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ABSTRACT

For two vertices u and v in a strong oriented graph D of order n > 3,
the strong distance sd(u,v) between u and v is the minimum size of a
strong subdigraph of D containing v and v. For a vertex v of D, the
strong eccentricity se(v) is the strong distance between v and a vertex
farthest from v. The minimum strong eccentricity among the vertices of
D is the strong radius srad D, and the maximum strong eccentricity is its
strong diameter sdiam D. It is shown that every pair r,d of integers with
3 < r < d < 2r is realizable as the strong radius and strong diameter of
some strong oriented graph. Also, for every strong oriented graph D of
order n > 3, it is shown that sdiam(D) < |5(n — 1)/3]. Furthermore, for
every integer n > 3, there exists a strong oriented graph D of order n such
that sdiam(D) = |5(n — 1)/3].
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1 A Class of Minimally Strong Digraphs

A digraph D is strong if for every pair u, v of distinct vertices of D, there is
both a directed u — v path and a directed v — u path in D. A digraph D is
an oriented graph if D is obtained by assigning a-direction to each edge of
a graph G. The graph G is thus the underlying graph of D. In this paper
we will be interested in strong oriented graphs. The underlying graph of a
strong oriented graph is necessarily 2-edge connected.

A strong digraph D is called minimally strong if D — e is not strong for
every arc e of D. In 1971, Hedetniemi [4] surveyed results on minimally
strong digraphs and proved that a strong digraph D is minimally strong
if and only if D contains no pseudocycle (a directed cycle the direction of
one of whose arcs has been reversed). Minimally strong digraphs have also
been studied by Brualdi and Manber [1], Chen and Zhang [2], and Geller
[3].

We will be interested in a certain class of minimally strong oriented
graphs. A strong oriented graph D is called a u — v strong path, where
u,v € V(D), if there is no proper strong subdigraph of D containing u and
v. An oriented graph D is simply called a strong path if D is a u — v strong
path for some pair u, v of vertices of D. The directed cycle 6,. (n>3)is
certainly a strong path (see 'c*s in Figure 1). The strong oriented graph
D of Figure 1 is a strong path (indeed, it is a u — v strong path) and is
minimally strong as well. While every strong path is minimally strong, a
minimally strong oriented graph need not be a strong path. For example,
the strong oriented graph D' of Figure 1 is minimally strong but is not a
strong path.

65: D: Y 2 D

Figure 1: Strong paths and minimally strong oriented graphs

We now make a few elementary observations concerning strong paths.
We denote the arc set of an oriented graph D by E(D). Certainly if a u— v
strong path D contains a directed u— v path P and a directed v—u path @,
then H = (E(P) U E(Q)) is a subdigraph of D. However, if H is a proper
subdigraph of D, then we will have contradicted the definition of a strong
path. This gives us the following.
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Lemma 1.1  If D is a u—v strong path, then D = (E(P) U E(Q)), where
P is some directed u — v path and Q is a directed v — u path.

As a consequence of Lemma 1.1, if P, and P, are both directed u — v
paths in a u — v strong path D and Q; and Qg are directed v — u paths,
then E(P,)U E(Q1) = E(P2) U E(Q2). In an oriented graph D, the degree
deg v of a vertex v is the sum of its outdegree and indegree, that is, degv =
odv+idwv.

Lemma 1.2 If D is a u — v strong path, then degu = degv = 2.

Proof. By Lemma 1.1, D = (E(P)U E(Q)), where P is some u — v
directed path and Q is some v — u path. Then u has outdegree 1 in P and
indegree 1 in Q. Hence degu = 2 in D. Similarly, degv = 2. -

Consequently, every strong path contains at least two vertices of de-
gree 2. Since D is strong, no vertex can have degree 1. Let P : u =
vi,v2,...,Vs =vbeau—vpathin D and Q : v = v5,541,...,0 = U
be a v — u path. Certainly, v; = v, but there may be indices s’ and ¢’
(1< s <s<t'<t) for which v = vyr. Each vertex z of D can occur at
most twice in the closed walk vy, vg, - - -, v, namely, once on P and once on
@, so deg z < 4. Hence, the degree of every vertex of D is 2, 3, or 4.

We state some other facts about a directed 4 — v path in a u — v strong
path.

Lemma 1.3 IfP:u=uv,vs,-,vs =V is a shortest directed u—v path
in a u — v strong path D, then for all integers i and j with1 <i< j<s,
(vi, v;) is an arc of D if and only if j = i+ 1. Furthermore, if z is a vertex
of degree 3 or 4 in D then z lies on P.

We now have the following,.

Corollary 1.4  Let D be a strong u—v path. Every vertex of D of degree
3 or 4 lies on both a directed u — v path and on a directed v — u path.

These observations imply that a 4 — v strong pa.f,h consists of a single
directed u — v path and a single directed v — u path.

Theorem 1.5 If D is a u — v strong path, then D contains a unique
directed u — v path and a unique directed v — u path.

Proof. It suffices to show that D contains a unique directed u — v path.
If D is a directed cycle, then the result follows immediately, so we may
assume that D is not a directed cycle. Thus u and v are not adjacent.
Let P :u = v;,vp, --,vs = v be a shortest directed u — v path in D and
assume, to the contrary, that P’ :u = v{,v5,---,v; = v is a directed u — v
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path in D distinct from P. Since u and v have degree 2 in D, it follows
that v, = v} and v,_; = vi1- Let @ > 2 be the smallest integer for which
Ya = v and vay1 # vl,,. If the degree of Vg4 exceeds 2, it follows from
Lemma 1.3 that v}, lies on P and that Va1 = Y = v} for some k < a,
which contradicts the assumption that P’ is a directed path. Consequently,
Vg4, has degree 2.

Let b > a + 1 be the smallest integer for which v, has degree 3 or 4.
Thus v} lies on P and v, = vy for some £ > 0, for otherwise the directed
u — vy, path induced by P’ is shorter than the directed u — v;, path induced
by P, contradicting our choice of P. Since the vertices Vat1sVapas * Vp_y
do not appear on P and Disa u— v strong path, it follows that every
directed v — u path contains the vertices Vat1, Yot Uh_,- Let Q be
a directed v — u path. Then we can form a directed v — u walk W by
following Q to v} and then P to v, and finally Q to u. So W does not

contain any of v}, v} 4, -+, v,_,. Since W contains a directed v — u path
@', it follows that Q' does not contain any of vg 1,5, 5, -, v5_,, which is
a contradiction. Consequently, no such directed path P’ exists. =

2 Strong Distance

The familiar distance d(u,v) between two vertices u and v in a connected
graph G is the length of a shortest u — v path in G. Equivalently, this
distance is the minimum size of a connected subgraph of G containing u
and v. Using this equivalent formulation of distance, we extend this concept
to connected digraphs, in particular to strongly connected (strong) oriented
graphs.

Let D be a strong oriented graph of order n > 3 and size m. We define
the strong distance sd(u,v) between u and v as the minimum size of a
strong subdigraph of D containing u and v. A u—v strong geodesic is a
strong subdigraph of D of size sd(u,v) containing » and v. If # v, then
3 <sd(u,v) < m. Clearly, sd(u,v) = 3 if and only if u and v belong to a
directed 3-cycle in D. In the strong oriented graph of Figure 2, sd(v, w) = 3,
sd(u,y) = 4, and sd(u,z) = 5.

Strong distance is a metric on the vertex set of a strong oriented graph
D. Certainly sd(u,v) = 0 if and only if u = v and sd(u, v) = sd(v, u) for all
u,v € V(D). It remains only to verify the triangle inequality. Let u, v, w €
V(D). Furthermore, let D; be a u — v strong geodesic and Dy a v — w
strong geodesic. The subdigraph D3 defined by V(Ds) = V(D) UV(D,)
and E(Ds) = E(D,) U E(D,) is strong and contains « and w. Also, the
size of Dj is at most sd(u, v) + sd(v, w). Hence

sd(u, w) < sd(u,v) + sd(v, w).
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Figure 2: Strong distance in a strong oriented graph

Following common terminology used for distance in connected graphs,
we define the strong eccentricity se(v) of a vertex v in a strong oriented
graph D by

se(v) = max{sd(v,z) | z € V(D)}.

The strong radius srad(D) of D is
srad(D) = min{se(v) | v € V(D)};
while the strong diameter sdiam(D) of D is
sdiam(D) = max{se(v) | v € V(D)}.

The strong eccentricities of the vertices of the strong oriented graph
D of Figure 3 are shown in the figure as well. Hence srad(D) = 6 and
sdiam(D) = 10. Observe that, unlike the situation for eccentricities in
connected graphs, if k is an integer such that srad(D) < k < sdiam(D),
then there need not be a vertex v of D such that se(v) = k.

The strong radius and strong diameter of a strong oriented graph satisfy
familiar inequalities, which are verified with familiar arguments.

Theorem 2.1  For every strong oriented graph D,
srad(D) < sdiam(D) < 2srad(D).

Proof. The inequality srad(D) < sdiam(D) follows directly from the def-
initions. To verify the other inequality, let u and w be vertices such that
sd(u, w) = sdiam(D) and let v be a vertex such that se(v) = srad(D). Then

sdiam(D} = sd(u, w) < sd(u,v) + sd(v,w) < 2se(v) = 2srad(D). (]

We now show that every pair r,d of integers with 3 < r < d < 2r is
realizable as the strong radius and strong diameter of some strong oriented
graph.
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Figure 3: A strong oriented graph

Theorem 2.2  For every pairr, d of integers with3 < r < d < 2r there
exzists a strong oriented graph D with srad(D) = r and sdlam(D)

Proof. For d = r, let D be the directed cycle C‘, of order r. Then
srad(D) = sdiam(D) = r, as desired. For d = 2r, let D be obtained from
two copies D; and D, of 6, by identifying a vertex in D; and a vertex in
D,. Then srad(D) = r and sdiam(D) = 2r = d and we have the desired
digraph.

We now assume that d = r + ¢, where 1 < £ < r — 1. We consider two
cases.
Case 1. £ = 1. Then let D be obtained from the directed cycle 6,“ :
v1,v2," -, VUr41,v1 by adding two arcs (v1,v3) and (v2,vs). Then se(vy) =
se(vz) = r+1and se(v;) =r forall i with 1 <i < r+41andi+#2,3. Hence
srad(D) = r and sdiam(D) = r + 1.
Case 2. 2 < £ < r—1. Let D be obtained from the directed cycle

r 1 Up,u2,---,Ur,u; and the directed path P,y : vy,vq,---,v,_; by
adding two arcs (u2,v1) and (ve—1,u1). Now se(u;) = se(uz) = r and
se(v) = r+ £ = d for all v € V(D) - {u1,uz}. Thus srad(D) = r and
sdiam(D) = r + £ = d. Therefore, D has the desired property. n

If H is a u — v strong geodesic in a strong oriented graph D, then
certainly H has no proper strong subdigraph containing « and v. Hence
every u — v strong geodesic in D is a u — v strong path in D. However,
the converse is not true. Figure 4 shows a strong oriented graph D. The
subdigraph D, is a u — v strong path but not a u — v strong geodesic.
~ However, the subdigraph D, is a u — v strong geodesic as sd(u,v) = 4.

Certainly, every strong path contains a directed cycle. Thus if D is a
strong path of order n and size m, then m > n. Since the length of a
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Figure 4: Strong geodesics and strong paths

directed u—v path (and of a directed v—u path) is at most n—1, it follows
that m < 2n — 2 and so sdiam D < 2n — 2.

3 An Upper Bound for the Strong Diameter
of a Strong Oriented Graph

We have already noted that if D is a strong oriented graph of order n > 3,
then sdiam(D) < 2(n — 1) and so sdiam(D)/(n — 1) < 2. As we shall
see, there is no strong oriented graph of order n for which sdiam(D)/(n —
1) = 2. In this section, we establish a sharp constant upper bound M for
sdiam(D)/(n — 1), thereby producing the sharp upper bound M (n—1) for
all strong oriented graphs of order n > 3.

Let H be a strong oriented graph, and u and v be vertices of H such
that sd(u,v) = sdiam(H). Furthermore, let D be a u — v strong geodesic
in H. Thus the size |E(D)| of D is sdiam(H). As noted earlier, D is also
a u — v strong path. Therefore,

sdiam(H) sdiam(H) _ |E(D)|
vHE) = V(D) V(D)|

and so

sdiam(H) |E(D)| (1)
V(H) -1 = V(D) -1

Hence (1) shows that if we can establish an upper bound for m/n for a
strong path of order n and size m, then we will have found an upper bound
for the strong diameter of a strong oriented graph in terms of its order.
For a u — v strong path D, let V3(D) denote the set of vertices of
degree 2 in D. Since degu = degv = 2, it follows that |[Va(D)| > 2. Let
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X2(D) = Vo(D)—{u,v}. Forau—v strong path D, let Dy, and D, denote
the unique directed u— v path and unique directed v — u path, respectively.
We now present the first of four lemmas.

Lemma 3.1  For every strong path D of order n and size m with X2(D) #
0, there exists a strong path D' of order n' and size m' with | X2(D')f <
[X2(D)| such that m'/n' > m/n.

Proof. Let D be a u — v strong path such that X2(D) # 0. If all of
the vertices of Dy, and D,, have degree 2, then D is a directed cycle and
m = n. Hence m/n = 1 and surely any strong path D’ of order n’ and size
m’ satisfies m’/n’ > 1. Hence we may assume that neither Dy, nor Dy,
contains only vertices of degree 2.

Suppose first that D contains vertices a,b € X3(D) such that a is ad-
Jacent to b. Let d be the vertex adjacent to a and ¢ be the vertex adjacent
from b. Now ¢ # d since Disa u—wv strong path. We construct a new
digraph D’ by deleting b (and its two incident arcs) and adding the arc
(a,c). Clearly, D'isau—v strong path of order n — 1 and size m — 1. Since
| X2(D')| = |X2(D)] - 1 and (m — 1)/(n — 1) > m/n, we have the desired
result. Thus we may assume that every vertex of degree 2 is adjacent to
and from vertices of degree 3 or 4 if neither of these vertices is u or v.

Let t € X2(D). Then t is adjacent from a vertex z and to a vertex .
We now describe a desired u — v strong path whose construction depends
on whether z and y are adjacent.

If z and y are not adjacent in D, then D’ is constructed by deleting ¢
(and its two incident arcs) and adding the arc (z,y). If z and y are adjacent,
then necessarily (y,z) is an arc of D since D is a u — v strong path and
Dyy and D,y are the unique directed « — v path and directed v — u path
in D. If (y,z) is an arc in D, then D’ is constructed from D by deleting ¢
(and its two incident arcs), the arc (y, z), and adding two new vertices z,
and y; together with the arcs (z, 1), (z1,31), (»1,9), (v1,2), and (y,z1).
See Figure 5.

Let D' be a digraph of order n’ and size m’. We show that m’ /n’' > m/n.
In the case where = and y are not adjacent, n’ =n—1and m' = m — 1
and m’/n’ > m/n. In the case where (y, z) is an arc of D,n"=n+1 and
m’ = m + 2 and, once again, m'/n’ > m/n since m <2n-2.

It remains only to show that D’ is a u — v strong path. Certainly D' is
strong and contains both u and v. Thus D’ contains a u — v strong path
D". We show that D" = D' in both cases.

Case 1. =z and y are not adjacent in D (so that (z, y) is an arc in D').
Necessarily, D" contains the arc (z,y) as well, for otherwise neither Dy,
nor Dy, contains the vertex ¢, contradicting the fact that D is a strong
path. Therefore, if D" # D’, then D’ contains some arc (w, 2) that is not
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Figure 5: Constructing D’

present in D". Consequently, there is both a directed v — v path and a
directed v — u path in D' that do not contain the arc (w,z). Hence there
is a directed © — v path and a directed v — u path in D that do not contain
(w, 2), contradicting the fact that D is a strong path.

Case 2. z and y are adjacent. The argument here is similar to Case 1
and is therefore omitted. =

As a consequence of Lemma 3.1, the maximum value of the ratio m/n
for a strong path of order n and size m occurs among those strong paths
D for which X3(D) = @. Hence, with the exception of the two vertices of
degree 2, every vertex of D has degree 3 or 4. The next two lemmas show
that there are some restrictions on the location of vertices of degree 4 in a
u — v strong path in which u and v are the only vertices of degree 2.

Lemma 3.2  In any u— v strong path D with X5(D) = @, neither u nor
v is adjacent to or from a vertex of degree 4.

Proof. Assume first that u is adjacent to a vertex of degree 4. Let D, :
u = v;,v2,--+,Up = v. Since odu = 1, it follows that degvy = 4. Then
vy is adjacent to vz and a vertex vy with k > 3. However, this contradicts
Lemma 1.3.

Assume next that u is adjacent from a vertex of degree 4. Let D,,, :

v = uj,uy, -, U, = u. Since idu = 1, it follows that degu,_; = 4. Then
un_1 is adjacent from u,_2 and a vertex u, with » < n — 2. This again
contradicts Lemma 1.3. ]

Lemma 3.3  If D is a strong path with Xo(D) = 0, then no two vertices
of degree 4 are adjacent in D.

Proof. Let D be a u — v strong path and assume, to the contrary, that
D contains two vertices z and y of degree 4 such that (z,y) is an arc of
D. Since D is a strong path, (z,y) lies on at least one of Dy, or D,
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say Dy,. Hence we may assume that Dy, is the directed u — v path u =
V1,2, ",V =Z,Vi41 =Y, -,V = v. By Corollary 1.4, z and y lie on D,,,
as well. Let D, be the directed v—u path v = v,, Urgy Urgy***y Upp_y, V1 = U.
Thus ¢ = r; and i + 1 = 7, for distinct integers s and ¢. Necessarily,
Tspr Fi+lreo1#Fi—1, 41 #i+2, and r—; # i. By Lemma 3.2, no
neighbor of z and y is u or v.

We now consider two cases, according to whether s < ¢ or s > ¢.

Case 1 s <t. Then v =uvp,vy,, Vpy," T Vs Uiy Vi1, Upggyy V) = U
is a directed v — u path whose length is less than that of Dy, which is
impossible.

Case 2 s > t. Lemma 1.3 implies that Te4+1 < vs = i. But then the
path

V=9n,Ur,,-. ')vrnvrﬁ.pvrg+|+l)vr¢+|+2) Ui L U = U Uy, -, S U

is a directed v — u path that, unlike D,,, contains the arc (vi-1,v). This
contradicts the uniqueness of D,,,,. ]

We observed in Lemma 3.2 that if D is a u — v strong path for which
X2(D) = @, then u and v are adjacent to and from vertices of degree 3.
In the next lemma, we provide additional information about the vertices of
degree 3 in D.

Lemma 3.4  Let Dy, : v1,vz,---,v, be the unique directed u— v path in
a u — v strong path D with X3(D) = @, and let v; be a vertex of degree 3.
(a) Ifidv; =2, then degvit1 = 3 and odviy; = 2.
(b) Ifodv; =2, then degv;_; = 3 and idv;_, = 2.

Proof. Let Dyy : v =vpn, ¥, 0, ++,¥,_,,v1 = 4, where i = r,. Assume
first that idv; = 2. Then i 4+ 1 = r,4,. Since vi41 immediately follows v;
both on Dy, and D,, and degvi;; # 2, it follows that degviy1 = 3 and
od vi4+1 = 2. This establishes (a). The proof of (b) is similar. n

We are now prepared to present the desired upper bound for the strong
diameter of a strong oriented graph.

Theorem 3.5 If D is a strong path of order n > 3 and size m, then

(4]

m

n-—1 < 3

Proof. Let D be a u — v strong path. By Lemma 3.1, we may assume
that X3(D) = 0. Let Dy, : u = v1,v2,v3,"*+,Un=1,9, = v be the unique
directed u — v path in D. Then v; and v, are the only vertices of degree 2
in D. By Lemma 3.2, vertices v and v,_; have degree 3. By Lemmas 3.3
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and 3.4, at most one-third of the vertices v; (3 < ¢ < n — 2) have degree 4.
Thus

10n - 10

2
(n—4)-3= 3

2m52~2+2.3+§(n—4)-4+3

and so ;27 < 5 .
Cornbmlng Theorem 3.5 and inequality (1), we have the following.

Corollary 3.6  If D is a strong oriented graph of order n > 3, then

sdiam(D) < —g—(n -1).

The upper bound for sdiam(D) given in Corollary 3.6 is sharp; indeed,
it is attainable for every integer n > 3, as is show in Figure 6.

n =0 (mod 3)
n =1 (mod 3)
n = 2 (mod 3)

Figure 6: Strong oriented graphs D of order n > 3 with sdiam(D) =
[5(n —1)/3]
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