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ABSTRACT. It has been conjectured that the smallest cardinal-
ity 6(G) of a perfect neighbourhood set of a graph is bounded
above by ir (G), the smallest order of a maximal irredundant
set. We prove results concerning the construction of perfect
neighbourhood sets from irredundant sets which could help to
resolve the conjecture and which establish that 6(G) < ir (G)
in certain cases. In particular the inequality is proved for claw—
free graphs and for any graph which has an ir-set S whose
induced subgraph has at most six non-isolated vertices.

Dedicated to Professor Stephen T. Hedetniemi
on the occasion of his 60th birthday

1 Introduction

For a simple graph G and S C V = V(G), vertex u of G is called S—perfect
if [IN[u] N S| =1 (N(u), N[u] will denote the open (closed) neighbourhoods
of vertex w). The set S is called a perfect neighbourhood set (abbreviated,
S is a PN-set) if for all v € V, v or some neighbour of v is S—perfect. We
observe that S is a PN-set if and only if the set of S—perfect vertices is a
dominating set of G. The parameters (G) and ©(G) are the smallest and

largest cardinalities of PN-sets of G.
For s € § C V, the S—private neighbourhood of s, is the set

pn(s,S) = N[s] - N[S - {s}],
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where for A C V, N[A] denotes the union of closed neighbourhoods of
elements of A. Elements of pn (s, S) are called S-private neighbours of s.
An S-private neighbour of s is either s itself, in which case s is an isolated
vertex of G[S], or is a neighbour of s in V' — S which is not adjacent
to any vertex of S — {s}. This latter type will be called an ezternal S-
private neighbour (abbreviated S—epn) of s. Observe that s; # s2 implies
pn(s;,S) N pn(sy,S) = 0. The set S is irredundant if for all s € S,
pn (s, S) # 0 and the parameters ir (G), IR (G) are the smallest and largest
cardinalities of maximal irredundant sets of G.

Perfect neighbourhood sets and irredundant sets are clearly related. Ob-
serve that |N[z] N S| = 1 if and only if z € pn(s,S) for some s € S.
Thus the set of S—-perfect vertices is precisely |J pn(s,S). Our first result
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follows.
Proposition 1. [3] If S is a PN-set, then S is irredundant.

Proof: Suppose S is not irredundant. Then there exists s € S with
pn(s,S) = 0. Neither s nor any neighbour of s is S—perfect, hence S
is not a PN—set.

Perfect neighbourhood sets were introduced and researched by Fricke,
Haynes, Hedetniemi, Hedetniemi and Henning [5]. These authors defined
PN-sets while studying functions f: V — {0,1} subject to various edge
and neighbourhood conditions, examples of which are given in [5, 7]. If the
function f satisfies the condition that for all u € V, there exists v € N[u]
with 3, vy f(%) = 1, then S = {s € V|f(s) = 1} is a PN-set.

The following relations involving perfect neighbourhood parameters and
v(G) and I'(G), the smallest and largest cardinalities of minimal dominating
sets of G, were obtained in [5).

Theorem 2. [5] For any graph G, (a) 6(G) < ¥(G) (b) ©(G) =
I'(G).

Irredundant sets have been well-studied in the literature. The reader is
referred to [1, 6, 8] for bibliographies containing approximately one hundred
references. It is well-known that for any graph G, ir(G) < ¥(G). In view
of this inequality and Theorem 2(a), the authors of [5] were led to compare
ir (G) and 8(G) and conjectured that for any graph G, (G) < ir (G).

In (3] Cockayne, Hedetniemi, Hedetniemi and Mynhardt proved that for
any maximal irredundant set S of a tree T, there exists an independent
PN-set U with |U| < |S|. This clearly implies that 8(T) < ir (T) for any
tree T.

In this paper we continue work on the conjecture (G) < ir (G). We prove
a variety of results concerning the construction of perfect neighbourhood
sets from maximal irredundant sets under certain special conditions. It
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is hoped that these results and the ideas involved in their proofs will be
useful in an eventual resolution of the conjecture. These results are applied
to prove that if G is claw—free or G has an ir-set (i.e. a maximal irredundant
set of minimum cardinality) S for which G[S] has at most six non-isolated
vertices, then §(G) < ir (G).

2 PN-sets from maximal irredundant sets

As noted in (3], a vertex subset S of G induces a partition of the vertex set.
Specifically

V=25UFsUYsUEsUQsURg (disjoint union) (1)
where
Zs = {v € V| is isolated in G[S]},
Ys=5-12s,
Fs={veV —S|vis an S-epn of a vertex of Zs},
Es={veV - S’I'u is an S—epn of a vertex of Ys},
Rs={veV -S|Np]n S =0}
and

Qs ={veV-§[IN(w)n S| >2}.

We will often deal with irredundant sets S such that G[9] is isolate—free,
in which case Zg = Fg = 0.

Several proofs will require the following characterisation of maximal ir-
redundant sets given by Cockayne, Grobler, Hedetniemi and McRae [2].

Theorem 3. The irredundant set S of a graph G is maximal if and only
if for each v € N[Rg], there exists s € S such that pn(s,S) C N[r].

If r € N[Rs] and s is a vertex whose existence is asserted by Theorem 3,
then we say that r annihilates s.

For subsets A, B of V, A dominates B (denoted A > B) if B C NJ[A].
Further, we abbreviate A > {b} to A > b. We say that vertex v is adjacent
to A if v is adjacent to some vertex of A and that A is adjacent to B if ab
is an edge of G for some a € A, b € B. The next result which will be used
extensively to prove that sets have the PN property, was given in [3].

Proposition 4. The irredundant set S is a PN-set if and only if Es U
FsUZs»>V.

Proof: The set of S-perfect vertices is Eg U Fg U Zg.
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Our first new theorem will show that isolated vertices of the subgraph
induced by maximal irredundant sets may be ignored in the quest to settle
the conjecture.

Theorem 5. Suppose that for any graph H and any maximal irredundant
set T of H with Zr = 0, there exists a PN-set Uy of H with |Uy| < |T|.
Then for any graph G, 8(G) < ir(G).

Proof: Let S be an ir-set of G. If Zs = @, then the result is true by
hypothesis. If Y5 = 0, then S is independent and hence dominating. It
follows that ir (G) = y(G) and 8(G) < ir (G) by Theorem 2(a).

So we may assume that Ys # @ and Zg # 0. Define Q5 = {v € Qsl'v is
adjacent to Zs} and H = G[V —(ZsU FsUQ%)]. The set Ys is irredundant
in H and the set of vertices undominated by Ys in H, is precisely Rs. Let
v € Ng[Rs) N V(H). Since S is maximal irredundant in G, by Theorem 3
applied to S and G, v annihilates some s € S and since v is not adjacent in G
to Zg, this annihilated vertex s € Ys. Moreover, pn (s, S,G) =pn (s, Ys, H)
and so in the subgraph H, v annihilates s € Ys. From Theorem 3 applied
to Ys and H, we conclude that Ys is maximal irredundant in H. Since
H[Ys) has no isolates, we may apply the hypothesis to H with T = Y&, to
assert the existence of a PN—set W of H satisfying |W| < |Ys|. Define

Z(W) = {2] z is isolated in H[W]}
Y(W)=W — Z(W) ‘
E(W) = {z|z is a W-epn of some y € Y(W) in H}
F(W) = {z|z is a W-epn of some z € Z(W) in H} .
Since W is a PN-set of H, by Proposition 4, we have
ZW)UEW)UFW)>V(H). (2)
Let U = WU Zg. Clearly |U| < |S]|. Observe that
Z(W)U Zs = Zy
Y(W) =Yy

BE(W) = By (3)
F(W) C Fy .

By (2) and (3)

ZyuUEyUFy 2 Z(W)UEW)UF(W) > V(H)
and
Zy D Zs - V(G) —V(H) .

Thus Zy U Ey U Fy > V(G) and (by Proposition 4) U is a PN-set of G.
Therefore (G) < |U| < |S| =ir (G).
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The remaining results of this section show that from maximal irredun-
dant sets S satisfying a variety of special conditions, PN-sets of no greater
cardinality may be constructed. In view of Theorem 5, we are only inter-
ested in sets S for which Zg =0 (i.e. Y5 = 9).

Proposition 6. Suppose that S is maximal irredundant in G, W is a
subset.of Eg containing exactly one S—epn of each s € Ys(= S) and for
eachr € Rs, IN(r)NnW|=1. Then W is a PN-set of G of order |S|.

Proof: It is easily verified that Zw U Ew U Fy > V.

In order to state the conditions of the next result, we will need the fol-
lowing definitions concerning vertex subsets of the induced subgraph G[S]
(again we emphasize that G[S] is assumed to be isolate—free). For S’ C S

define
f(S,) = U pn(s,S) ’
8€S’

where we will abbreviate f({s}) to f(s) (s € S). Further, for B C S, define
= {b|b is isolated in G[B]}
Bz =B - Bl
B3={beS-B||IN(®)NB|=1}
B, ={be S — (BU Bg)|bis adjacent to B; U Bs}
and
Bs=S-(BUB3UB;,).

Note that U B; = S (disjoint union). Further, let Dg be the set of all
g€ Qs satlsfymg

Di1. IN(gynBl=1,
D2. q is not adjacent to f(B4 U Bs)
and
D3.  gqis not adjacent to any r € Rg for which N(r)n f(B) =0

Theorem 7. Let S be maximal irredundant in G with G[S] isolate—free
and B C S which satisfies

(i) Each b € Bs is adjacent to Dp.
(ii) For each q € Qg, g€ N[DgU B1U B3 U f(B)).
Then G has a PN-set U with |U| < |S|.
Proof: Let B4UBs = {by,...,b:}. Construct U by the following procedure.

245



ALGORITHM 1
Step 1 (Initialize)
R« {r € Rs|N(r)n f(B) = 0}
X « {s € S — B| f(s) is adjacent to R}
k+~0
U~B

Step 2 (Construct subset {ry,...rx} of Rg)
WHILE (3r € R with r adjacent to f(X))

k—k+1

T ¢—T

X4—X—{z€X|ris adjacent to f(z)}

R«— R—{r' € R|r' is adjacent to N(r) N Es}

Step 3 (Augment U, initialize for Step 4)
U~UU{r,...,mx}

k
E « f(B)U (U(N(r,-) n Es))

f=1
j+<0

Step 4 (Add a subset of Eg to U)
FOR i=1,...,t DO
IF (3c € f(b;) which is not adjacent to EUU)

THEN j «—j+1
Cje—C
U—~UU {Cj}
OD.
END.

Let T = {ry,...,7x} and C = {cy,...,c;}. We will first show that the
set U = BU T UC (disjoint union) constructed by the procedure satisfies
|[U] < |S] and then use Proposition 4 to prove that U is a PN-set.

By Theorem 3, each r € R annihilates some s € S. Sinceno r; € T is
adjacent to f(B), each r; annihilates some s € B3 U B4 U Bs. Further, by
Step 2, the sets N(r;) N Eg, ¢ = 1,...,k, are disjoint; hence there exist

246



distinct vertices s;,...,8x € Bs U B4 U Bs such that r; annihilates s; for
i=1,...,k. Suppose that {sy,...,8nm} C By U Bs while {s;p41,...,8x} C
B3. Whenever an element s of {sy,...,8n} is encountered as a b; in the
DO loop of Step 4, the IF condition is not satisfied (since the annihilator
of s is already in U). Hence m + |C| < |B4 U Bs| and

ITUC|=|T|+|C]
SIT|+|ByUBs| —m
=|B4UBs|+k—m.
< IBsUB4Ule .

Therefore

[U|=|BUTuUC|
<|B|+|BsUB3UBs|=|S]| .
By Proposition 4, it remains to show that Zy U Ey U Fy dominates each

v € V. The following assertions are all implied by the definitions of the
various sets, private neighbour properties and the construction.

Firstly, C is independent and hence
B,uCcCZy. (4)
Secondly, f(B)U DpU Bj is not adjacent to T U C. We deduce that
f(B)UDgUB3 C EyUFy . (5)

Lastly (as noted above) the sets N(r;) N Es, i = 1,.. ., k, are disjoint and
furthermore not adjacent to BUC. Thus for each i =1,...,k,

N(r,-)nE'sQE0UFU . (6)

There are now four cases to consider, depending on the membership of v in
the blocks of the partition V =SU Qs U EsU Rg.

Casel v € Qs.
By condition (ii), (4) and (5),

ZuUEuUFU2D3U31U33Uf(3)>-‘v.

Case2 veS.

If v € BU B3, then f(B)U Bs > v; each v € By is dominated by B; U Bs
and if v € Bs, then (condition (i)) v is adjacent to Dp. From (4) and (5)
we have

Zy UEy U Fy Qf(B)UDBUB;lUBg ~-v.
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Case 3 v € Rgs.

By the construction and Theorem 3, v is adjacent to f(B) or to N(r;)NEg
for somei=1,...,k. By (6), By UFy > v.

Case 4 v € Eg.

If v € f(B)U f(Bs), then (by (5)) Ey U Fy 2 BsU f(B) > v. Otherwise
v € f(b;) for some i € {1,...,t} and one of the following possibilities holds:

(a) Ey U Fy 2 E > v (by (5) and (6)).

(b) Zu 2C > v (by (4)).

(c) There exists c € (f(b:;) — {v}) N C. Since ¢ € Zy, it follows that
b; € Fy, hence Fy > v.

Thus for all v € V, Zy U Ey U Fy > v and by Proposition 4, U is a

PN-set as asserted. D

The next two results are special cases of Theorem 7. We use the notation
developed for that result.

Corollary 8. Let S be an ir-set of G where G[S] is isolate-free and
suppose that S contains an independent set B such that |B,UBs| > |S|-1.
Then 6(G) < ir(G).

Proof: Since B is independent, B = B; and B; = 9. If BjUB3 = S,
then By = Bg = §) and conditions (i) and (ii) of Theorem 7 are satisfied. If
B UBg = S — {s}, then s is adjacent to B; U Bs (otherwise s is an isolate
of G[S]). Hence s € B4 and Bs = . Since each ¢ € Qs is adjacent to at
least two vertices of S, q is adjacent to B; U B3. Again the conditions of
Theorem 7 are satisfied. (]

Corollary 9. If S is an ir-set of G where G[S] is isolate—free and
A(G[S]) 2 |S| — 2, then 8(G) < ir(G).

Proof: Let s have degree A(G[S]) in G[S]. Then B = {s} satisfies the
hypothesis of Corollary 8. a

The case A(G[S]) = |S| — 3 will now be discussed.

Theorem 10. Let S be an ir-set of G such that G[S] is isolate—free.
Further, let v* € Rg and s, € S satisfy

(i) s1 has degree A(G[S]) = |S| -3 in G[S],
(ii) N(r*)N f(s1) = 0 and
(iii) N(r*) N f(s) # O for at least two vertices s € S — {s1}.

248



Then 6(G) < ir(G).

Proof: Let S = {sy,...,3m,} and use the notation of Theorem 7 with B =
{s1}. Then By = 0 and (say) Bs = {s2,...,8m—2}. If s € {8;n—1, 8m} is
not adjacent to B, then B’ = {s,, s} satisfies the conditions of Corollary 8
and the result follows. Hence we may assume that By = {s;—1,5m} and
Bs = Q. Firstly, let sy € U and then augment U with an independent
subset T = {ry,...,rx} of Rs formed precisely as in Steps 1 and 2 of
ALGORITHM 1 with the added provision that r; = r*, Note that by
definition of r*, | X| is reduced by at least two after 7* is added to T" and by
at least one after each other r; is added to T. Thus if X; is the initial set
X (i.e. X; contains all s € S — B for which there exists r € Rg adjacent
to f(s) but not to f(s;)), then |T| < [X1| =1 < m — 2. Further, at each
insertion, r; annihilates some s in the eurrent set X (Theorem 3). Hence
IT| < p, the number of vertices of X; which are annihilated by some vertex
of Rs. Define Ag to be the set of all ¢ € Qg such that

() N(@)NS = {sm—1, 8m} and
(ii) ¢ is not adjacent to f(s;) UT U (N(T) N Eg).

The remaining construction requires two cases:

Case 1l Ag # 0.

Choose any ¢* € As and add it to U. Then the final set U = {s1,¢*}UT
and U] < 2+ (X1 - 1) < m.

Case2 As =0.

For i = m—1 and m, if there exists u; € f(s;) such that w; is not adjacent
to f(s1) UT U (N(T) N Eg), then choose any one such u; and add it to U.
Observe that if such a u; is added, then s; is not annihilated by any vertex
of T. Thus if j(=1 or 2) vertices are added to U in this case,

lUl=1+|T|+3j
<l4+p+j
<l4+(m—-1-H+j=m.

It now remains to show that Zy U Ey U Fy > v for all v € V. In each of
the above cases

BUTC Zy
and
B3U f(B)U(N(T)NEs)C Fy .

Hence it is easily seen that

Z0UFU>-(Q5—AS)USURsUf(BUBa) .
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Finally, consider v € Ag U f(B;). If Case 1 occurred, then ¢* € Zy and
Fy 2 By > v. Otherwise Case 2 occurs, As =0, v € f({sm-1,8m}) and
one of the following possibilities occurs:

(i) v is adjacent to f(s1) UT U (N(T) N Es) C Fy U Zy, or

(ii) v € f(s;) where i = m — 1 or m and there exists w € f(s;) N U
(possibly w = v). In this case Ey U Fyy 2 {5} > v.

a

Theorem 11. Let S be an ir-set of G such that G[S] is isolate—free and
there exists r* € Rg such that for each s € S, N(r*) N f(s) # 0. Then
6(G) < ir(G).

Proof: Let |S| = m and {sy,...,s:} be the vertices of S which are not
annihilated by r*. Initially put 7* into U and define E = N(r*)N Eg. Now
add to U an independent set C of Eg which is constructed by the DO loop of
Step 4 of ALGORITHM 1. Let C = {cy,...,c;} and relabel {s,,..., s} so
that foreachi=1,...,7, ¢ € f(s;). We next define W to be the subset of
Qs containing all g € Qg such that ¢ ¢ N({r*}UEUCU({s;,...,s;}). Note
that each ¢ € W is adjacent to at least two vertices of S’ = S—{sy,...s;}.
The last part of this construction is to add an independent subset of Wg
to U by the following procedure.

Step 1 (Initialize)
L—Wsg
P~g
Step 2 WHILE (3¢ € L such that N(¢g)NnS C P)
U~Uu{q}
L« L~ {z € L|z € N[q]}
P P-{seP|lseN(g)}.
END.

Suppose that D is the subset of Wg added into U by this procedure.
With each insertion of q into D, |P| is reduced by at least two. Hence
|D| < |(m — 3)/2] and so |U| < 1+ j + [(m — 5)/2]. Since r* annihilates
at least one s,  <m —1 and we conclude [U| < m.

In order to see that Zy U Ey U Fy > v for each v € V, we observe that
Zy =U={r*}uCuUD (i.e. U is independent) and

E=N@Fr*)NnEsC Fy,
N(D)nSC Fy,
{s1,--.,8}C Fy .
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Casel v € Rgs.

In this case v annihilates some s € S and by hypothesis there exists z €
f(8)N N(r*). Thus v is adjacent to = € Fy.

Case2 veES.

By hypothesis there exists z € N(r*) N f(v) and v is adjacent to z € Fy.
Case 3 v € Qs.

If v 3 W, then v is adjacent to {r*}UC C Zy or to EU{sy,..., 85} C Fy.
Otherwise v € N[D] and is dominated by D C Fy.

Cased v e Eg.

One of the following possibilities holds:

‘vGN[E]g Fy ,
v € N[C] which is dominated by C C Zy ,
or v € f(s;) for some i € {1,...,5}, in which case Fy > v .

]

Corollary 12. Let S be an ir-set with G[S] isolate-free and §(G[S]) >
|S| — 3. Then 8(G) < ir(G).

Proof: If A(G[S]) > |S| — 2, then the result holds by Corollary 9 and so
we may assume that G[S] is (|S| — 3)-regular. Choose W C Eg so that
W N f(s)| = 1 for each s € S. If [IN(r) "W| = 1 for each r € R, then
the result is true by Proposition 6. Hence we may assume the existence of
m* € R such that [N(r*) N W| > 2. Theorem 11 implies the result unless
there exists s; € S such that N(r*) N f(sy) = 0. But now r* and s, satisfy
the hypothesis of Theorem 10. o

Theorem 13. Let G have an ir-set S such that G[S] has at most six
non-isolates. Then 8(G) < ir(G).

Proof: The argument used to establish Theorem 5 shows that it is sufficient
to prove 8(G) < ir (G) for any graph G which has an ir-set S where H =
G(8] is isolate—free and m = |S| < 6. For m < 5 it is very easy to show
the existence of a subset B of S satisfying Corollary 8, so we now assume
that m = 6. If A = A(H) # 3, then again it is easy to prove the result
with Corollary 8 or 9. Therefore, suppose that A = 3. The case §(H) = 3
is handled by Corollary 12 and the two remaining situations will be proved
with Corollary 8.

Let V(H) ={1,...,6} and suppose vertex 1 has degree two in H and is
adjacent to 2 and 3. If (say) 4 is not adjacent to {2, 3}, then without loss
of generality 45 € E(H) and B = {1,4}. Therefore each vertex of {4,5,6}
is adjacent to {2,3} and without loss of generality {24, 25,36} C E(H)
and 23 ¢ E(H). If neither 34 nor 35 is in E(H), then B = {2,3}. Hence
assume 34 € E(H) and deduce that 35 ¢ EF(H). We can set B = {3,5}
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unless both 45, 56 are in F(H). In the latter case H is completely specified
and B = {1,5}.

Hence we may assume that no vertex has degree two. Suppose that
vertex 1 has 2 as its only neighbour. The case of disconnected H is easily
handled, hence assume that 2 has degree three and that {23,24} C E(H).
To avoid B = {1,6} (resp. B = {1,5}) vertex 6 (resp. 5) has degree one.
In all cases B is easily found and the proof is complete. o

Our final result establishes the inequality for claw-free graphs G (i.e.
graphs with no subgraph isomorphic to K 3). We require a preliminary
result of Favaron [4].

Lemma 14. If S is an irredundant set of a claw-free graph G, then each
component of G[S] is a complete subgraph.

Theorem 15. If G is a claw—free graph, then 8(G) < ir(G).

Proof: Let S be an ir-set of G. If G has no induced subgraph isomor-
phic to K 3, then each induced subgraph H of G is K s—free as well and
hence (by the proof of Theorem 5) we may assume that G[S] is isolate—free.
By Lemma 14, each component of G[S] is complete and the set B which
contains exactly one vertex from each of these components, satisfies the
hypothesis of Corollary 8. O

Note added in proof: The conjecture that (G) < ir(G) for all graphs
has recently been disproved by O. Favaron and J. Puech (manuscript), who
found a counterexample containing nearly 2 million vertices.
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