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Abstract

We introduce and study two new parameters, namely the upper
harmonious chromatic number, #(G), and the upper line-distinguish—
ing chromatic number, H'(G), of a graph G. H(G) is defined as
the maximum cardinality of a minimal harmonious coloring of a
graph G, while H'(G) is defined as the maximum cardinality of a
minimal line-distinguishing coloring of a graph G. We show that
the decision problems corresponding to the computation of the up-
per line-distinguishing and upper harmonious chromatic numbers are
NP-complete for general graphs G. We then determine H'(P,) and
H(P,). Lastly, we show that H and H' are incomparable, even for
trees.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion of his 60th
birthday.

1 Introduction

Graph theory terminology not presented here may be found in [1]. Let
G = (V, E) be a graph with n vertices.
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If ACV and B C V, we will use g(4, B) to denote the number of edges
between the sets A and B. A set S C V is independent if for distinct
u,v € S, uv ¢ E. A maximal independent set of G is called an independent
dominating set of G. The independent dominating number of G, denoted
i(G), is defined as min{|S|| S is an independent dominating set of G}.

A k-coloring of G is a partition Il of V into k sets, V;, Vs, ... , V- A proper
k-coloring is a k-coloring such that each V; is independent. A k-coloring is
a complete coloring if for every i,j, 1<i< j <k, qV;,V;) > 1.

The chromatic number x(G) is defined as min{k|G has a proper k-coloring},
while the achromatic number ¥(G) is defined as max{k|G has a proper
complete k-coloring}.

A k-line-distinguishing coloring of G is a partition of V into k sets V4, ... , Vi
such that ¢((V;)) <1fori=1,...,kand ¢(V;,V;) < 1for1<i<j<k.

If a line-distinguishing coloring is also a proper coloring, then it is called
a harmonious coloring. In other words, the partition {Vy,V5,..., Vi}is a
harmonious coloring of G if and only if ¢((V;)) = 0 for i = 1,...,k and
q(Vi,V;) < 1,1<i<j<k.

The line-distinguishing coloring number h'(G) is defined as min{k|G has a
k-line-distinguishing coloring}, while the harmonious coloring number h(G)
is defined as min{k|G has a k-harmonious coloring}.

The achromatic number was first introduced and studied by Harary, Hedet-
niemi and Prins [4]. The line-distinguishing number, h'(G), was introduced
independently by Frank, Harary and Plantholt [5] and Hopcroft and Krish-
namoorthy [6] even though the latter authors called it the harmonious col-
oring number. However, Miller and Pritikin [7] introduced the harmonious
coloring number, which is a proper coloring and a line-distinguishing col-
oring. Harmonious colorings and some of the complexity questions were
investigated in [2] and [3].

Consider a partition I = {V;,V5,...,Vi} of V according to some specified
properties P and Q. This means that (V;) has property P fori=1,... k
and the bipartite graph (V;, V;) has property Q for distinct 7, j € {1,...,k}.
The partition is minimal with respect to properties P and Q if any partition
Il obtained from Il by combining color classes V; and V; no longer satis-
fies properties P and Q. The smallest and largest cardinality of minimal
partitions with respect to properties P and Q give rise to two parameters
associated with a graph. For example, the chromatic and achromatic num-
bers are, respectively, the minimum and maximum cardinality of a minimal
partition where the property P specifies that the induced subgraph of each
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Figure 2: A minimal line-distinguishing coloring of Pg

set in the partition contains no edge.

Let P be the property “contains no edges” and @ be the property “contains
at most one edge”. If Il = {V},..., Vi } is a partition according to the prop-
erties P and @, then H is a harmonious coloring of G. If we change property
P to “contains at most one edge”, then II becomes a line-distinguishing col-
oring of G. Before proceeding further, we characterize minimal harmonious
and minimal line-distinguishing colorings of a graph. The proofs are easy
and therefore omitted.

Lemma 1 A harmonious coloring {V4,...,Vi} is minimal if and only if
Jor distinct i,j € {1,...,k}
1 q(Vi,V3) =1, or

2. if V;UV; is independent, there is anr € {1,...,k} — {i,j} such that
q(Vi, Vo) =1 and ¢q(V;,V;) = 1.

Lemma 2 A line-distinguishing coloring {Vy,...,Vi} is minimal if and
only if for distinct i,j € {1,...,k}

1 g((iUVj) > 1, or

& (Vi U VJ)) < 1, there is an v € {1,...,k} - {i,j} such that
‘I(Vi,V,-) =1 and q(V,.,VJ) =1.

A harmonious coloring of Pg is given in Figure 1. Note that this is a
minimal harmonious coloring of Ps since no color class can be combined
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with V) = {vz,v5} by property 1 of Lemma 1. Also, none of the color classes
Va,..., V5 can be combined with each other by property 2 of Lemma 1 with
Vr = V1. Similarly, a 4-line-distinguishing coloring of P; is given in Figure 2.
This coloring is also minimal since no color class can be combined with
Vi = {v1,v2,vs} by property 1 of Lemma 2. Also, none of the color classes
Va,..., V4 can be combined with each other by property 2 of Lemma 2 with
V.=V".

Let us define the upper harmonious chromatic number of a graph G, H(G),
as the maximum cardinality of a minimal harmonious coloring of G and the
upper line-distinguishing chromatic number of G, H'(G), as the maximum
cardinality of a minimal line-distinguishing coloring of G.

In the next section we show that the decision problems corresponding to
the computation of the upper line-distinguishing and upper harmonious
chromatic numbers are NP-complete for general graphs G. In section 3
we determine H'(P,) and H(P,). Lastly, we show that H and H' are
incomparable, even for trees.

2 Complexity issues

In this section we show that the decision problem

UPPER LINE-DISTINGUISHING CHROMATIC NUMBER
(ULDCN)

INSTANCE: A graph G = (V, E) and a positive integer k < |V|.
QUESTION: Is H'(G) > k?

is NP-complete by describing a polynomial transformation from the follow-
ing well-known NP-complete problem:

INDEPENDENT DOMINATING SET (IDS)

INSTANCE: A non-trivial connected graph G = (V, E) and a positive
integer k < |V].

QUESTION: Is i(G) < k?
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Theorem 1 ULDCN is NP-complete.

Proof. It is clear that ULDCN is in NP. To show that ULDCN is an
NP-complete problem, we will establish a polynomial transformation from
IDS.

Let the non-trivial connected graph G and the positive integer k < |V (G)|
be an arbitrary instance of IDS. Construct G* by taking the disjoint
union of G, a copy of K3 with vertex set {u,v,w}, a copy of K41, join-
ing the vertex u to every vertex of G and joining the vertex w to ev-
ery vertex of the graph Ki41. Let X = V(G) = {z1,...,2n} and let
Y = V(Kk+1) = {y1,---,¥r+1}. Clearly, the construction of the graph G*
can be accomplished in polynomial time.

We will show i(G) < k if and only if H'(G*) > n + 4, or, equivalently,
i(G)>k+1ifand only if H'(G*) <n+3.

Suppose i(G) > k+ 1. We will show H'(G*) < n + 3. Suppose, to the
contrary, H'(G*) > n + 4. Then there is a minimal line-distinguishing
coloring of G*, say V4, Va, ..., Vin, such that m > n + 4. Before proceeding
further, we prove four preliminary facts.

Fact 1 Each of the vertices in {u,v,w} are colored differently.

Proof. Suppose v € V;. If u € V;, then w & V;, since otherwise ¢({V;)) > 2,
which is a contradiction. But then w ¢ V; is adjacent to at least two vertices
in V;, which is a contradiction. We may therefore assume that u € V;, where
Jj # i. Since there is at most one edge between two distinct color classes,
w & V; UVj, so that w € V; with i, j and £ distinct. The result follows. O

To simplify the next three proofs, we assume u € V;, v € V2 and w € V3.
Fact 2 |Vi]| = |Va] = |V3| = 1.

Proof. Since there is at most one edge between two distinct color classes,
(ViuVe)NY =0 and (V2UV3)NX =0. Thus, |[V3|=1.

If y € V3NY, then since each color class has at most one edge, VaNY = {y}.
However, since |Y| > 2, there exists ¥’ € Y — V3 which is adjacent to at
least two vertices of Vi, which is a contradiction. Thus, |V3| = 1.

If z € ViNX, then since each color class has at most one edge, ViNX = {z}.
However, since G is a connected non-trivial graph, there exists 2/ € X -~ V}
adjacent to £ in G. But then z' is adjacent to at least two vertices of 1,
which is a contradiction. Thus, |V3|=1. O
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Fact 3 |V;| < 2fori=1,...,m. Moreover, if |V;| = 2, then i > 4 and
XnVi=lynyj = 1.

Proof. The result follows if i € {1,2,3}. Let i € {4,...,m}. Then, since
u is adjacent to every vertex of X and w is adjacent to every vertex of Y,
[ XNVil<land [Y NV;| < 1. Thus, |V;| <2 and if |V;| = 2, then i > 4
and | XNV;|=lYnV|=1.0

Fact 4If s= |{V;||V;| =2,i=4,...,m}|, then s > 1.

Proof. If s = 0, then the partition obtained by combining color classes
{z1} and {y1} is a line-distinguishing coloring of G*, which contradicts the
minimality of the original partition. O

Assume V; = {z;,y;} fori=1,...,s, V= {z;} fori=s+1,...,n, Voq, =
{’u}, Vn+2 = {’I)}, Vn+3 = {'U)} and Vn+3+i = {?/s-l-i} fori = 1, ey k+1-—s.
Notice that m = s+ (n—s)+3+(k+1—-s)=n+4+k—s. Since
m 2> n+4, it follows that k > s. For 1 <i# j <s, y; is adjacent to y;,
and so z; is not adjacent to z;. Thus, S = {z,...,z,} is an independent
set of G. If S is also dominating, then i(G) < |S|=s <k <k +1<i(G),
which is a contradiction. It follows that there is a vertex in G, say z,4,
which is not dominated by S. Hence, SU {z,41} is an independent set of
G. But then the partition obtained by combining color classes {z,41} and
{ys+1} is also a line-distinguishing coloring of G*, which is a contradiction.
Therefore, H'(G*) < n+3.

Now suppose H/(G*) < n+3. Suppose S = {z;,...,%,} is an independent
dominating set of G. We will show that s > &k + 1, thus establishing
i(G) > k+1. If s > k+ 1, we are done. Assume therefore s < k. Construct
a coloring of G* as follows. Let V; = {z;,y;} fori=1,...,s, V; = {z;} for
i=s+1,...,n Vay1 = {u}, Vaya = {v}, Vays = {w} and V/ = {y;} for
t=s5+4+1,...,k+ 1. This is clearly a line-distinguishing coloring of G*.

We now show that this coloring is a minimal line-distinguishing coloring of
G*. We cannot combine color class V,, ;2 with any other color class C, since
in each case there is a vertex, say z, in a color class C’ distinct from V42
and C which is adjacent to at least two vertices in V;42 U C. Similarly,
color classes V41 and V, 43 cannot be combined with another color class.

Let C} and C5 be arbitrary color classes distinct from V41, V42 and Vigs.
If z; € Cy and z; € C3, then we cannot combine color classes Cy and Cy,
since z; and z; are both adjacent to u. If y; € C; and y; € Cy, then color
classes C; and C; cannot be combined since y; and y; are both adjacent
to w. Thus, C; = {z;} for some i & {1,...,s} and C; = {y;} for some
i ¢{1,...,s8} or Cy = {y;} for some j € {1,...,s} and Cy = {z;} for some
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i ¢ {1,...,s}. Without loss of generality, assume the former. Since S is
a dominating set of G, z; is adjacent to some z, with £ € {1,...,s}. But
then z; € C, is adjacent to x; € V; and y; € C; is adjacent to y, € V.
Thus, Cy and C5 cannot be combined.

The number of color classes equals s+(n—s)+3+(k+1—s) = n+k+4—s.
Thus, n+k+4—5 < H(G*) <n+3,s0that k+1 < s, as required. Thus,
(G)>k+1. 0

Using the same construction and the same proof (although some details
may be simplified since each color class is independent) one may show that
the decision problem

UPPER HARMONIOUS CHROMATIC NUMBER (UHCN)
INSTANCE: A graph G = (V, E) and a positive integer k£ < |V].

QUESTION: Is H(G) > k7

is NP-complete.

3 Paths

In this section we determine the upper line-distinguishing and the upper
harmonious chromatic numbers of a path. We start with the following
result.

Lemma3 Ifn >3, m> |2tL] +1, and Vi,..., Vi, is a coloring of Py,
then there is a color class of cardinalily one containing a verlezx of degree
two.

Proof. Let £ be the number of color classes of cardinality one. Then n—£¢ >

2(m—£),so that n > 2m—£ > 2(| 22| +1) — €. Let n = 3¢+ r where k is

an integer and r € {0,1,2}. Thus, £ > 2([-2-'-'3;-‘1J)+2 —n= 2(|_M;‘;'1-_|) +
4k4+2-3k=k+22>3 ifr=0

2—-3k—-r={ 4k+4+24+2-3k—1=k+3>3 ifr=1 . Since every
4k +242-3k-2=k+2>3 ifr=2

path has at most two end vertices, the result follows immediately. O

Theorem 2 Ifn > 1 is an integer, then H'(P,) = |28L].
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Proof. The result clearly holds for n = 1 and n = 2. Assume n > 3.

We first show that H'(P,) < [L';‘ij Suppose, to the contrary, H'(P,) =
m > [@g'—lj +1andlet Vj,...,V,, be a minimal line-distinguishing coloring
of P,.

Without loss of generality assume Vi = {w} with N(w) = {z,y} (cf.
Lemma 3). Furthermore, assume £ € V3 and y € V5. Let A = VaU Vs
and let B =V —V; — A. Since we cannot combine color classes V1 and

Vi,i =4,...,m, some vertex in V; must be adjacent to some vertex in A.
Let n = 3k+r where k is an integer and r € {0, 1,2}. Hence, ¢(4, V;UB) >
2k fr=0
2+(m—3)=m—12[2%;ﬂ_|={2k+1 ifr=1 . It follows that
2k+1 ifr=2
2k—-2 ifr=0 2k—-2 ifr=0
9(A,B) > 2k—1 ifr=1 ,sothat|B|>< 2k—~1 ifr=1 and|A]
2k—-1 ifr=2 2k—1 ifr=2
k+1 ifr=0 2k ifr=0
=n—1~|B|<{ k+1 ifr=1 . Thus,2q({A))+{ 2k+1 ifr=1
kE+2 fr=2 2k+1 ifr=2
2k—2 ifr=0
=2q((A))+2+{ 2k—1 ifr=1 5 <2((A)+2+4(4, B) = T, ¢, deg(v)
2k—1 fr=2
2k+2 ifr=0
<2A1<< 2k+2 ifr=1 . *)
2k+4 ifr=2

It now follows that ¢({A)) < 1if r € {0,2} and ¢q({4)) = 0if r = 1. If
q((A)) = 0, then A is an independent set, and we may combine V; and

V2 to obtain a line-distinguishing coloring of P,, contrary to minimality.
Thus, ¢((A)) =1 and r € {0,2}.

Caselr=0.

By (*), ¢(A,B) = 2k—2,|Al = k+1and |[B] =2 —2 Let B =
{v1,...,vak_2}. Moreover, since m > 2k + 2, {v;} is a color class and v; is
adjacent to exactly one vertex of A (i = 1,...,2k —2). If v; is adjacent to

a vertex of V; and v; is adjacent to a vertex of V3, then we may combine
color classes {v;} and {v;} to obtain a line-distinguishing coloring of P,,
contrary to minimality. Thus, without loss of generality, we may assume
that v; (i =1,...,2k — 2) is adjacent to a vertex of V3 but not to a vertex
of V3. Furthermore ¢({B)) =3k —1—1—-2—(2k—2) = k — 2, so that
(B) = KU (k — 2)K,. Assume, without loss of generality, that v is an
isolated vertex of (B). Then v; is an end vertex of P, and is not adjacent to
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y. Since we cannot combine color classes {v,} and V3, some vertex of V3 is
adjacent to a vertex of V5. We conclude that V5 is an independent set. We
may then combine color classes {v1} and V; to obtain a line-distinguishing
coloring of P,, which is a contradiction.

Case 2r=2.

By (*), ¢(A,B) < 2k and |A| > (2k + 3)/2. Thus, |A| = ¥+ 2 and
IBI =2k—1. Let B= {vl,...,vzk_l}.

Case 2.1 q(A,B) =2k - 1.

Since m > 2k + 2, {v;} is a color class and v; is adjacent to exactly one
vertex of A (i = 1,...,2k — 1). If v; is adjacent to a vertex of V2 and v;
is adjacent to a vertex of V3, then we may combine color classes {v;} and
{v;} to obtain a line-distinguishing coloring of P,, contrary to minimality.
Thus, without loss of generality, we may assume that v; (: = 1,...,2k—1) is
adjacent to a vertex of V, but not to a vertex of V3. Furthermore ¢({(B)) =
3k+1-1-2—(2k—1)=k—1,sothat (B) = K, U(k— 1)K;. Assume,
without loss of generality, that v; is the isolated vertex of (B). Then v;
is an end vertex of P, and is not adjacent to y. Since we cannot combine
color classes {v;} and V3, some vertex of V3 is adjacent to a vertex of Va.
We conclude that V5 is an independent set. We may then combine color
classes {v1} and V; to obtain a line-distinguishing coloring of P,, which is
a contradiction.

Case 2.2 ¢(A, B) = 2k.

Since m > 2k + 2, {v;} is a color class and v; is adjacent to at least one
vertexof A (i=1,...,2k—1). But ¢((B))=3k+1-1-2—-2k=k -2,
so that (B) = K3 U (k — 2)K,. It follows that the three isolated vertices in
(B) have degree two, one and one in F,. Without loss of generality, assume
that deg(v1) = 2 and deg(v2) = deg(vs) = 1. Suppose the neighbor of vy
is in color class V;. Since we cannot combine color classes {vz} and {v;}
(i = 3,...,2k — 1), the neighbor of v; in A is also in V5. Since we cannot
combine color classes {vy} and V3, some vertex of V3 is adjacent to some
vertex of V. We conclude that V2 is an independent set. We may then
combine color classes {v2} and V2 to obtain a line-distinguishing coloring
of P,, which is a contradiction.

Thus, H'(Pa) < | 2%£L).

Let n = 3k + r, where k and r are nonnegative integers and denote the
consecutive vertices of the path by v1,...,v,.
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If r = 0, then the partition {{v),v2,vs,...,v3e—1},{vs}, {va}, {ve}, {vr},
.-y {vak-3}, {vst—2},{var}} is a minimal line-distinguishing coloring of
Py, whence H'(P,) > 2k = |28kl |

If r =1, then the partition {{vz, vs,..., vz}, {v1}, {va}, {vs}, ..., {var_2},
{vsk-1}, {vae41}} is a minimal line-distinguishing coloring of P,, whence
H'(Py) > 2k +1=|228L)

If 7 = 2, then the partition {{v2,v3,vs,...,vat}, {v1}, {va}, {ws}, ...,
{vsk-2}, {vae-1}, {var+1,v3¢42}} is a minimal line-distinguishing coloring
of P,, whence H'(P,) > 2k + 1= | 22£L| The result follows. D

Theorem 3 Ifn > 1 is an integer, then H(P,) = [antly.

Proof. The result clearly holds for n = 1 and n = 2. Assume n > 3.

We first show that H(P,) < [221]. Suppose, to the contrary, H (Pn) =
m > [2—":-;‘1] + 1 and let V4,...,V;, be a minimal harmonious coloring of

Pn'

Without loss of generality assume V; = {w} with N(w) = {z,y} (cf.
Lemma 3). Furthermore, assume z € V; and y € V3. Let A = Vo U V4
and let B = V —V; — A. Since we cannot combine color classes V;
and V;,i = 4,...,m, some vertex in V; must be adjacent to some ver-
tex in A. Hence, ¢(4,V1UB) > 24 (m —3) = m —1 > [22£L]. Thus,
q(AaB) 2 rm] — 2, so that IBI 2 rz_n:;!._l] —2, and |A| =n—-1- |B| <
n—1-([281] - 2) = n — [28£L] + 1. Moreover, 2|A| > > veadeg(v) =
9(A,V1U B) +2¢(V2, V5) > ¢(4, V1 U B) > [28+1], 5o that |A| > L[28:1],
Let n = 3k + r, where k is a nonnegative integer and r € {0,1,2}. Then
Y2%k+1)=k+% ifr=0
{ i(2k+l)=k+§ fr=1 } = %r&'-aii-l <4 <n+1- I'?LS:H-.] =
72k +2)=k+1 ifr=2
k+1-2k+1)=k ifr=0
Sk+14+1-2k+1)=k+1 ifr=1.
{ k+2+1-2k+2)=k+1 ifr=2

If r =0, then k£ + % < k, which is a contradiction. Thus, r € {1,2}.
Caselr=1.

Then |A| = k+1 and |B| = 2k — 1. Since 2¢(V3, V3)+2k+ 1 < 2¢(Va, V3) +
q(A,Vi U B) < 2|A| = 2k + 2, it follows that g(Va,V3) = 0. Thus, A
is an independent set. Also, 2k + 1 < ¢(A4,V4 U B) < 2k + 2, so that
2k — 1 < (A, B) < 2k. Denote the vertices of B by {v1,...,v2k_1}.
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Case 1.1 q(A,B) = 2k — 1. Since m > 2k + 2, {v;} is a color class and
v; is adjacent to exactly one vertex of A (i = 1,...,2k — 1). Furthermore
g({B)) =3k—2—(2k—1) = k-1, so that (B) = K; U(k —1)K2. Assume,
without loss of generality, that v; is the isolated vertex of (B). Then v, is
an end vertex of P,. Without loss of generality assume that the neighbor
of vy is in V2. We may then combine color classes {v1} and V3 to obtain a
harmonious coloring of P,, contrary to minimality.

Case 1.2 ¢(A, B) = 2k.

Since m > 2k + 2, {v;} is a color class and v; is adjacent to at least one
vertexof A (i =1,...,2k —1). But ¢({(B)) = 3k —2 — 2k = k — 2, so that
(B) = K3U (k — 2)K,. It follows that the three isolated vertices in (B)
have degree two, one and one in P,. Without loss of generality, assume
that deg(v1) = 2 and deg(vz) = deg(vs) = 1. Suppose the neighbor of v, is
in color class V5. We may then combine color classes {v2} and V3 to obtain
a harmonious coloring of P,, contrary to minimality.

Case 2r=2.

Then |A| = k + 1 and |B| = 2k. Since 2¢(V,,Vs) + 2k + 2 < 2¢(V, V5) +
¢(A,ViUB) < 2|A| = 2k+2, it follows that ¢(V2, V) = 0 and ¢(4, ViUB) =
2k + 2, so that A is an independent set and ¢(A,B) = 2k. Also, since
m > 2k + 3, each vertex of B forms a color class. Thus, each vertex of B is
adjacent to a vertex of A. Denote the vertices of B by {v1,...,va}. Since
q((B)) =3k +1-2—-2k =k—1, (B) = K, + (k — 1)K,. The isolated
vertices in (B) are the end vertices of P,. Without loss of generality, assume
deg(vy) = deg(vz) = 1. Assume that the neighbor of v; is in V5. We may
then combine color classes {v;} and V3 to obtain a harmonious coloring of
P,, contrary to minimality.

Thus, H(P,) < [23tL].

Let n = 3k + r, where k£ and r are nonnegative integers and denote the
consecutive vertices of the path by vy,...,v,.

If r = 0, then the partition {{v2,vs,...,vae—1}, {1}, {vs}, {va}, {vs}, ...,
{vak—2}, {vsr}} is a minimal harmonious coloring of P,, whence H(P,) >
2k + 1 = [2atL),

If r = 1, then the partition {{’02,'05, ceny ‘03]:..1}, {vl, v3k+1}, {1)3}, {v4}, ey
{vsk—3}, {vak—2},{vst}} is a minimal harmonious coloring of P,, whence
H(P,) > 2k +1=[2£].

If r = 2, then the partition {{vs,vs,...,var+2}, {v1}, {vs}, {va}, {ve}, ---,
{var—2}, {vst}, {vsk+1}} is a minimal harmonious coloring of P,, whence
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H(Pa) > 2k + 2 = [22£L]. The result follows. O

4 Incomparability

We now show that the parameters H and H' are incomparable. Clearly,
H(K1m) = m+ 1, while H'(K;m) = m. Let m > 2 be an integer, and
construct the tree T by taking two copies of the star K 1,m and joining the
two central vertices by an edge. It is easily verified that H (T) = m+2. The
coloring obtained by putting the central vertices in the same color class, and
all other vertices in their own color class is, as is easily verified, a minimal
line-distinguishing coloring. Thus, H'(T)=2m+1>m+2=H (T).

5 Conclusions

The concept of partitioning the vertices of a graph into sets where there is
one property which holds for the vertices in each of the sets and another
property which holds between any two sets has been well studied. It seems
natural to extend the ideas of k-line-distinguishing and harmonious color-
ings to include the maximum number of sets in a minimal partition. We
have shown that the computation of these upper parameters is N P-complete
for general graphs while we have also given specific formulas for paths. It is
possible to determine the upper line-distinguishing and upper harmonious
chromatic numbers of cycles and classes of trees. A study of these formulas
will appear elsewhere.
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