Strong Distance in Strong Digraphs

Gary Chartrand, David Erwin, Michael Raines, and Ping Zhang ¹

Department of Mathematics and Statistics Western Michigan University Kalamazoo, MI 49008, USA

ABSTRACT

For two vertices u and v in a strong oriented graph D of order $n \geq 3$, the strong distance $\mathrm{sd}(u,v)$ between u and v is the minimum size of a strong subdigraph of D containing u and v. For a vertex v of D, the strong eccentricity $\mathrm{se}(v)$ is the strong distance between v and a vertex farthest from v. The minimum strong eccentricity among the vertices of D is the strong radius srad D, and the maximum strong eccentricity is its strong diameter sdiam D. It is shown that every pair r,d of integers with $3 \leq r \leq d \leq 2r$ is realizable as the strong radius and strong diameter of some strong oriented graph. Also, for every strong oriented graph D of order $n \geq 3$, it is shown that $\mathrm{sdiam}(D) \leq \lfloor 5(n-1)/3 \rfloor$. Furthermore, for every integer $n \geq 3$, there exists a strong oriented graph D of order n such that $\mathrm{sdiam}(D) = \lfloor 5(n-1)/3 \rfloor$.

Dedicated to Professor Stephen T. Hedetniemi on the occasion of his 60th birthday

AMS Subject Classification: 05C12, 05C20.

¹Research supported in part by the Western Michigan University Faculty Research and Creative Activities Grant

1 A Class of Minimally Strong Digraphs

A digraph D is strong if for every pair u, v of distinct vertices of D, there is both a directed u-v path and a directed v-u path in D. A digraph D is an oriented graph if D is obtained by assigning a direction to each edge of a graph G. The graph G is thus the underlying graph of D. In this paper we will be interested in strong oriented graphs. The underlying graph of a strong oriented graph is necessarily 2-edge connected.

A strong digraph D is called *minimally strong* if D-e is not strong for every arc e of D. In 1971, Hedetniemi [4] surveyed results on minimally strong digraphs and proved that a strong digraph D is minimally strong if and only if D contains no pseudocycle (a directed cycle the direction of one of whose arcs has been reversed). Minimally strong digraphs have also been studied by Brualdi and Manber [1], Chen and Zhang [2], and Geller [3].

We will be interested in a certain class of minimally strong oriented graphs. A strong oriented graph D is called a u-v strong path, where $u,v\in V(D)$, if there is no proper strong subdigraph of D containing u and v. An oriented graph D is simply called a strong path if D is a u-v strong path for some pair u,v of vertices of D. The directed cycle \overrightarrow{C}_n $(n\geq 3)$ is certainly a strong path (see \overrightarrow{C}_6 in Figure 1). The strong oriented graph D of Figure 1 is a strong path (indeed, it is a u-v strong path) and is minimally strong as well. While every strong path is minimally strong, a minimally strong oriented graph need not be a strong path. For example, the strong oriented graph D' of Figure 1 is minimally strong but is not a strong path.

Figure 1: Strong paths and minimally strong oriented graphs

We now make a few elementary observations concerning strong paths. We denote the arc set of an oriented graph D by E(D). Certainly if a u-v strong path D contains a directed u-v path P and a directed v-u path Q, then $H=\langle E(P)\cup E(Q)\rangle$ is a subdigraph of D. However, if H is a proper subdigraph of D, then we will have contradicted the definition of a strong path. This gives us the following.

Lemma 1.1 If D is a u-v strong path, then $D = \langle E(P) \cup E(Q) \rangle$, where P is some directed u-v path and Q is a directed v-u path.

As a consequence of Lemma 1.1, if P_1 and P_2 are both directed u-v paths in a u-v strong path D and Q_1 and Q_2 are directed v-u paths, then $E(P_1) \cup E(Q_1) = E(P_2) \cup E(Q_2)$. In an oriented graph D, the degree deg v of a vertex v is the sum of its outdegree and indegree, that is, deg $v = \operatorname{od} v + \operatorname{id} v$.

Lemma 1.2 If D is a u-v strong path, then $\deg u = \deg v = 2$.

Proof. By Lemma 1.1, $D = \langle E(P) \cup E(Q) \rangle$, where P is some u - v directed path and Q is some v - u path. Then u has outdegree 1 in P and indegree 1 in Q. Hence $\deg u = 2$ in P. Similarly, $\deg v = 2$.

Consequently, every strong path contains at least two vertices of degree 2. Since D is strong, no vertex can have degree 1. Let $P: u = v_1, v_2, \ldots, v_s = v$ be a u - v path in D and $Q: v = v_s, v_{s+1}, \ldots, v_t = u$ be a v - u path. Certainly, $v_1 = v_t$, but there may be indices s' and t' $(1 \le s' < s < t' < t)$ for which $v_{s'} = v_{t'}$. Each vertex x of D can occur at most twice in the closed walk v_1, v_2, \cdots, v_t , namely, once on P and once on Q, so deg $x \le 4$. Hence, the degree of every vertex of D is 2, 3, or 4.

We state some other facts about a directed u-v path in a u-v strong path.

Lemma 1.3 If $P: u = v_1, v_2, \dots, v_s = v$ is a shortest directed u - v path in a u - v strong path D, then for all integers i and j with $1 \le i < j \le s$, (v_i, v_j) is an arc of D if and only if j = i + 1. Furthermore, if x is a vertex of degree 3 or 4 in D then x lies on P.

We now have the following.

Corollary 1.4 Let D be a strong u-v path. Every vertex of D of degree 3 or 4 lies on both a directed u-v path and on a directed v-u path.

These observations imply that a u-v strong path consists of a single directed u-v path and a single directed v-u path.

Theorem 1.5 If D is a u-v strong path, then D contains a unique directed u-v path and a unique directed v-u path.

Proof. It suffices to show that D contains a unique directed u-v path. If D is a directed cycle, then the result follows immediately, so we may assume that D is not a directed cycle. Thus u and v are not adjacent. Let $P: u = v_1, v_2, \dots, v_s = v$ be a shortest directed u-v path in D and assume, to the contrary, that $P': u = v'_1, v'_2, \dots, v'_t = v$ is a directed u-v

path in D distinct from P. Since u and v have degree 2 in D, it follows that $v_2 = v_2'$ and $v_{s-1} = v_{t-1}'$. Let $a \ge 2$ be the smallest integer for which $v_a = v_a'$ and $v_{a+1} \ne v_{a+1}'$. If the degree of v_{a+1}' exceeds 2, it follows from Lemma 1.3 that v_{a+1}' lies on P and that $v_{a+1}' = v_k = v_k'$ for some k < a, which contradicts the assumption that P' is a directed path. Consequently, v_{a+1}' has degree 2.

Let b > a+1 be the smallest integer for which v_b' has degree 3 or 4. Thus v_b' lies on P and $v_b' = v_{b-\ell}$ for some $\ell \ge 0$, for otherwise the directed $u-v_b'$ path induced by P' is shorter than the directed $u-v_b'$ path induced by P, contradicting our choice of P. Since the vertices $v_{a+1}', v_{a+2}', \cdots, v_{b-1}'$ do not appear on P and D is a u-v strong path, it follows that every directed v-u path contains the vertices $v_{a+1}', v_{a+2}', \cdots, v_{b-1}'$. Let Q be a directed v-u path. Then we can form a directed v-u walk W by following Q to v_a' and then P to v_b' , and finally Q to u. So W does not contain any of $v_{a+1}', v_{a+2}', \cdots, v_{b-1}'$. Since W contains a directed v-u path Q', it follows that Q' does not contain any of $v_{a+1}', v_{a+2}', \cdots, v_{b-1}'$, which is a contradiction. Consequently, no such directed path P' exists.

2 Strong Distance

The familiar distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. Equivalently, this distance is the minimum size of a connected subgraph of G containing u and v. Using this equivalent formulation of distance, we extend this concept to connected digraphs, in particular to strongly connected (strong) oriented graphs.

Let D be a strong oriented graph of order $n \geq 3$ and size m. We define the strong distance $\operatorname{sd}(u,v)$ between u and v as the minimum size of a strong subdigraph of D containing u and v. A u-v strong geodesic is a strong subdigraph of D of size $\operatorname{sd}(u,v)$ containing u and v. If $u \neq v$, then $3 \leq \operatorname{sd}(u,v) \leq m$. Clearly, $\operatorname{sd}(u,v) = 3$ if and only if u and v belong to a directed 3-cycle in D. In the strong oriented graph of Figure 2, $\operatorname{sd}(v,w) = 3$, $\operatorname{sd}(u,v) = 4$, and $\operatorname{sd}(u,x) = 5$.

Strong distance is a metric on the vertex set of a strong oriented graph D. Certainly $\mathrm{sd}(u,v)=0$ if and only if u=v and $\mathrm{sd}(u,v)=\mathrm{sd}(v,u)$ for all $u,v\in V(D)$. It remains only to verify the triangle inequality. Let $u,v,w\in V(D)$. Furthermore, let D_1 be a u-v strong geodesic and D_2 a v-w strong geodesic. The subdigraph D_3 defined by $V(D_3)=V(D_1)\cup V(D_2)$ and $E(D_3)=E(D_1)\cup E(D_2)$ is strong and contains u and w. Also, the size of D_3 is at most $\mathrm{sd}(u,v)+\mathrm{sd}(v,w)$. Hence

$$\operatorname{sd}(u,w) \leq \operatorname{sd}(u,v) + \operatorname{sd}(v,w).$$

Figure 2: Strong distance in a strong oriented graph

Following common terminology used for distance in connected graphs, we define the *strong eccentricity* se(v) of a vertex v in a strong oriented graph D by

$$se(v) = \max\{sd(v, x) \mid x \in V(D)\}.$$

The strong radius srad(D) of D is

$$\operatorname{srad}(D) = \min\{\operatorname{se}(v) \mid v \in V(D)\};$$

while the strong diameter sdiam(D) of D is

$$\operatorname{sdiam}(D) = \max\{\operatorname{se}(v) \mid v \in V(D)\}.$$

The strong eccentricities of the vertices of the strong oriented graph D of Figure 3 are shown in the figure as well. Hence $\operatorname{srad}(D) = 6$ and $\operatorname{sdiam}(D) = 10$. Observe that, unlike the situation for eccentricities in connected graphs, if k is an integer such that $\operatorname{srad}(D) < k < \operatorname{sdiam}(D)$, then there need not be a vertex v of D such that $\operatorname{se}(v) = k$.

The strong radius and strong diameter of a strong oriented graph satisfy familiar inequalities, which are verified with familiar arguments.

Theorem 2.1 For every strong oriented graph D,

$$\operatorname{srad}(D) \leq \operatorname{sdiam}(D) \leq 2\operatorname{srad}(D)$$
.

Proof. The inequality $\operatorname{srad}(D) \leq \operatorname{sdiam}(D)$ follows directly from the definitions. To verify the other inequality, let u and w be vertices such that $\operatorname{sd}(u,w) = \operatorname{sdiam}(D)$ and let v be a vertex such that $\operatorname{se}(v) = \operatorname{srad}(D)$. Then

$$\operatorname{sdiam}(D) = \operatorname{sd}(u, w) \le \operatorname{sd}(u, v) + \operatorname{sd}(v, w) \le 2\operatorname{se}(v) = 2\operatorname{srad}(D).$$

We now show that every pair r, d of integers with $3 \le r \le d \le 2r$ is realizable as the strong radius and strong diameter of some strong oriented graph.

Figure 3: A strong oriented graph

Theorem 2.2 For every pair r, d of integers with $3 \le r \le d \le 2r$, there exists a strong oriented graph D with $\operatorname{srad}(D) = r$ and $\operatorname{sdiam}(D) = d$.

Proof. For d = r, let D be the directed cycle \overrightarrow{C}_r of order r. Then $\operatorname{srad}(D) = \operatorname{sdiam}(D) = r$, as desired. For d = 2r, let D be obtained from two copies D_1 and D_2 of \overrightarrow{C}_r by identifying a vertex in D_1 and a vertex in D_2 . Then $\operatorname{srad}(D) = r$ and $\operatorname{sdiam}(D) = 2r = d$ and we have the desired digraph.

We now assume that $d = r + \ell$, where $1 \le \ell \le r - 1$. We consider two cases.

Case 1. $\ell = 1$. Then let D be obtained from the directed cycle \overrightarrow{C}_{r+1} : $v_1, v_2, \dots, v_{r+1}, v_1$ by adding two arcs (v_1, v_3) and (v_2, v_4) . Then $\operatorname{se}(v_2) = \operatorname{se}(v_3) = r+1$ and $\operatorname{se}(v_i) = r$ for all i with $1 \le i \le r+1$ and $i \ne 2, 3$. Hence $\operatorname{srad}(D) = r$ and $\operatorname{sdiam}(D) = r+1$.

Case 2. $2 \le \ell \le r-1$. Let D be obtained from the directed cycle $\overrightarrow{C}_r: u_1, u_2, \cdots, u_r, u_1$ and the directed path $\overrightarrow{P}_{\ell-1}: v_1, v_2, \cdots, v_{\ell-1}$ by adding two arcs (u_2, v_1) and $(v_{\ell-1}, u_1)$. Now $\operatorname{se}(u_1) = \operatorname{se}(u_2) = r$ and $\operatorname{se}(v) = r + \ell = d$ for all $v \in V(D) - \{u_1, u_2\}$. Thus $\operatorname{srad}(D) = r$ and $\operatorname{sdiam}(D) = r + \ell = d$. Therefore, D has the desired property.

If H is a u-v strong geodesic in a strong oriented graph D, then certainly H has no proper strong subdigraph containing u and v. Hence every u-v strong geodesic in D is a u-v strong path in D. However, the converse is not true. Figure 4 shows a strong oriented graph D. The subdigraph D_2 is a u-v strong path but not a u-v strong geodesic. However, the subdigraph D_1 is a u-v strong geodesic as $\mathrm{sd}(u,v)=4$.

Certainly, every strong path contains a directed cycle. Thus if D is a strong path of order n and size m, then $m \ge n$. Since the length of a

Figure 4: Strong geodesics and strong paths

directed u-v path (and of a directed v-u path) is at most n-1, it follows that $m \leq 2n-2$ and so sdiam $D \leq 2n-2$.

3 An Upper Bound for the Strong Diameter of a Strong Oriented Graph

We have already noted that if D is a strong oriented graph of order $n \geq 3$, then $\operatorname{sdiam}(D) \leq 2(n-1)$ and so $\operatorname{sdiam}(D)/(n-1) \leq 2$. As we shall see, there is no strong oriented graph of order n for which $\operatorname{sdiam}(D)/(n-1) = 2$. In this section, we establish a sharp constant upper bound M for $\operatorname{sdiam}(D)/(n-1)$, thereby producing the sharp upper bound M(n-1) for all strong oriented graphs of order $n \geq 3$.

Let H be a strong oriented graph, and u and v be vertices of H such that sd(u,v) = sdiam(H). Furthermore, let D be a u-v strong geodesic in H. Thus the size |E(D)| of D is sdiam(H). As noted earlier, D is also a u-v strong path. Therefore,

$$\frac{\operatorname{sdiam}(H)}{|V(H)|} \ \leq \ \frac{\operatorname{sdiam}(H)}{|V(D)|} \ = \ \frac{|E(D)|}{|V(D)|}$$

and so

$$\frac{\text{sdiam}(H)}{|V(H)| - 1} \le \frac{|E(D)|}{|V(D)| - 1}.$$
 (1)

Hence (1) shows that if we can establish an upper bound for m/n for a strong path of order n and size m, then we will have found an upper bound for the strong diameter of a strong oriented graph in terms of its order.

For a u-v strong path D, let $V_2(D)$ denote the set of vertices of degree 2 in D. Since deg $u = \deg v = 2$, it follows that $|V_2(D)| \geq 2$. Let

 $X_2(D) = V_2(D) - \{u, v\}$. For a u-v strong path D, let D_{uv} and D_{vu} denote the unique directed u-v path and unique directed v-u path, respectively. We now present the first of four lemmas.

Lemma 3.1 For every strong path D of order n and size m with $X_2(D) \neq \emptyset$, there exists a strong path D' of order n' and size m' with $|X_2(D')| < |X_2(D)|$ such that $m'/n' \geq m/n$.

Proof. Let D be a u-v strong path such that $X_2(D) \neq \emptyset$. If all of the vertices of D_{uv} and D_{vu} have degree 2, then D is a directed cycle and m=n. Hence m/n=1 and surely any strong path D' of order n' and size m' satisfies $m'/n' \geq 1$. Hence we may assume that neither D_{uv} nor D_{vu} contains only vertices of degree 2.

Suppose first that D contains vertices $a, b \in X_2(D)$ such that a is adjacent to b. Let d be the vertex adjacent to a and c be the vertex adjacent from b. Now $c \neq d$ since D is a u-v strong path. We construct a new digraph D' by deleting b (and its two incident arcs) and adding the arc (a, c). Clearly, D' is a u-v strong path of order n-1 and size m-1. Since $|X_2(D')| = |X_2(D)| - 1$ and $(m-1)/(n-1) \geq m/n$, we have the desired result. Thus we may assume that every vertex of degree 2 is adjacent to and from vertices of degree 3 or 4 if neither of these vertices is u or v.

Let $t \in X_2(D)$. Then t is adjacent from a vertex x and to a vertex y. We now describe a desired u - v strong path whose construction depends on whether x and y are adjacent.

If x and y are not adjacent in D, then D' is constructed by deleting t (and its two incident arcs) and adding the arc (x,y). If x and y are adjacent, then necessarily (y,x) is an arc of D since D is a u-v strong path and D_{uv} and D_{vu} are the unique directed u-v path and directed v-u path in D. If (y,x) is an arc in D, then D' is constructed from D by deleting t (and its two incident arcs), the arc (y,x), and adding two new vertices x_1 and y_1 together with the arcs (x,x_1) , (x_1,y_1) , (y_1,y) , (y_1,x) , and (y,x_1) . See Figure 5.

Let D' be a digraph of order n' and size m'. We show that $m'/n' \ge m/n$. In the case where x and y are not adjacent, n' = n - 1 and m' = m - 1 and $m'/n' \ge m/n$. In the case where (y, x) is an arc of D, n' = n + 1 and m' = m + 2 and, once again, $m'/n' \ge m/n$ since $m \le 2n - 2$. It remains only to show that D' is a u - v strong path. Certainly D' is

It remains only to show that D' is a u-v strong path. Certainly D' is strong and contains both u and v. Thus D' contains a u-v strong path D''. We show that D''=D' in both cases.

Case 1. x and y are not adjacent in D (so that (x,y) is an arc in D'). Necessarily, D'' contains the arc (x,y) as well, for otherwise neither D_{uv} nor D_{vu} contains the vertex t, contradicting the fact that D is a strong path. Therefore, if $D'' \neq D'$, then D' contains some arc (w,z) that is not

Figure 5: Constructing D'

present in D''. Consequently, there is both a directed u-v path and a directed v-u path in D' that do not contain the arc (w,z). Hence there is a directed u-v path and a directed v-u path in D that do not contain (w,z), contradicting the fact that D is a strong path.

Case 2. x and y are adjacent. The argument here is similar to Case 1 and is therefore omitted.

As a consequence of Lemma 3.1, the maximum value of the ratio m/n for a strong path of order n and size m occurs among those strong paths D for which $X_2(D) = \emptyset$. Hence, with the exception of the two vertices of degree 2, every vertex of D has degree 3 or 4. The next two lemmas show that there are some restrictions on the location of vertices of degree 4 in a u-v strong path in which u and v are the only vertices of degree 2.

Lemma 3.2 In any u - v strong path D with $X_2(D) = \emptyset$, neither u nor v is adjacent to or from a vertex of degree 4.

Proof. Assume first that u is adjacent to a vertex of degree 4. Let D_{uv} : $u = v_1, v_2, \dots, v_n = v$. Since od u = 1, it follows that deg $v_2 = 4$. Then v_2 is adjacent to v_3 and a vertex v_k with k > 3. However, this contradicts Lemma 1.3.

Assume next that u is adjacent from a vertex of degree 4. Let D_{vu} : $v = u_1, u_2, \dots, u_n = u$. Since id u = 1, it follows that deg $u_{n-1} = 4$. Then u_{n-1} is adjacent from u_{n-2} and a vertex u_r with r < n-2. This again contradicts Lemma 1.3.

Lemma 3.3 If D is a strong path with $X_2(D) = \emptyset$, then no two vertices of degree 4 are adjacent in D.

Proof. Let D be a u-v strong path and assume, to the contrary, that D contains two vertices x and y of degree 4 such that (x, y) is an arc of D. Since D is a strong path, (x, y) lies on at least one of D_{uv} or D_{vu} ,

say D_{uv} . Hence we may assume that D_{uv} is the directed u-v path $u=v_1,v_2,\cdots,v_i=x,v_{i+1}=y,\cdots,v_n=v$. By Corollary 1.4, x and y lie on D_{vu} as well. Let D_{vu} be the directed v-u path $v=v_n,v_{r_2},v_{r_3},\cdots,v_{r_{n-1}},v_1=u$. Thus $i=r_s$ and $i+1=r_t$ for distinct integers s and t. Necessarily, $r_{s+1}\neq i+1,\ r_{s-1}\neq i-1,\ r_{t+1}\neq i+2,\$ and $r_{t-1}\neq i.$ By Lemma 3.2, no neighbor of x and y is u or v.

We now consider two cases, according to whether s < t or s > t.

Case 1 s < t. Then $v = v_n, v_{r_2}, v_{r_3}, \dots, v_{r_{s-1}}, v_i, v_{i+1}, v_{r_{i+1}}, \dots, v_1 = u$ is a directed v - u path whose length is less than that of D_{vu} , which is impossible.

Case 2 s > t. Lemma 1.3 implies that $r_{t+1} < r_s = i$. But then the path

$$v = v_n, v_{r_2}, \ldots, v_{r_t}, v_{r_{t+1}}, v_{r_{t+1}+1}, v_{r_{t+1}+2}, \ldots, v_{i-1}, v_i = v_{r_s}, v_{r_{s+1}}, \ldots, v_1 = u$$

is a directed v-u path that, unlike D_{vu} , contains the arc (v_{i-1}, v_i) . This contradicts the uniqueness of D_{vu} .

We observed in Lemma 3.2 that if D is a u-v strong path for which $X_2(D) = \emptyset$, then u and v are adjacent to and from vertices of degree 3. In the next lemma, we provide additional information about the vertices of degree 3 in D.

Lemma 3.4 Let $D_{uv}: v_1, v_2, \dots, v_n$ be the unique directed u-v path in $a \ u-v$ strong path D with $X_2(D)=\emptyset$, and let v_i be a vertex of degree 3.

- (a) If $id v_i = 2$, then $deg v_{i+1} = 3$ and $od v_{i+1} = 2$.
- (b) If od $v_i = 2$, then deg $v_{i-1} = 3$ and id $v_{i-1} = 2$.

Proof. Let $D_{vu}: v = v_n, v_{r_2}, v_{r_3}, \dots, v_{r_{n-1}}, v_1 = u$, where $i = r_s$. Assume first that id $v_i = 2$. Then $i + 1 = r_{s+1}$. Since v_{i+1} immediately follows v_i both on D_{uv} and D_{vu} and $deg v_{i+1} \neq 2$, it follows that $deg v_{i+1} = 3$ and od $v_{i+1} = 2$. This establishes (a). The proof of (b) is similar.

We are now prepared to present the desired upper bound for the strong diameter of a strong oriented graph.

Theorem 3.5 If D is a strong path of order $n \geq 3$ and size m, then

$$\frac{m}{n-1} \le \frac{5}{3}.$$

Proof. Let D be a u-v strong path. By Lemma 3.1, we may assume that $X_2(D) = \emptyset$. Let $D_{uv}: u = v_1, v_2, v_3, \dots, v_{n-1}, v_n = v$ be the unique directed u-v path in D. Then v_1 and v_n are the only vertices of degree 2 in D. By Lemma 3.2, vertices v_2 and v_{n-1} have degree 3. By Lemmas 3.3

and 3.4, at most one-third of the vertices v_i $(3 \le i \le n-2)$ have degree 4. Thus

$$2m \le 2 \cdot 2 + 2 \cdot 3 + \frac{1}{3}(n-4) \cdot 4 + \frac{2}{3}(n-4) \cdot 3 = \frac{10n-10}{3}$$

and so $\frac{m}{n-1} \le \frac{5}{3}$.

Combining Theorem 3.5 and inequality (1), we have the following.

If D is a strong oriented graph of order $n \geq 3$, then Corollary 3.6

$$\operatorname{sdiam}(D) \leq \frac{5}{3}(n-1).$$

The upper bound for sdiam(D) given in Corollary 3.6 is sharp; indeed, it is attainable for every integer $n \geq 3$, as is show in Figure 6.

Figure 6: Strong oriented graphs D of order $n \geq 3$ with sdiam(D) = [5(n-1)/3]

References

[1] R. Brualdi and R. Manber, On strong digraphs with a unique minimally strong subdigraph. Discrete Math. 71 (1988) no. 1, 1-7.

- [2] Z. Chen and F. Zhang, Bounds of the longest directed cycle length for minimal strong digraphs. *Discrete Math.* 68 (1988) no. 1, 9-13.
- [3] D. P. Geller, Minimally strong digraphs. Proc. Edinburgh Math. Soc. (2) 17 (1970) 15-22.
- [4] S. T. Hedetniemi, Characterizations and constructions of minimally 2-connected graphs and minimally strong digraphs. Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., (1971) 257-282.