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Abstract

For a graph G, assign an integer value weight to each edge. For a vertex
v, the label of v is the sum of weights of the edges incident with it.
Further, the weighting is irregular if all the vertex lubels are distinct. It is
well known that if G has at most than one isolated vertex and no isolated
edges then there exist irregular assignments. in fact, using positive edge
weights.

In this paper, we consider the following special weighting:

-if G hasorder 2 k+1, then a consecutive labeling is an assignment
where the vertex labels are precisely -k, -k+1,....-1,0, 1.2, ... k-1, k:
-if G has order 2k, then a consecutive labeling is an assignment where
the vertex labels are precisely -k+1,...,-1,0,0. 1,2, ..., k-1.

Here we show that every graph which has an irregular assignment, also
has a consecutive labeling. This concept is extended by considering all
consecutive labelings and looking for one that has the smallest maximum,
in absolute value, edge weight. This weight is referred to as the
consecutive strength. Results parallel to the concept of irregularity
strength are presented.

Dedicated to Professor Stephen T. Hedetniemi
on the occasion of his 60™ birthday.

1. Introduction.

Having a graph G, we assign an integer value w(e) (the weight of e) to each
edge e of G. The label I(v) of a vertex v is the sum of the weights of the edges incident
with it. The graph is called irregular if its vertices have different labels. An assignment of
labels for vertices of G producing an irregular graph is called an irregular assignment.
This concept was introduced in Chartrand et al [2] where it was observed that if a graph
G contains a component of order 2, or more than one isolated vertex, then no irregular
assignment exists. Throughout this paper we will consider only graphs with no
component of order one or two. In [2], Chartrand et al. defined the irregularity strength
s(G) of a graph G as the minimum of the largest weight among the edges of G taken over
all irregular assignments. The bounds for irregularity strength were studied by Aigner and
Triesch [1], and by Jacobson and Lehel [6]. A variation on the irregularity concept was
introduced by Jacobson et al [5]. Instead of minimizing the largest weight in an irregular
assignment, the sum of the weights was minimized. The minimum sum was called the
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irregularity sum of a graph. A similar concept was investigated by Harary et al [3] and
by Harary and Oellermann [4]. For many families of graphs, the minimum irregularity
sum is attained when the vertex labels are consecutive integers. The discussion about
graphs of this property (called consecutive graphs) is given in [5]. However, the
characterization of consecutive graphs remains an open problem even for trees.

In this paper we extend the concept by allowing negative weights (and the weight
0) for edges. Our goal is to produce consecutive and symmetric labelings.

2. Consecutive labelings for graphs.

We say that a graph G with 2k + 1 vertices has a consecutive labeling if there
exists an irregular. symmetric assignment producing labels -k, -k+1. ...,-1.0, L. ..., k-1. k.
A graph G of even order 2k +2 has a consecutive labeling if there exists an almost
irregular, symmetric assignment producing labels -k, -k+1, ....-1,0.0, L, ... k-1 &
For example, a graph given in Figure 1 has a consecutive labeling as shown .

Figure 1
Theorem 1. Every tree has a consecutive labeling.

Proof. Inthe trivial case of K), there are obviously no weights and the label is 0. Let
T be a tree of odd order n =2k + 1. We will construct a consecutive labeling by
induction on n. Select alongest uv-pathin the tree 7. Thetree T is either a pathorit
has at least three end-vertices. At least two of them, say u an v, must be in the same
partite set and, therefore, the uv-path is of even length. By induction, the tree T-u -v
has consecutive labeling -k+1, ..., -1,0,1, ..., k&-1. To produce a consecutive labeling for
the tree T we assign the weight O to both edges incident with the vertices « and v
first. Then, we alternately add weights k and -k to existing weights on subsequent
edges of the uv-path. This operation does not change labels on T - u - v and produces
labels k and -k onthe vertices u and v, respectively. For even values of n, we select
an end-vertex u of T and construct, by induction, a consecutive labeling for the tree T -
1 of order n-1. Then we assign the weight O to the edge incident with u. *

Theorem 2. Every graph with no isolated vertices and no components of order two has a
consecutive labeling.

Proof. Notice first that it is enough to produce consecutive labeling for a spanning forest
of a given graph G and then assign weight 0 to all remaining edges of G.
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Let F be a forest of order n with no isolated vertices and no components of
order two. We will construct a consecutive labeling for F by reducing the general case
to simpler (smaller) cases.

Assume first that F has two end-vertices u and v such that the uv-path is of
even length and F - u-v has no component of order 1 or 2. Assume also that the
forest F-v-u hasaconsecutive labeling. This labeling can be extended to £ like in
the proof of Theorem 1.

Otherwise, every component of F is either P3, or Kj 3. or a path of odd
length.

If a forest F has at least two components K, 3 and the smaller forest F;
without these components has a consecutive labeling with labels -M, -M+1. ..., M-1, M.
then this labeling can be extended to two additional copies ot K3, as indicated in
Figure 2.

Figure 2

Therefore, we can assume that F has at most one component isomorphic to K\ 3.
If F contains a path of odd length which is not Pg, then we can reduce its
length by 4 as indicated in Figure 3.

-‘«I-Z @ 1 M+l

Figure 3

Thus, it remains to construct a consecutive labeling for forests of the form
kP3L rPgU sKy 3. where k and r are nonnegative integers and s is either 0 or 1.
Assume first that s = 0. Notice that we can consider Pg as two copies of P3 by
assigning the weight O to the middle edge of Pg. Thus, in this case, we are dealing
with &k +2r =t copies of P3. Let us observe that assigning weights a and b to the
edges of P3 produces the following triple of labels: a, b, a+b. Therefore, we need to
partition numbers between -M and M into such triples. We distinguish three cases
depending on the number 7 of triples.
a) t=2x+ 1, where x=0, 1 mod 4.
We partition the numbers [ through 3x into x triples of the form {a, b, a+b } using
Skolem triple sysiem [7] and use them for assigning weights to x copies of P3. The
next x copies of P3 are labeled in a similar way by multiplying all weights by -1. The
edge weights and the corresponding vertex labels on the remaining copy of Pj3 are given
in Figure 4.
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-3x-1 3x+l

Figure 4

(b) t =2+ 1, where x=2,3 mod 4.

We partition the numbers 1,2, ... , 3x-1, 3x+1 into x triples of the form
{a. b, a+b } using O'Keefe triple system [7] and use them for assigning weights to
x copies of P3 . The next x copies of P3 are labeled in a similar way by
multiplying all weights by -1. The remaining copy of P3 has weights -3x and
3x, which produce labels 0. 3x, and -3x.
©)1=2xc+2.

On 2x + | copies of P3 we use triples from either (a) or (b) obtaining

labels -3x-1, -3x, ....-1, 0. I, ..., 3x, 3x+1. The last copy receives weights as in
Figure 5 (the second 0 is produced as a label).

-3x-2

Figure 5

Let us finally consider a situation where one copy of Kj 3 is present, i.e.
the forest F is of the form &P3 U rPg U K;3. We produce a consecutive

labeling -M, ..., M on kP3 U rPg using Skolem or O'Keefe triple systems.
There are two triples of the form (1, x, x+1}, (-1, -x, -x-1}. We remove these
labels from the corresponding copies of P3 and on these two copies and on one

copy of K| 3 we introduce labeling as indicated in Figure 6. ¢

@ -x-1 @ [ @
@ -M-2 @ M+l @

Figure 6

3. Consecutive strength of graphs.

Every graph containing neither K> nor K| has a consecutive labeling.
~One can ask about smallest weights producing a consecutive labeling. The
consecutive strength of a graph G, denoted by ¢(G), is defined as the
minimum of the largest |w(e)] among the edges of G for all assignments
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producing consccutive labelings. Therefore, if W  is the set of all weight
assignments for G producing consecutive labelings. then

o(©= mjn{ | e |
Theorem 3. For n23, ¢(K,)= L.

Proof. Induction on n.
For K3, the required weight assignment is given in Figure 7.

Figure 7

Suppose that K, has a consecutive labeling with strength 1. Consider the
graph Kp+1, n 23, and distinguish two cases.

Case |. n+1 iseven.
Remove one vertex. say v, from Kpuy(. The remaining graph K, has a
consecutive labeling. Assign weight O to all edges incident with the vertex v.

Case 2. n+l is odd.

Remove one vertex. say v, from Kp4). The remaining graph K, has
consecutive labeling with labels -%+ l,—%+ 2,...,—1,0,0,]....,% —2.%— L. Assign

weight 1 to all edges between v and vertices with positive labels and to the edge
incident with one vertex with label 0. Assign weight -1 to all edges between v
and vertices with negative labels and to the edge incident with the other vertex with

. n .n n . n
label 0. The resulting graph K, has labels —-2~,—-2—+l.....-l.O,l,...,-z--l.;

<

where the label 0 is produced for v. .

Theorem 4. The complete bipartite graph K, , with n 2 2 has the consecutive
strength 1.

Proof. By induction on n. We inductively construct a consecutive labeling of
strength 1 satisfying an additional condition, namely, for every n and every
partite set of K, , the number of vertices with positive labels is the same as the
number of vertices with negative labels. v

If n=2, then the weight assignment for K> is given in the Figure 8.
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Figure 8

Suppose that K, has a consecutive labeling with strength | satisfying the extra
condition. Consider the graph K| 41, 0 22, and distinguish two cases.

Case |. n is even.

Delete two vertices, say « and v, each from one partite set of Kyt n+1-
The remaining graph K, has consecutive strength 1 and two vertices a and b
with label 0 occur in one partite set. Without loss of generality suppose that v, a,
and b are in the same partite set. Assign weights to the edges incident with « or v
in the following way:

wlua)=1, w(ub) = -1,

wlux)=1 if l(x)>0. wlux)=-1 if l{x) <0,
wivx)=1 if l(x)>0, ] wlvx)=-1 if I(x)<0,
wluv) =0.

Then lfa)=1, I(b)=-1, i(u) = {(v) =0, all positive labels are increased by |
(producing labels from 2 up to =n), all negative labels are decreased by |
(producing labels from -2 down to -n).

Case2. n is odd.

Delete two vertices, say « and v, each from one partite set of K41 n+1-
The remaining graph K, has consecutive strength 1 and two vertices a and b
with label O occur in its different partite sets. Assign weights to the edges incident
with « or v in the following way:

w(ua) =0, w(ub) = -1,

wlux)=1 if l(x)>0, w(ux)=-1 if l(x) <O,
wivx)=1 if l(x)>0, w(vx)=-1 if l{x) <0,
wluv) = 1.

Then Ifa)=0, I(b)=-1, {() =0, and /(v) = |, all positive labels are increased by
1 (producing labels from 2 up to n), all negative labels are decreased by 1

(producing labels from -2 downto -n). ¢

The next two theorems establish lower bounds for the consecutive strength
of a graph.

Theorem 5. If G is a graph with n vertices and e edges, then

3n-2e¢-4
c(G) 2[—6-]
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Proof. Let c denote ¢(G) and n; denote the number of vertices of degree i in
A

G. Of course, 2, in;=2e. where 4 is the maximum degree of G. Therefore,
n+2nm+ 33 +ng+ ... +ny)< 2e,

or
ny+2n3 + 3[n - (n) + n2)} £ 2e,
which i equivalent to
n o+ (np+n2)23n-2e.

Labels of vertices of degree 1 are between -c and ¢, so n) €£2c+2 (wo 0's
are possible). Labels of nj + ny vertices of degree 1 or 2 are between -2¢ and
2¢, so ny +na <4c +2. Therefore,

20+2+4c+223n-2e,

which gives the required lower bound.
-2
Corollary 6. If T is atree with n vertices, then c(T)2["—6;].

Theorem 7. Let G be a graph with n vertices and maximum degree A. Then,
n—-1 . .
c(G)z e if n is odd,

c(G)an;2 if n iseven.

Proof. Let n; denote the number of vertices of degree i in G. In the cuse when
n is odd,
n+n+ .. .+n S2(G)r+ 1.
In particular, for r= A, we have
n<2Ac(G)+1 or

n-1
c(G)2 A

The case with even value of n is similar. ¢

The next four theorems use the above lower bound and specific
constructions to establish the exact values of consecutive strength for paths. cycles,
K>, and wheels.

-2
Theorem 8. For the path P, with n vertices, c¢(P,) = ["4"].

n=2

Proof. Theorem 7 implies that ¢(P,) 2 [ ] We will produce a weight

-2
assignment for the edges of P, of strength [nT-] Constructions depend on

value of n mod 8.

ase . n=8k + 1.
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The path P, has consecutive labeling of strength 2k given by the
following construction. We list weights for edges of P, starting from one pendant
edge and going toward the central vertex of P,. The weights on the other half of
P, are obtained by multiplying the weight of the symmetrical edge by -1.

The weight assignment for Pgi4j:
2k, 2k, 2k-1, 2k-1, ..., k+1, k+1, k, k, k-1, k-1, ...,2, 2, 1, 1, O.

Case2 n=8k+3.
The weight assignment for Pgi43 of strength 2k+1:
2k+1, 2k, 2k, 2k-1, 2k-1, ..., k+1, k+1, -k +1, k, k, k-1, k-1, ... . 2.2, L.

Case3. n=8k+35.
The weight assignment for Pgp.5 of strength 2k+1:
2k+1, 2k+1, 2k, 2k, ..., k+1, k+l1, -k +1. k, k, k-1, k-1, ... , 2,2, L.

Cased. n=8i+7.
The weight assignment for Pgi+7 of strength 24k+2:
2%+2, 2k+1, 2k+1, 2k, 2k, ... k+2, k+2, k +1, k. k, k-1, k-1, ..., 2,2, 1. 1, 0.

For even values of n, we attach an extra vertex to an endpoint of Py.g
and assign weight O to the new edge. ¢

In the similar way we prove the corresponding result for cycles.

Theorem 9. For a cycle with n vertices. ¢(C,)= [n ; 2].

As an example, a weight assignment of strength 3 producing consecutive
labeling for Cy4 is given in Figure 9.

Figure 9.
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Theorem 10. For stars Kj,, n 22, we have c(K,ﬁ):lV"T_l].

Proof. The star K;, has ny =n vertices of degree 1. Theorem 8 implies that
-2 -
c(G)2 Z for n odd and ¢(G) 2 22_1 for n even. Therefore, ¢(G) 2

n—1 . . . .
[ —] for all n. It is easy to construct a weight assignment of the required

strength. ¢

Theorem 11. For the complete bipartite graph K2, , n > 2, we have

oK) = [”;2].

Proof. The graph K3, has n; =0 vertices of degree 1 and ny =n vertices

n-2 for n even and ¢(G) 2

of degree 2. Theorem 8 implies that ¢(G) 2

n-1 n-2
) for n odd. Therefore, c(G) 2[ p

required strength are given below and they depend on the value of » (mod 4).

Weight assignments of the

Case 1. n=4k, k21 (see Figure 10).

v

Figure 10.
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Case2. n=4k+ 1, k2.

We modify the weight assignment of K, 44 by adding one extra vertex x
adjacentto 4 and to v and by assigning weights w(ux) =k, w(vx)=-k. We
also increase by 1 the weights on &+l consecutive edges incident with u
(starting from the edge 1a) and decrease by 1 the weights on k+1 symmetrical
edges incident with v. The new vertex x has label 0, the labels of all other
vertices in the larger partite set remain unchanged, the label of « is 2k+1, and the
label of v is -2k-1.

Case3. n=4k+2, k2l

We modify the weight assignment of K5 4 by adding two extra vertices x
and y adjacent to both u and v with weights w(ux) = w(uy) = k, w(vx) =
w(vy) = -k. We also increase the weight on the edge ua by 1 and decrease the
weight on the edge av by 1.

Cased. n=4k-1, k2I.
We modify the weight assignment of K3 4x by deleting the vertex a and by
replacing the weight 0 on the next edge incident with u by the weight 1. New

labels for vertices u and v are | and -1, respectively. ¢
n—1

Theorem 12. For a wheel W, of order n+l, c(W,) = [T]

Proof. The wheel W, has n;=0,.n0=0, and n3=n. Theorem 8 implies that
n-2
C( Wn) 2

Ore can construct a weight assignment of the required strength. For
example, if n=13 the weight assignment given in Figure 11 has strength 2.

for n odd and ¢(W,) =2 -'16——1 for n even.

Figure 11.
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A slight modification of this pattern gives a weight assignment for Wa, k22, ¢
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