z beats all vertices in Vi, and.(z;—s,z;~;) and (zi,Tit1) are
dominant pairs, y loses to z;_; and ;. Thus for all y €V

y beats z; <=> either i — j is even and positive, or odd and negative.

Now let y € V; and z € V; where i # j. From above, either y beats z; or
z beats z;. If y beats z;, since (z;,z) is a dominant pair, z beats y. If z
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beats z;, since (z;,y) is a dominant pair, y beats z. So for all y € V; and
z € V; with ¢ # j:

y beats z <= either 7 — j is odd and positive, or even and negative.

Figure 5: Tournaments whose domination graphs are caterpillars with
lengths 3 and 4.

If k is even, z; beats all z; for all odd ¢ and all vertices in V; for all
even %, and zg beats all z; for all even 7 > 0 and all vertices in V; for all
odd ¢. Thus zp and z; dominate T when & is even. If &k is odd, z; beats
all z; for all even ¢ and all vertices in V; for all odd 7. Since |Vp| € {1,2},
some z € Vj beats all other vertices in Vy. Thus z beats all z; for all odd 2
and all vertices in V; (except itself) for all even 7. So z and zx dominate T
when k is odd. Either way, we deduce that dom(T") has an edge not in G,
a contradiction. So G is not the domination graph of any tournament.

- <=. For each graph G allowed by the theorem, we need to give a
tournament T° with dom(T") = G. If G is a spiked odd cycle, Proposition 2
shows there is such a tournament. If G is a star, then G is the domination
graph of any tournament on the same number of vertices where one vertex
beats all others.
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Now let G be a caterpillar of length k 7# 0 with at least three pendant
vertices adjacent to one end of its spine. Label G as in Figure 2 with z; at
an end with three or more pendant vertices. Then |V5| > 3. If & is even, let
Zr+1 denote a vertex in Vi (this is possible since zy is a pendant vertex of
the spine, but it is not a pendant vertex of G), redefine Vi, as Vi — {zr+1},
let Vi41 = 0, and then replace k + 1 by k.

With or without these redefinitions, k is odd. Let T be a tournament
on {zp,Z1,...,2x} UVoUWV1 U-.- UV, where (see Figure 5):

L. z; beats z; if either ¢ — j is odd and positive, or even and negative.

2. For all y € V;, vertex y beats z; if either ¢ — j is even and positive,
or odd and negative.

3. For all y € V; and z € V; with i # j, vertex y beats z if either ¢ — j
is odd and positive, or even and negative; otherwise, z; beats y.

4. The subtournament on Vj is strongly connected (this is possible since
|[Vo| > 3) and the subtournament on V; for ¢ > 0 is arbitrary.

To prove G = dom(T'), we must show that each pair of adjacent vertices
of G dominate T, while both vertices in each nonadjacent pair of G lose to
some vertex in T

1. For 1 < i < k, vertex z;—; beats { 3 Ti—4, Ti=2, Titl, Tit3, - - .}U- U
Vi—sUV;_1UV;UV; 10U - -, and z; beats { 1 Zim3y Tim 1, Tig 2y Tidy o - .}U
UV UV, UV U Vg U oo So 24— and z; dominate T'.

2. For 0 €1 < j < k with § > i+ 1, vertices z; and z; both lose to z;, if
i and j are even, to any vertex in Vj if ¢ and j are odd, and to x4
if i — j is odd. So z; and z; do not dominate T'.

3. For0 <i < k,lety € V;. Thenz; beats {...,zi_3, Ti—1,Tit2, Tita,.. . JU
< UVoUViUV; 1 UVigU- -+, and y beats { e Ti—d, Ti—2, Tit 1, Ti 3, - - .}U
e UViegUVi U I/i+2 UVigaU---. So z; and y dominate T'.

4. Let y € Vp. Since the subtournament on Vj is strongly connected,
some z € Vg beats y. Then for 1 <7 < k, vertices z; and y both lose
to xg if ¢ is even, and to z if 7 is odd. So z; and y do not dominate T'.

5. Let y € Vi for 1 <4 < k. Then for 0 < j < k with j # ¢, vertices y
and z; both lose to zy if ¢ is odd and j is even, to any vertex in Vp if
‘i is even and j is odd, to z; if j — ¢ is even and positive, and to z;4,
if j — 4 is even and negative. So y and z; do not dominate T

6. For0<i<j<k,letyeV;and z € V; with y # 2. Then y and =
both lose to z; if 7 —i is odd, and to z; if § — ¢ is even. So y and 2
do not dominate T'.
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Thus the dominant pairs of T are exactly the edges of G. |

What remains in characterizing domination graphs of tournaments is
to determine which graphs with two or more components are domination
graphs of tournaments. Manuscripts [3] and [4] address this issue. Also,
see [4] for some references to some variants of the problem treated here.

Characterizing domination graphs for other types of digraphs remain
largely unexplored. Which graphs are domination graphs of oriented graphs
(digraphs with at most one arc between each pair of vertices)? Semicomplete
digraphs (digraphs with at least one arc between each pair of vertices)?
Symmetric digraphs (or graphs)? Or just digraphs?

It may also be useful to examine the complement of other graph con-
structions. The niche graph of a digraph D is the graph on the same vertices
as D with an edge between two vertices if they either beat a common vertex
or lose to a common vertex in D. The complement of the niche graph of a
tournament T is dom(T")Ndom(TR) where TR is the tournament formed by
reversing the arcs of T. Bowser, Cable, and Lundgren (private communi-
cation) have characterized these “mixed-pair graphs” for tournaments and
hence have characterized niche graphs of tournaments. The competition-
resource graph of a digraph D is the graph on the same vertices as D with
an edge between two vertices if they both beat a common vertex and lose to
a common vertex in D. The complement of the competition-resource graph
of a tournament 7T is dom(7") U dom(T'®). Since the domination graph of a
tournament with n vertices has at most n edges (a corollary of Proposition
- 1), these graphs have at most 2n edges. Can these graphs be characterized?
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