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Abstract

Suppose G = (V, E) is a graph in which every vertex v has a non-
negative real number w(v) as its weight. The w-distance sum of v is
Dg,w(v) = 3, ey d(v, u)w(u). The w-median My (G) of G is the set
of all vertices v with minimum w-distance sum Dg,(v). This paper
gives linear-time algorithms for computing the w-medians of interval
graphs and block graphs.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion of his 60th
birthday.

1 Introduction

The concept of center and median arise from facility location problems,
which deal with the job of choosing a site subject to certain criterion. These
distance related concepts have been extensively studied, see the book by
Buckley and Harary [4]. In particular, algorithms have been developed for
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them, see [2, 5, 8, 10, 11, 12, 16, 17, 23, 24]. The purpose of this paper is
to study w-medians of graphs from an algorithmic point of view.

All graphs in this paper are simple, i.e., undirected, loopless and without
multiple edges. In a graph G = (V, E), the distance dg(u,v) between two
vertices ¢ and v is the minimum number of edges in a u-v path; dg(u,v) =
oo if there is no u-v path. Suppose every vertex v has a non-negative real
number w(v) as its weight. The w-distance sum of a vertex v in G is

Dg,w(v) = ) de(v,u)w(u).

uev

The w-median M, (G) of G is the set
My(G) ={v € V : Dg,(v) < Dg,(u) for all u € V}.

For the case in which w(v) = 1 for all vertices v, the w-distance sum
Dg (v) is called the distance sum Dg(v) and the w-median M, (G) is the
median M (G).

Slater [22] showed that for every (not necessarily connected) graph H
there exists a graph G such that H is the subgraph of G induced by the
median M(G). Lee and Chang [14] generalized this result to w-medians.
Zelinka [27] showed that the median of a tree is a clique of size one or two.
This also follows from a more general result obtained by Truszczyriski [25]
that says the median of a connected graph lies in a block of the graph.
Slater [22] showed that the median of a 2-tree is a clique of size at most
three. Nieminen [18] and Yushmanov [26] proved that the median of a
Ptolemaic graph is a clique. Lee and Chang [13] showed that the w-median
of a strongly chordal graph is a clique if the weight function w is positive.
Note that trees are block graphs, block graphs are Ptolemaic, and Ptolemaic
graphs are strongly chordal.

In general, the w-median of a graph G = (V, E) can be computed by
finding the distances between all pairs of vertices. A standard breadth-first-
search, which costs O(|V||E|) time, does the job. This paper employs the
idea of the proof in [13] to obtain an algorithm for finding the w-median
of a strongly chordal graph. This algorithm is then adapted to linear-time
algorithms for the w-median problem in interval graphs and block graphs,
which are both strongly chordal.

2 Strongly chordal graphs
A graph is chordal (or triangulated) if every cycle with more than three ver-

tices has a chord, i.e., an edge joining two non-contiguous vertices of the cy-
cle. A p-sunis a chordal graph with a vertex set {z1,%2, ..., Zp, ¥1,¥2, -, Yp}
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such that {y1,¥2,...,yp} is an independent set, (z;,z2, .y Zp,Z1) is a cycle
and each vertex y; has exactly two neighbors x;_; and z;, where z¢ = Tp.
A graph G is strongly chordal if it is chordal and contains no p-sun for
p 2 3. A vertex v is simple if for any two vertices z,y € Ng[v] either
Nglz] C Ngly] or Ngly] C Nglz), where Ng(z) = {y : zy € E(G)} and
Nglz] = {x} U Ng(z). Note that if v is a simple vertex, then G — v is
a distance-invariant induced subgraph of G, ie., dg_,(z,y) = de(z,y)
for all vertices £ and y in G — v. A mazimal neighbor of a simple ver-
tex v is a vertex z € Ng(v] such that Ngly] C Ng[z] for all y € Ng[v].
Farber [6] proved that every strongly chordal graph that is not a com-
plete graph has two non-adjacent simple vertices. Furthermore, a graph
G = (V, E) is strongly chordal if and only if it has a simple ordering, i.e.,
an ordering (v1,vz, -+ ,va) of V such that v; is a simple vertex of the graph
G — {v1,v2,---,vi_1}. The main result of [13] is:

Theorem 1 [13] The w-median of a connected strongly chordal graph is a
clique if w is a positive weight function.

We first sketch the proof of Theorem 1. In order to prove Theorem
1, [13] introduced the following more general concept. Every vertex v in
G = (V, E) has a non-negative weight w(v) and a non-negative cost c(v).
The cost w-distance sum of v (with respect to w and c) is

DG,w.c('U) = Z dG(vxu)w(u) - c(v)-
uev

The cost w-median M, o(G) of G is
Mu,o(G) ={v €V : Dguw,o(v) < Dg,u,c(u) for all u € V}.

It is easy to see that My (G) = My(G) when c(v) = 0 for all vertices
v € V. However, unless we choose c properly, it is not the case that one
can modify Theorem 1 to get a cost w-median result for an arbitrary cost
function ¢. The proof of Theorem 1 requires an inductive approach starting
with a connected strongly chordal graph G = (V, E) with a positive weight
function w and a cost function ¢ = 0. For induction, it uses the following
two terms.

First, for any vertex x € V, thereexistsaset S, = {z = 29,2, - s Tn(z) }
C Ng|z] such that (C1) and (C2) hold.

(C1) Nglzo] € Ngla1] C - -+ C Ng[znw)]-

(C2) Ifc(z) > 0, then n(z) > 1and c(z) < ng)'w(a:.') and c(z) < i: w(z;)+
i=l i=1
c(z;) for 1 < j < n(z) — 1.
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Initially, each S; = {z = z¢} and so conditions (C1) and (C2) hold. Sec-
ondly, it uses a poset (partially ordered set) P whose elements are precisely
the vertices of G and y < zin P if y = z; and z = z; for some z € V with
0 <i < j < n(x). Note that P is not necessarily a poset if {S; :z € V} is
not chosen properly. However, initially each |Sz| =1 and so P is simply a
poset in which each pair of distinct elements is incomparable.

Theorem 1 is clear when G is a complete graph. Suppose G is not a
complete graph. Choose a pair of non-adjacent simple vertices u and v (see
[6]). Without loss of generality, we may assume that u and v are chosen
so that they are as small as possible in the poset P. Suppose u is not a
minimal element in P. Then u = «; for some z € V and z; € S; withi > 1.
Since Ng(xo] C Ng(z;] and z; is a simple vertex not adjacent to v, xp is
also a simple vertex not adjacent to v. But then zp is smaller than u = z;
in P, which contradicts our choice of u. So, u is a minimal element in P.
Similarly, v is minimal in P. Without loss of generality, we may assume
that w(v) + c(v) < w(u) + c(u).

Now choose a maximal neighbor m of v in G. Without loss of generality,
we may assume that m is chosen so that it is as large as possible in the
poset P. Suppose m is not a maximal element in P. Then m = z; for some
z €V and z; € S; with ¢ < n(z). Since Ngz;] C Ng[zn()] and z; is 2
maximal neighbor of v, Z,) is also a maximal neighbor of v. But then
Zp(z) is larger than m = z; in P, which contradicts our choice of m. So, m
is maximal in P.

Keeping all these results in mind, we now consider the distance-invariant
subgraph G — v of G, denoted by G' = (V', E'), which is also connected
strongly chordal. We define the new weight function w' and the new cost
function ¢’ on V' as:

w'(z) = w(z) +w(v) if £=m and w'(z) = w(z) otherwise,

c(y) = c(y) + w(v) if y € Ng(v) —{m} and c'(y) =c(y) otherwise.

It remains true that w' is positive and ¢’ is non-negative. We also update
{Sz : z € V} and P as follows. Since m is a maximal element of the poset
P, for any vertex z € V, either m ¢ S, or m = ;). Let

S; =8, U{m} if z € Ng(v) with mgS, and S, =S5, otherwise.

Now the poset P’ contains elements of V'. Some new relationships are also
added to P’ when S, = S; U {m} for some z € V'. However, since m is
a maximal element in P, P’ remains a poset even when new relationships
are added to it.

Theorem 1 then follows from induction and the following lemmas.

Lemma 2 [13] M, (G) = My (G").
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Lemma 3 [13] {S. : z € V'} satisfies conditions (C1) and (C2) of G'.
Lemma 4 If G is a complete graph, then My (G) = {u € V : w(u) +
c(u) > wv) + ¢(v) for allv € V}.

Proof. Lemma 4 follows from that fact that for any vertices v and u of G,

(> w(@) - ) - (3 wia) - c(w)

T#Y THu
= (w(w) +c(u)) - (w(v) +¢(v)).

Dy c(v) — Dy c(u)

Q.E.D.

To implement the idea of the proof for Theorem 1, we need not to keep
the sets S; and the poset P. Instead, a “mark” is given to each vertex v
that ensures the maximal neighbor of a simple vertex v is the last deleted
vertex in Ng(v). More precisely, we have the following algorithm.

Algorithm MS. Compute the w-median of a connected strongly chordal
graph.

Input: A connected strongly chordal graph G = (V,E) in which every
vertex v has a positive weight w(v).

Output: The w-median M,,(G).

Method:

begin
c{v) « 0 for all v € V;
mark(v) « 0 for all v € V;
while V is not a clique do
find two non-adjacent simple vertices u and v in G with the smallest
mark(u) + mark(v), W.L.0.G., assume w(v) + ¢(v) < w(u) +c(u);
choose a maximal neighbor m of v with the largest mark(m);
w(m) + w(m) + w(v);
c(y) < c(y) + w(v) for all y € N(v) — {m};
mark(m) + max{mark(y) :y € N(v)} + 1;
G+ G—u;
enddo;
My(G) — {u €V :w(u) + c(u) > w(v) +c(v) for all v € V};
output(M,(G))
end.

Since finding two simple vertices during any iteration is costly for a
general strongly chordal graph, the time complexity of this algorithm is
greater than O(|V'||E|). However, in the next two sections, we shall modify
the algorithm to obtain linear-time algorithms for the problem in interval
graphs and block graphs.
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3 Interval graphs

A graph G = (V, E) is an interval graph if there exists a family {I, : v € V'}
of intervals such that two distinct vertices 4 and v are adjacent in G if and
only if I, N I, # B; such a family {I, : v € V} is referred to as an interval
representation of G.

Gilmore and Hoffman [7] showed that a graph is an interval graph if
and only if its maximal cliques can be linearly ordered into Cy,Cs, -, Cp,
such that for every vertex v, the maximal cliques containing v occur con-
tiguously. Suppose for every vertex v, i, (respectively, j,) is the minimum
(respectively, maximum) index 4 such that v € C;. {[iv,jv] : v € V} is
then an interval representation of G, which we call a canonical represen-
tation. Booth and Lueker [3] gave an O(|V| + | E|)-time algorithm for an
arbitrary graph G = (V, E) that tests whether G is an interval graph. In
the case in which G is an interval graph, the algorithm also gives an or-
dering C},Ca,...,Cp, of its maximal cliques, and so, a canonical interval
representation.

Roberts [21], Ramalingam and Pandu Rangan [20], and Olariu [19] gave
another characterization in which a graph G is an interval graph if and only
if an interval ordering (v1,va, -, v,) of V exists such that ¢ < j < k, and
v;vx € F imply v;vx € E, or equivalently, ¢ < j < k and v; € Ng[vi] imply
vj € Nglvg].

Lemma 5 Any intervael ordering (vy,v2,++,vn) of a graph G is a simple
ordering. Consequently, an interval graph is a strongly chordal graph.

Proof. We only need to show that v; is a simple vertex of G. Suppose
v;,v; € Ngl[v1]. Assume i < j. We shall prove that Ng[vi] C Nglv;].
Suppose v € Ng|[v;]. For the case in which j < k, since i < § < k and
v; € Nglve], v; € Ng[ve] and so vx € Ng[v;]. For the case in which k < j,
since 1 < k < j and v; € Ng[vj], vk € Nglv;]. Thus, v; is a simple vertex
of G. Q.E.D.

Suppose {I, = [ay,by] : v € V} is an interval representation of an
interval graph G. Sort the right end-point b,’s of the intervals I,’s into
b,y < bu,py £ 00 < by, It is straightforward to check that R =
(vr(1),¥r(2)s" " ", Ur(n)) is an interval ordering of G. Similarly, if we sort the
left end-point a,’s into @y, > Gy > *** 2 Gy, then L = (v, vy2), "+,
Ui(n)) is an interval ordering of G. Note that if the interval representa-
tion is canonical, then we can use bucket sorts to sort the interval end-
points allowing R and L to be computed in linear time. Suppose Gj; is
the graph G — {Ur(l)$vr(2): 2y Us(i-1)2 YI(1), Vi(2), " '»vl(j—l)}~ If vr('i) and
vy(;) are in G;;, then they are simple vertices of G;;. This, and the follow-
ing lemma, can be used for efficient implementation of Algorithm MS for
interval graphs.
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Lemma 6 If v,(;y and v,(;) are in G;; and Uri) € Ng,;[viy)), then Gyj is
a complete graph.

Proof. Since I,,,, () has the smallest (largest) right (left) endpoints
among all vertices in Gy; and v,(;) Ny # 0, o,y < Guyyy S Doy S by,
fz=v,3= vi(j+) is a vertex in Gy, then @, < Gy < b”:u) < bz and so
I contains @y, ;- Thus G;; is a complete graph. Q.E. D.

We are now able to modify Algorithm MS to get a linear-time algorithm
for the w-median of an interval graph.

Algorithm MI. Compute the w-median of a connected interval graph.
Input: A connected interval graph G = (V, E) in which every vertex v has
a positive weight w(v). Two interval orderings R and L as above.
Output: The w-median M,,(G) of G.

Method:

begin
i+ 1;
i+ 1
c(v) «~0foralveV;
while Ur(i) ¢ NG.»,- [v,(j)] do
if w(ve;)) + c(vr) < w(vij)) + c(uj)) then
choose a maximal neighbor m of Vr(i);
w(m) « w(m) + w(v.;));
oy)  cly) + wlvngy) for all y € N(vy(z) — {m);
G+ G - vy
else
choose a maximal neighbor m of G
w(m) + w(m) + wlug));
c(y) « cly) + w(vyy) for all y € N(vy;) — {m};
G+~G- V(45
endif;
while v,(;y not in G do i + i + 1;
while v;(;) not in G do j + j +1;
enddo;
Mw(G) + {u € V:w(u) + c(u) > w(v) +c(v) for all v € vV}
output(M,(G))
end.

4 Block graphs

The concept of a block graph was introduced by Harary [9], who defined
the block graph B(G) of a graph G as the intersection graph of blocks of G.
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He then proved that a graph is the block graph of some graph if and only
if all of its blocks are complete graphs. So, we may define a block graph as
a graph whose blocks are complete graphs.

A graph with one or more cut-vertices contains at least two blocks,
each of which contains exactly one cut-vertex; we call them end blocks
(see [1]). If a graph has vertices u and v that are not in the same block,
then any path from u to v must pass through a unique sequence of blocks
B;,Bs,..., By, where B; and B;4;,% =1,2,...,n—1, have a common cut-
vertex that is a vertex of the path. Moreover, for any graph G containing m
blocks B,, By, ..., By and n cut-vertices ¢;,cs,...,Cn, consider the graph
G* = (V*,E*), which we call the block-cut-vertez structure of G, where

vV = {Bl,Bg,...,Bm,CI,Cg,...,Cn}a.!ld
E* = {(Bi,cj)315i5m,15jﬁn,cj€Bi}-

Then G* is a forest whose leaves are exactly the end blocks of G and whose
isolated vertices are exactly those blocks without cut-vertices in G. The
block-cut-vertex structure G* of a graph G can be constructed in linear
time by using a depth-first search.

An end vertez of a block graph is a vertex in some end block but is not
a cut-vertex. It is easy to show that an end vertex of a block graph is a
simple vertex with the cut-vertex in the end block containing it being its
maximal neighbor. Consequently, block graphs are strongly chordal. Note
that if the block-cut-vertex structure is found then the two non-adjacent
end vertices can be found in a constant time. Therefore, we now modify
Algorithm MS to get a linear-time algorithm for the w-median problem in
block graphs.

Algorithm MB. Compute the w-median of a connected block graph.
Input: A connected block graph G = (V, E) in which every vertex v has a
positive weight w(v) and its block-cut-vertex structure 7.

Output: The w-median M,,(G) of G.

Method:

begin

c(v) « 0 for all v € V(G);

while |V(T)| > 1 do
find two end vertices u and v from different end blocks B; and

Bj of T, W.L.0.G., assume w(v) + ¢(v) < w(u) + c(u);

w(m) « w(m) +w(v) where m is the cut vertex of B;;
cy) « cly) +w(v) for ally € B; — {m};
G+—G-v
B; « Bi - {’U};
if B; = {m} then
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TT- By;
ifmisaleafof Tthen T « T —m endif;
endif;
enddo;
Mu(G) « {u € V(G) : w(u) + c(u) > w(v) + c(v) for all v € V(@))};
output M, (G)
end.
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