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Abstract

Let p denote the number of vertices in a graph and let ¢ denote
the number of edges. Two cycles in a graph are disjoint if they have
no common vertices. Pésa proved that any graph with ¢ > 3p -5
contains two disjoint cycles. This result does not apply to planar
graphs, since every planar graph has ¢ < 3p — 6. In this paper, I
show that any planar graph with g > 2p contains two disjoint cycles.
I also show that this bound is best possible and that there is no
minimum number of edges in a planar graph which will ensure the
graph contains 3 disjoint cycles. Furthermore, a sufficient condition
for any triangle-free graph (and therefore any bipartite graph) to
contain k disjoint cycles is given.

Dedicated to Professor Stephen T. Hedetniemi on the occasion of his 60th
birthday

1 Introduction

Graph terminology not presented here can be found in [1]. Let G be a
graph. Let p denote the number of vertices and let g denote the number
of edges in G. A graph is planar if it can be drawn in the plane so that
its edges intersect only at their endpoints. A planar graph drawn in such
a way is called a plane graph. A plane graph G partitions the rest of the
plane into regions and each such region is called a face. The wheel with
n spokes, denoted W, is the graph obtained by taking the cycle C, and a
vertex z, and joining every vertex of the cycle to z. This planar graph has
p=n+1and g =2n = 2p — 2. The degree of a vertex z is the number of
vertices adjacent to . A leaf in a graph is a vertex of degree 1. The degree
sum of a subgraph H is the sum of the degrees of all the vertices in V (H).
Let H, K be two vertex disjoint subgraphs of a graph G. Then E(H, K)
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is the set of edges with one endpoint in V(H) and the other endpoint in
V(K). Euler’s formula relates the number of vertices (p), edges (¢q), and
faces (f) of a connected plane graph.

Theorem 1 [1] If G is a connected plane graph, then
p—g+f=2

Since every face in a plane graph is bounded by at least 3 edges, and every
edge is in the boundary of exactly 2 faces, we get 2¢ > 3f. From Euler’s
formula, is follows that in every planar graph,

g<3p-6.

A subdivision of an edge uv is obtained by introducting a new vertex w and
replacing the edge uv with edges vw,vw. A subdivision of a graph G is any
graph that can be obtained from G by a sequence of edge subdivisions. In
1930, Kuratowski gave a characterization of planar graphs.

Theorem 2 [{] A graph is planar if and only if it contains no subdivision
of K5 or K3 3.

It is well known that any graph with ¢ > p contains at least one cycle.
Two cycles are disjoint if they have no vertices in common. There have
been several results published of the form: If ¢ > f(p), then G contains k
disjoint cycles. (See [2], [3], [5], [6], [7].)

The first result, published in 1963, is due to Pésa

Theorem 3 [7] If ¢ > 3p— 5 then G contains 2 disjoint cycles.

This result is sharp, since the graph K3 + (p—3)K; has ¢ = 3p—6 and does
not contain two disjoint cycles. Pdsa’s theorem does not apply to planar
graphs, since as noted earlier, if G is a planar graph, then ¢ < 3p — 6.

The girth of a graph is the length of its smallest cycle. A triangle is a cycle
of length 3. A graph is called iriangle-free if its girth is at least 4.

In this paper I give a bound on the number of edges a planar graph needs
to ensure it contains 2 disjoint cycles and a bound on the number of edges
a triangle-free graph needs to ensure it contains k disjoint cycles.

2 Disjoint cycles in planar graphs
In this section, I will use the following result on claw-free graphs due to

Matthews. A graph is claw-free if it does not contain the graph K 3 as an
induced subgraph.
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Theorem 4 [6] Let G be a claw-free graph with ¢ > p+6. Then G contains
2 disjoint cycles.

The next result appears as an exercies in [1]. For completeness, I will give
a proof here.

Lemma 5 Let G be a planar graph with ¢ > 2p — 3. Then G contains a
triangle.

Proof Suppose a planar graph G has girth at least 4, and ¢ > 2p — 3.
Every face in a plane representation of G is bounded by at least 4 edges,
and every edge is in exactly 2 faces, so 2qg > 4f. Using Euler’s formula, we
get

2=p-q+f<p—q+gq/2

Rearranging, ¢ < 2p — 4, a contradiction. Thus G contains a triangle. O

The following Lemma will be the base step for an inductive proof of the
main theorem in this section.

Lemma 6 Let G be a planar graph with p = 6 and ¢ > 12. Then G
contains 2 disjoint cycles.

Proof Let G be a planar graph with V(G) = {a,b,c,d,e, f} and ¢ > 12.
First suppose that G contains a claw {a,b,c,d} with ad,bd,cd € E(G)
and no edges between any pair of a,b,c. Since ¢ > 12, there must be all
possible edges from the set {a, b, c} to the set {d,e, f} and the set {d, e, f}
must induce a complete graph. But then G contains K33 as a subgraph,
contradicting the planarity of G. Thus, G must be claw-free. By Theorem
4, we have ¢ > 12 = p + 6, so G contains 2 disjoint cycles. O

I will now prove the main result of this section.

Theorem 7 If G is a planar graph with ¢ > 2p, then G contains 2 disjoint
cycles.

Proof

Let G be the smallest connected planar graph for which the statement does
not hold. By Lemmas 5 and 6, G must contain a triangle and have p > 7.
Out of all the triangles in G, let T = {z,y,z} be one with the smallest
degree sum. Since G does not contain 2 disjoint cycles, the graph induced
by G — T is a forest.

Claim 1: §(G) > 3.

Suppose v is a vertex in G of degree 1 or 2. Then the graph G — v is planar
and has |E(G —v)| > 2|V (G —v)|, contradicting the minimality of G. Thus,
§G) > 3.

179



Claim 2: G — T contains no vertices of degree 0.

Suppose G — T contains a vertex v of degree 0 in G — T'. Since in G vertex
v has degree at least 3, we must have v adjacent to each of z,y,z. The
minimality of the degree sum of T' implies that deg(z) = deg(y) = deg(z) =
deg(v) = 3. But G is connected, so p = 4, a contradiction. Thus G - T
contains no vertices of degree 0.

Claim 3: Every leaf of G — T is adjacent to exactly two vertices of
T and the third vertex must have degree 3.

Let ! be a vertex of degree 1 in G — T. Suppose | is adjacent to each of
z,y,z. Then deg(l) = 4, and the minimality of the degree sum of T implies
deg(z), deg(y), deg(z) < 4. Thus there are at most 6 edges from T to G—T.
Counting edges 2p < ¢ < |E(T)|+|E(T,G-T)|+|E(G-T)| < 3+6+(p-4),
giving p < 5, a contradiction. Thus, any leaf in G — T is adjacent to
2 vertices in z,y,z only. Without loss of generality, leaf | is adjacent to
z,y, so deg(l) = 3 and the minimality of the degree sum of T imples that
deg(z) = 3.

Claim 4: All leaves in G — T are adjacent to z,y but not to z.

Let {; be a leaf in G — T, with {; # l. Suppose ; is adjacent to y,z in T.
By Claim 3, deg(z) = 3 = deg(z). Vertex y has at most p — 3 neighbours
in G-T, each of z, z has at most one neighbour in G —T. Counting edges:
2p < ¢ L |E(D)|+|E(T,G-T)|+|E(G-T)| £ 3+(p-1)+(p—4) = 2p-2,
a contradiciton. Thus, every leaf in G — T is adjacent to z,y but is not
adjacent to z, and deg(z) = 3.

We will now arrive at our final contradiciton. Since deg(z) = 3, z has a
neighbour @ in G — T. Let C be the component of G — T that contains
a. Let I;,12 be leaves of C in difference components of C — {a}. Then the
graph containing z,y, 2,11, 12, a, the edges from {z,y} to {z,!1,1,}, the edge
az and the paths in G — C from a to each of [;,; is a subdivision of K3 3.
This contradicts the planarity of G. This is our final contradiciton, so it
must be the case that G contains 2 disjoint cycles. O

This result is best possible as shown by the following example: Start with
the planar graph K32, p > 6. Join the two vertices in the partite set of
size 2 by an edge. Using 3 vertices in the partite set of size p — 2, form a
P;3. This graph is planar, has ¢ = 2p — 1 and does not contain 2 disjoint
cycles.
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I end this section by noting that there are planar graphs with the maxi-
mum possible number of edges which do not contain 3 disjoint cycles. For
example, the graph obtained by taking the wheel W,_, with p — 2 spokes.
Add one vertex and join it to every vertex except the one of degree p — 2.
This graph has p vertices, and ¢ = 3p — 6, but does not contain 3 disjoint
cycles. Thus, for a general planar graph, there is no minimum number of
edges which will ensure the graph contains 3 disjoint cycles.

3 Disjoint cycles in triangle-free graphs and
bipartite graphs

In this section I give a lowerbound on the number of edges needed in a
triangle-free graph to ensure the graph contains k disjoint cycles. This
bound is best possible.

Theorem 8 Let G be a triangle-free graph. If ¢ > (2k—1)p—(2k—1)%? +1
and p > 4k, then G contains k disjoint cycles.

Proof

Clearly the statement is true for £ = 1. We proceed by induction on k.
Let £ > 2 and suppose the statement is true for all k' < k. Let G be a
triangle-free graph with ¢ > (2k — 1)p — (2k — 1)2 + 1 and p > 4k.

Let C be a shortest cycle in G and let [C| = g > 4. Consider the graph
G — C. Note that G — C is also triangle-free. If G — C contains k — 1
disjoint cycles, then these cycles together with C form a set of k disjoint
cycles in G. If G — C does not contain k¥ — 1 disjoint cycles, then by
induction, ¢(G — C) < (2k — 3)(p — g9) — (2k — 3)2. If a vertex of G ~ C is
adjcacent to more than 2 vertices in C, then there is a cycle of length < g.
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Thus, each vertex of G — C is adjacent to at most two vertices in C' and
|E(G - C,G)| < 2(p — g). Counting the edges in G, we get

7= |B(C)| +|B(G - C,C)| +|E(G - C)|
<g+2p- )+ (k=3P ) - 2k - 3)?
= (2k - )p— (2K - 1)2 - (9 - 4)(2k - 2)
< (2k - Dp - (2k - 1)?

since g > 4, a contradiction. Thus, G must contain k disjoint cycles. D

A bipartite graph is a graph which contains no cycles of odd length. Clearly,
a bipartite graph is triangle-free. We get the following corollary of Theorem
8.

Corollary 9 Let G be o bipartite graph. If ¢ > (2k— 1)p—- (2k—1)2 +1
and p > 4k, then G contains k disjoint cycles.

These results are sharp, since the triangle-free (and bipartite) graph Kax—1),(p—2k+
has ¢ = (2k — 1)p — (2k — 1)2, and does not contain k disjoint cycles.
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