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Abstract

A well-known problem in domination theory is the long standing
conjecture of V.G. Vizing from 1963 (see [7]) that the domination
number of the Cartesian product of two graphs is at least as large
as the product of the domination numbers of the individual graphs.
Although limited progress has been made this problem essentially
remains open. The usefulness of a maximum 2-packing in one of
the graphs in establishing a lower bound has been recognized for
some time. In this paper, we shall extend this approach so as to
take advantage of 2-packings whose membership can be altered in
a certain way. This results in an improved lower bound for graphs
which have 2-packings of this type.
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1 Introduction and Terminology

In this paper we consider only finite, simple graphs and refer the reader
to [5) for terminology and notation, some of which is repeated here for
completeness. For vertex subsets X and Y of a graph G = (V, E) we say
that X dominates Y if Y C N[X]. In particular, when X dominates V' we
call X a dominating set for G. The domination number of G is the smallest
cardinality, 7(G), of a dominating set for G. A subset A of V' is called a
2-packing of G if N[z] N N[y] = 0 for every pair z,y € A. The 2-packing
number of G is the maximum cardinality, p(G), of a 2-packing of G. Since
every dominating set for G has a nonempty intersection with each closed
neighborhood, it follows that p(G) < 7(G). We use |G| to denote the order
of G.

If G = (V,E) and H = (W, F) are graphs, then the Cartesian product
of G and H is the graph GO H, whose vertex set is the (set) Cartesian
product V x W. Two vertices (vy,w;) and (v2,w2) of GO H are adjacent
if and only if they are equal in one coordinate and adjacent in the other
coordinate. Note that we distinguish between the Cartesian product of sets,
which is denoted by x, and the Cartesian product of two graphs, which is
denoted using the symbol O. It often becomes convenient to consider the
subgraph of GO H induced by the set of vertices {u} x W. This subgraph
is isomorphic to H and is denoted by Hy.

In [7), the problem of deciding if ¥(Go H) > v(G)v(H) for all graphs G
and H was posed. Probably the most substantial result (and unfortunately
not widely known until much later) is that of Barcalkin and German [1]
which shows that if a graph G has the property that it is a spanning sub-
graph of a graph G* with the same domination number such that the vertex
set of G* can be partitioned into 7(G) cliques , then y(Go H) > y(G)y(H)
for any graph H. We say such a graph G satisfies the Barcalkin-German
condition. The reader is referred to [4] for a discussion of other results and
a survey of progress on this problem. In [6] the problem of determining
when equality can actually be achieved in the case that both graphs are
trees was addressed. In [2], Hartnell considered the question of how much
the domination number of GO H exceeds the product v(G)y(H). This was
examined under the special circumstances that at least one of the graphs,
not necessarily a tree, had the structure that every vertex was either a leaf
or had at least one leaf as a neighbor and the other graph had several dis-
joint maximum 2-packings. This was an attempt to gain some measure of
the actual excess (over equality in the conjectured lower bound of Vizing)
in dominating the Cartesian product. It has also been observed by Jacob-
son and Kinch in [6] that y(G o H) > max{p(G)y(H), p(H)7(G)}. In this
paper, we try to improve this bound by examining more carefully the situ-
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ation when one of the graphs has the property that it has several maximum
2-packings, and these 2-packings have all but one member in common.

2 Lower Bounds

We first consider, for a given graph G, a subset S of vertices of G and the
subgraph of G 0 H induced by N[S] x V(H) for any other graph H. We
determine a lower bound on the number of vertices required to dominate
S x V(H) using vertices from N[S] x V(H). This result is then employed
to give a lower bound on the domination number of Go H. As a very
simple illustration, let G be the graph on 6 vertices consisting of a 4-cycle,
v1, 2, U3, V4, and two other vertices, = and y, which are leaves and adjacent
to a single vertex, v;, on the 4-cycle. Since G has a 2-packing which is of
the same order as its domination number, it is known that YGo H) >
7(G)y(H), for any graph H. We shall show that, taking S = {z,y}, at
least y(H) + 1 vertices are required in G0 H just to dominate S x V(H).
Furthermore, these vertices would have to belong to N [S] x V(H) and
hence, considering {v3} x V(H), and noting N[vs] is disjoint from N [S],
there must be at least another 4(H) vertices in any minimum dominating
set of GO H. That is, (G o H) > v(G)y(H) + 1.

Lemma 2.1 Let G be a connected graph and let L C V(G) have cardinality
m. For any connected graph H consider the Cartesian product Go H , and
let D be a subset of N[L) x V(H) of minimum cardinality such that D
dominates L x V(H). If L is independent, then |D| > min{y(H) + m —
1,|H|}. If L is not independent, then |D| > min{y(H) +m — 2, |H|}.

Proof. First assume that L = {u;,us,..., 4} and that L is independent.
Let D be as in the statement of the lemma. Observe that for each i
1 < i < m, it must be the case that D N V(H,,) # 0, for otherwise
[D| > |DN(N(w;) x V(H))| > |H|. For each i, let a; = |[DN V(Hy;)|- Then
it follows that

IDN(N[L] x V(H))| > 7(H) = min{ey,...,an} + mmin{ey,...,am}
> v(H)+m-1.

Thus we assume that L is not independent. In addition, suppose N (L]
induces a complete subgraph of G. Assume, by way of contradiction, that
[D| < v(H) 4+ m —3. Let f: N[L] x V(H) — H,, be the projection map
defined by f(a, z) = (u1, z).

As in the case when L is independent, it follows that DN V(Hy,;) # 0 for
eachi. For1<i<mlet R,=DNHy andlet S; = {v e V(H)|(ui,v) €
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R;}. In addition, let R = D — U, R; and Sp = {v € V(H)|(w,v) €
Ry for some w € N[L]) — L}. For a given ¢, consider how V(Hy,) is domi-
nated by D. Any vertex (u;,v) of Hy, that does not belong to N[R;] must
be adjacent to a vertex (uj,v) € Rj, for some j, j # i, or to a vertex
(w,v) € Ro. For each 1 < i< m, let

C: = {z € V(H)|z ¢ UmoS: but (u;,z) € N(R:)}.

Note that if C; = 0, then Uf.,S; = V(H) and so |D| > |H|. Thus assume
Ci: # 0 for every i. Observe that for j # i, S; dominates every vertex
y € C; or otherwise (uj,y) would not be dominated by D. Therefore,
Ci=Cs=:--=Cp.

Let ¢ € C). Foreach 1 < i < m, the vertex (u;, c) has a neighbor (u;, z;)
in R;. Note that it is possible for there to be pairs of distinct indices i # j
for which S; N S; # 0, and so it is possible that z; = z;. Let

D’ = (D = {(u1,21), (u2,22), - - -, (Um-1,Zm-1) ) U {(w,0)}.
Now |D'| = |D| - m + 2, f(D') dominates Hy, and
FONLID|=IDl-m+2<y(H)+m—-3-m+2=7(H) -1,

a contradiction. Therefore, |D| > min{y(H) +m — 2, |H|}.

If L is not independent, but N[L] is not a complete subgraph of G,
then add edges to G to make a graph G* in which Ng-[L] is a complete
subgraph. Since GO H is a spanning subgraph of G* D H, any subset of
N{[L)x V(H) which dominates L x V(H) in GO H also dominates L x V(H)
in G* 0 H. By the above argument |D| > min{y(H) + m — 2, |H|}. o

In certain cases the graph G lends itself to applying the above lemma
in a number of places and the resulting ‘domination excess’ can be added.

Corollary 2.2 For each i such that 1 < i < n let S; be a star with m;
leaves, and let G be any connecied graph formed by arbitrarily adding edges
between the centers of these stars. If H is any connected graph of order at
least y(H)+max{my, my, ..., mp} -1, then y(GO H) 2 ¥(G)y(H)+(m1 —
)+ 4 (my —1).

We note that if ¢ > 1(max{mi,ms,...,ms} — 1), then the graph H
formed by letting t 4-cycles share a common vertex shows the lower bound
in Corollary 2.2 can be attained.

In a more general setting, in the case there are alternate vertices for a
maximum 2-packing, we can combine the local result established in Lemma
2.1 with the rest of the Cartesian product and obtain an improved lower
bound on the domination number of the Cartesian product.
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Theorem 2.3 Let G be a connected graph and let A be a mazimum 2-
packing of G. Assume A contains a verter uy such that for some B cVv(@)
of cardinality at least one, (A — {u1}) U {2} is a mazimum 2-packing for
each z € B. Let L = B U {1} have cardinality m, and assume that if
L is not independent, then sufficient edges can be added to G 1o make a
graph G* in which Ng-[L] is complete and ¥(G*) = ¥(G). Let H be any
connecled graph. If L is independent, then v(G o H) > min{p(G)y(H) +
m—1,(p(G) = 1)y(H) +|H|} and if L is not independent then v(GO H)>
min{p(G)y(H) + m -2, (p(G) - )1(H) + |H|}

Proof. Let D be any minimum dominating set for Go H. By Lemma
2.1, [IDN(N[L] x V(H))| > min{y(H) + m —t,|H|} where t = 1 if L is
independent and ¢ = 2 otherwise. Since D dominates all of GuH and A is a
2-packing of G, it follows that | DN (N[A—{u,}] x V(H))| > (o(G)—1)7(H)
and so the result follows. a]

In the special case that G is a graph such that v(G) = p(G) and G has
a maximum 2-packing of the type in Theorem 2.3, then it is possible to
conclude that no graph H (of large enough order) exists for which ¥(Go

H) = y(G)y(H).

Theorem 2.4 Let G be a connected graph with a 2-packing A of cardinalily
7(G). Assume A contains a verter uy such that for some B C V(G) of
cardinality at least one, (A — {u;})U {z} is a 2-packing of cardinality ¥(G)
for each = € B. Assume L = BU{u;} has cardinality m, and let H be any
connected graph. If L is independent, then ¥(G 0 H) > min{y(G)y(H) +
m=1,(v(G) — 1)y(H) + |H|}, and if L is not independent then

(G0 H) 2 min{y(G)y(H) +m - 2,(«(G) - 1)y(H) + |H|}.

Proof. Since ¥(G) = p(G) it is straightforward to see that adding edges
to N[L] to form a complete subgraph as in Theorem 2.3 gives a graph G*
with 7(G*) = ¥(G), and the theorem follows immediately. o

The following corollary gives a start on answering Open Question 5
on page 186 of the survey chapter by Hartnell and Rall, [4]. The proof
follows immediately from Theorem 2.4 and the fact that for any tree the
domination number and the 2-packing number are equal.

Corollary 2.5 If a tree T has a vertez adjacent to at least two leaves, then
for any connected graph H of order at least two, v(T 0 H ) > v(T)v(H).

If G is any graph with domination number one, then p(G) = 1 = ¥(G)
and {z} is a maximum 2-packing, for every vertex z of G. Thus we have
the following corollary which includes the special cases when G is a star or
a complete graph.
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Corollary 2.6 IfG is a graph of order n and domination number one, then
Jor any connected graph H of order at least two, v(GOH) > min{|H|,v(H)+
n—2}.

Consider the path Ps, : 21,22, 23,...,T3-. We note that there exists a
maximum 2-packing A of P, such that z3 € A. The next corollary follows
immediately from Theorem 2.4.

Corollary 2.7 There does not ezist a connected graph H of order at least
two such that y(Ps, 0 H) = (P, )y(H).

Although our main focus has been on employing 2-packings to improve
the lower bound of Jacobson and Kinch, combining Lemma 2.1 with other
results can be informative as demonstrated in the following theorem. Recall
that a vertex z of a graph is called a simplicial vertex if N[z] is a clique.

Theorem 2.8 Let G be a graph with the property thal it is a spanning
subgraph of a graph G* with the same domination number where the vertez
set of G* can be partitioned into v(G) cliques. Furthermore, in G* at least
one of these cliques, say C, has the property that it coniains m simplicial
vertices and 7(G* — N[C]) = 4(G*) — 1. Then,

7(Go H) 2 min{y(G)y(H) + (m - 2),(7(G) - 1)v(H) + |H|}
for any graph H.

Proof. Consider graphs G and G* and a clique C of G* satisfying the
hypothesis of the theorem. Let S denote the set of m simplicial vertices
of C, and let T = C ~ S. Observe that y(G* — N[T]) = 7(G*) — 1, that
V(G* — N[T7]) can be partitioned into y(G*) — 1 cliques and that G* — N[T
satisfies the Barcalkin-German condition. Thus v((G* — N[T])o H) >
7(G*—N[T))y(H) = (v(G*)—1)y(H). But at least min{|H|, v(H)+(m—2)}
vertices of C' x V(H) are required to dominate S x V(H) by Lemma 2.1 .
The result follows. o

We conclude with an illustration. Consider the graph G in Figure 1. Fol-
lowing the notation of the previous theorem, the clique C = {a,u, v, w, z}
has 4 simplicial vertices u,v,w,z, and ¥(G* — N[C]) = 2 = 9(G*) - 1.
Therefore, for any graph H it follows that

YGoH) 2 min{y(G)y(H) +(4-2),(v(G) — 1)v(H) + |H|}
= min{3y(H)+2,2v(H) + |H|}.
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Figure 1: Graphs G and G*

This lower bound can actually be attained. Let H be the 4-cycle, vy, vs, v3, v4.
The value min{3y(H) + 2,2y(H) + |H|} = 8 can be realized by using the
dominating set

D= ({a} X {”1’ V2, V3, 7"4}) U {(bs v1), (b,v3), (c’ ”2): (cv 04)}'
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