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Abstract

Let G = (V, E) be a graph. A set S C V is a dominating
set if every vertex not in S is adjacent to a vertex in S. The
domination number of G, denoted by ¥(G), is the minimum
cardinality of a dominating set of G. Sanchis [8] showed that a
connected graph G of size ¢ and minimum degree at least 2 has
domination number at most (g+2)/3. In this paper, connected
graphs G of size ¢ with minimum degree at least 2 satisfying
v(G) > ¢/3 are characterised.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion
of his 60th birthday

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G =
(V, E) be a graph with vertex set V' of order n» and edge set E, and
let v be a vertex in V. The open neighbourhood of v is N(v) =
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{u € V]uv € E} and the closed neighbourhood of v is N [v] =
{v} U N(v). For a set S of vertices, the open neighborhood of S is
defined by N(S) = UyesN (v), and the closed neighborhood of S by
N[S] = N(S)U S. The subgraph of G induced by the vertices in
S is denoted by (S). The minimum (maximum) degree among the
vertices of G is denoted by §(G) (respectively, A(G)). A cycle of
length n is an n-cycle. A graph of order n that is a path or a cycle
is denoted by P, or C,,, respectively.

A set S C V is a dominating set if every vertex not in S is adjacent
to a vertex in S. (That is, N[S] = V.) The domination number of
G, denoted by ¥(G), is the minimum cardinality of a dominating
set. A dominating set of G of cardinality v(G) is called a y-set of
G. The concept of domination in graphs, with its many variations,
is now well studied in graph theory. The book by Chartrand and
Lesniak [1] includes a chapter on domination. For a more thorough

study of domination in graphs, see Haynes, Hedetniemi and Slater
(2, 3].

The decision problem to determine the domination number of a
graph is known to be NP-complete. Hence it is of interest to deter-
mine upper bounds on the domination number of a graph. Various
authors have investigated upper bounds on the domination number
of a connected graph in terms of the minimum degree and order of
the graph. The earliest such result is due to Ore [5).

Theorem 1 (Ore) If G is a graph of order n with 0(G) > 1, then
7(G) < n/2.

A large family of graphs attaining the bound in Theorem 1 can
be established using the following transformation of a graph. The
corona of a graph G, denoted by G*, is the graph obtained from G
by adding an adjacent end-vertex to each vertex of G. Payan and
Xuong [6] characterised those graphs with no isolated vertex and
with domination number exactly half their order.
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Theorem 2 (Payan, Xuong) If G is a connected graph of order
n, then y(G) = n/2 if and only if G = Cy or G = Ht for some
connected graph H.

McCraig and Shepherd [4] investigated upper bounds on the domi-
nation number of a connected graph with minimum degree at least 2.

Theorem 3 (McCraig, Shepherd) If G is a connected graph of
order n with §(G) > 2, and if G is not one of seven ezceptional
graphs (one of order 4 and siz of order 7), then v(G) < 2n/5.

McCraig and Shepherd [4] also characterised those graphs G of or-
der n which are edge-minimal with respect to satisfying G connected,
0(G) > 2, and ¥(G) > 2n/5. Reed [7] investigated upper bounds on
the domination number of a connected graph with minimum degree
at least 3.

Theorem 4 (Reed) IfG is a connected graph of order n with §(G)
> 3, then v(G) < 3n/8.

Sanchis [8] investigated upper bounds on the domination number
of a connected graph in terms of the minimum degree and size of the
graph.

Theorem 5 (Sanchis) If G is a connected graph of size q with
8(G) 2 2, then v(G) < (g + 2)/3 with equality if and only if G
is a cycle of length n where n =1 (mod 3).

In this paper, we characterise connected graphs G of size ¢ with
minimum degree at least 2 satisfying v(G) > ¢/3.

47



2 Main result

We will refer to a graph G as an {-graph if G is a connected graph
of size ¢ with minimum degree at least 2 satisfying v(G) > ¢/3. We
shall characterise Z-graphs. For this purpose, we introduce a family
G of i-graphs and a collection X of five 1-graphs.

We define a unit to be either a 4-cycle with a path of length 1
attached to a vertex of the 4-cycle, which we call a type-1 unit, or
a 5-cycle, which we call a type-2 unit. If v is a vertex of a graph,
then by aittaching a type-1 unit to v we mean adding a 4-cycle and
joining v with an edge to one vertex of the cycle (see Figure 1(a)).
By attaching a type-2 unit to v we mean adding a (disjoint) 5-cycle to
the graph and identifying one of its vertices with v (see Figure 1(b)).
We now introduce a family G of %-graphs.

S A
(a) (b)

Figure 1: (a) type-1 unit and (b) type-2 unit.

Let F be a forest that consists of k > 1 nontrivial components
Fi,..., Fx. Fori € {1,...,k}, we let S; be a distinguished set of
vertices of F; that satisfies the following two conditions: (i) every
end-vertex of F; belongs to S; (but not every vertex of S; is necessarily
an end-vertex of F}); (i¢) if V(F;) # S;, then F; — S; is a forest whose
vertex set can be partitioned into £ > 1 sets each of which induce a
path P3 on three vertices, the central vertex of which has degree 2 in
F;. We refer to the partition in (¢7) as the path-partition of V (F;)—S;.
Let Sp = U{-;IS,-.
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If k > 2, then we construct a tree T from the forest F by adding
k — 1 edges e;,...,ex_; to F where both ends of e; belong to Sg
fori =1,...,k — 1. Let E* = {ey,...,er_1} and let Sk denote
the vertices incident with some edge of E*. (Thus, S} C Sr.) Let
Sp=Spifk=1and let SEp=Sp—Sgifk>2. If k=1, then we
let T = F.

We now construct a graph G from T as follows. Notice that each
component of the subgraph (E*) induced by E* is a nontrivial tree.
Each component of (E*) of order £ we replace with a (3¢ — 1)-cycle
in which the £ vertices in the component are the ¢ vertices on the
(3¢ — 1)-cycle in positions 1,3,6,...,3(¢ — 1). (In particular, each
component of (E*) that is a path P, is replaced with a 5-cycle in
which the two vertices of the path are non-adjacent vertices on the
cycle.) Finally, we attach a type-1 unit or a type-2 unit to each vertex
of Sp. Let G denote the resulting graph. We refer to the forest F
as the underlying forest of G and the tree T as the underlying
tree of GG. The collection of all such graphs G we denote by G.

If F = K,, for example, then T = F and G is one of the three
graphs shown in Figure 2 (where u and v denote the two vertices of
Fy.

D, D, D

Figure 2: Three graphs in the family G constructed from F = K.

As a further example of our construction, consider the graph G in
the family G that is shown in Figure 3.

The underlying forest F of the graph G of Figure 3 is shown in
Figure 4 where the vertices of S are darkened. In this example,
the forest F' consists of two components, namely a component F
containing the vertex named v and a component F, containing the
vertex named v. The underlying tree T' of G is constructed from F' by
adding the edge uv. The graph G is constructed from 7' by replacing
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Figure 3: A graph G in the family G.

the edge uv with a 5-cycle in which u and v are non-adjacent vertices
on the 5-cycle, and by attaching a type-1 unit or a type-2 unit to
each vertex of Sp = Sp — {u,v}.

L”%Z%?“J“:;l

Figure 4: The underlying forest F of the graph G of Figure 3.

The final two examples of our construction are shown in Figure 5
and Figure 6. These examples serve to illustrate two graphs G in
the family G with different underlying trees T but with the same
underlying forest F.

Next we define a collection H of five 1-graphs.

Let G be a nonempty graph. We define an elementary 3-subdivision
of G as a graph obtained from G by subdividing some edge three
times. A 3-subdivision of G is a graph obtained from G by a succes-
sion of elementary 3-subdivisions (including the possibility of none).
We denote the family of all 3-subdivisions of G by G*; that is,

50



TEE AT o

Figure 5: A graph G in G with underlying tree T and underlying
forest F.

ZEBIRTEE. c@ﬁ

Figure 6: A graph G in G with underlying tree T and underlying
forest F.

G* = {H | H is a 3-subdivision of G}. Let

g*= ) Grand #* = U #
Geg HeH

Fori=0,1,2, let C; = {Cy | » = i (mod 3) }. Notice that H} = C,
and Hy = C;. We shall prove:

Theorem 6 If G is a i-graph, then G € G* U H*.

H, H, Hj Hy Hs
Figure 7: Graphs in the collection #.
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As a consequence of Theorem 6, we have the following result.

Theorem 7 IfG is a connected graph of size g with minimum degree
at least 2, then v(G) < ¢/3 unless either G € Ci1, in which case
¥(G) = (¢*+ 2)/3 or G € G*U (H* — (), in which case v(G) =
(¢+1)/3.

3 Preliminary Results

The following lemma will prove to be useful.

Lemma 8 Let G be a connected nontrivial graph and let G' be ob-
tained from G by an elementary 3-subdivision. Then v(G') = v(G) +
1.

Proof. Suppose e = uv is the edge of G that is subdivided three
times to produce G’. Let u,a,b,c,v be the resulting u-v path of
length 4. Let D be a vy-set of G. If w,v € D, then DU {b} is a
dominating set of G'. If w € D and v ¢ D (say), then DU {c} is
a dominating set of G'. If u,v ¢ D, then DU {b} is a dominating
set of G'. In any event, D can be extended to a dominating set of
G’ by adding one vertex. Hence y(G’) < 7(G)+ 1. Now let D' be
a y-set of G'. If b € D', then we may assume a,c ¢ D' (if a € D',
then we replace a with u in D’), whence D' — {b} is a dominating
set of G. If b ¢ D', then we may assume a € D' and v € D', whence

— {a} is a dominating set of G. In any event, we can construct a
dominating set of G of cardinality |D’| — 1, and so ¥(G’) > 7(G) +1.
Consequently, y(G') = v(G)+ 1.0

An immediate corollary of Lemma 8 now follows.

Corollary 9 Let G be a connected nontrivial graph and let G' be
obtained from G by an elementary 3-subdivision. If G has szze q and
G' has size q', then G is a 1-graph if and only if G' is a 9—-graph
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The domination number of a cycle C, or a path P, on n > 3
vertices is easy to compute.

Fact 1 Forn > 3, ¥(Cy) = v(P.) = [n/3].

For ny,ny > 3 and k > 1, we define a dumb-bell D(nq,n2,k) to be
the graph obtained from Cy, U C,, by joining a vertex of Cp toa
vertex of C,, and subdividing this edge ¥ — 1 times. Thus the dumb-
bell D(ny,ny,k) has order n = n; + ny + k — 1 and size g=n+1.
The following result is straightforward to verify.

Fact 2 Suppose G = D(ny,ny, k) is a dumb-bell of size ¢ where 3 <
ni <5 and 1 < k < 3. Then v(G) < (q+ 1)/3 with equality if and
only if G € {Dy, Dy, D3} where Dy, Dy, Dy are the three graphs of
Figure 2.

An immediate consequence of Lemma 8 and Fact 2 now follows.

Fact 3 If G is a dumb-bell of size q, then Y(G) < (g +1)/3 with
equality if and only if G € Dy U D3 U D3 where Dy, Dy, D3 are the
three graphs of Figure 2.

A daisy with m > 2 petals is a connected graph with one vertex of
degree 2m and all other vertices of degree 2. That is, a daisy with
m > 2 petals is constructed from m disjoint cycles by identifying a
set of m vertices, one from each cycle, into one vertex.

Fact 4 If G is a daisy of size q that contains no cycle of length
greater than 5, then v(G) < (q + 1)/3 with equality if and only if
G = Ha.

Proof. Let v denote the vertex of degree 2m in G, and let F,
Fy, -, Fy;, denote the m cycles passing through v, where F; 2 Chit1
fori=1,2,...,m. By assumption, 2 <n;<4foralli=1,2,...,m.
Let I = {i|1< i< m,n; >3}. Then G has order n = 143772, 0 >
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143 ;s ni > 143|I| and size ¢ = 312 (ni+1) = n+m—1 2> 3|I|+m.
Hence (¢+1)/3 > Bl +m+1)/3 > [I|+1 =1+ |{v}| 2 7(G).
Furthermore, if (¢ + 1)/3 = ¥(G), then we must have m = 2 and
n; =3 foralli=1,2,...,m, ie., G = Hs. Clearly, if G £ Hj, then
7(G)=(g+1)/3.0

An immediate consequence of Lemma 8 and Fact 4 now follows.

Fact 5 If G is a daisy of size q, then v(G) < (¢+1)/3 with equality
if and only if G € Hj.

We define a pumpkin to be a graph of maximum degree at least 3
obtained from a forest F every component of which is a path (possibly
trivial) by adding two new (possibly adjacent) vertices v and v (of
degrees at least 3), joining u and v to every isolated vertex of F, and
for each nontrivial path in F joining u to one end-vertex and v to
the other end-vertex on the path. We call F the underlying forest of
the pumpkin.

Fact 6 IfG is a pumpkin of size q and if every path in the underlying
forest of G has order at most 3, then v(G) < (¢+ 1)/3 with equality
if and only if G € {H,4, Hs}.

Proof. Let u and v be the two vertices in G of degrees at least 3.
For i = 1,2,3,4, let n; denote the number of u-v paths of length :.
Suppose firstly that u and v are adjacent vertices, i.e., n; = 1. Since
u (v) has degree at least 3, ny + n3 + ng > 2. Suppose ng = 0. If
nz = 0, then 7(G) =1 < 5/3 < ¢/3. On the other hand, if n3 > 1,
then ¥(G) = |{u,v}| = 2 < ¢/3. Suppose then that ny > 1. If
ny+n3 =0, then ny > 2and ¥(G) =ns+1 < (4ng +1)/3 < ¢/3.
Hence ny+ng > 1. If nz = 0, then v(G) = na+1 < (4n4+3)/3 < ¢/3.
On the other hand, if n3 > 1, then y(G) = [{u,v}|+n4 =2+ n4 <
(4nq + 5)/3 < (g + 1)/3 with equality if and only if n, = 0 and
n3 = ng = 1, i.e., if and only if G = Hs. Hence if ny = 1, then
v(G) < (g + 1)/3 with equality if and only if G = Hs.

Suppose, next, that u and v are not adjacent, i.e., ny = 0. Then
ng + n3 + ng > 3. If ng = 0, then v(G) =2 < 6/3 < ¢/3. Suppose
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4 2 1. [fna+n3 = 0, then ny > 3 and 7(G) = ng+1 <4n4/3 = q/3.
Hence we may assume ny + ng > 1. If n3 =0, then v(G) = ny+1 <
(4ns + 2)/3 < ¢/3. So we may assume n3 2 1. Then ¥(G) =
Hu, v} +n4 =2+ ny. If ng =1, then g2>9,and so y(G) =3 < ¢/3.
On the other hand, if ny > 2, then g+12>4n4+4+4 > 3ng+ 6 with
equality if and only if ny = 0, ng = 1, and ng = 2, i.e., if and only
if G = Hy. Hence if ng > 2, then Y(G) = 2+ n4 < (¢4 1)/3 with
equality if and only if G & H,. Thusif n; = 0, then 7(G) < (¢+1)/3
with equality if and only if G & H,. O

An immediate consequence of Lemma 8 and Fact 6 now follows.

Fact 7 If G is a pumpkin of size q, then Y(G) < (g +1)/3 with
equality if and only if G € HyUH;.

The following two observations about graphs in the families G U
will be useful.

Observation 1 Let G € G UH have size q, and let v be a vertex of
G. Then

(a) G is a connected graph and 0(G) =2,
(b) 7(G)=(¢+2)/3 if G~ H; and Y(G) = (¢+ 1)/3 otherwise,
(c) there is y-set of G that contains v.

In particular, notice that each graphin GUH is a 1-graph.

Observation 2 Suppose G is obtained from the disjoint union G, U
G of two nontrivial connected graphs Gy and G, by Joining a vertex
v1 of Gy to a vertez vy of G,. Suppose v; belongs to a v-set of G,.

(a) If G2 € H — {Ha}, then ¥(G) < v(Gy) +7(G,) — 1.

(b) If G2 € G, and either v, belongs to a (3¢ — 1)-cycle (£ > 2) of
G2 and is adjacent to a vertezx of degree at least 3 in G, or Uy
belongs to a 4-cycle of a type-1 unit of Gy or vy is the central
vertez of a P3 in the path-partition of F — Sp, where F is the
underlying forest of G5, then 7(G) < 7(Gr) +v(Gy) - 1.
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4 Proof of Theorem 6

We proceed by induction on the size ¢ > 3 of a {-graph. Suppose
G = (V,E) is a 1-graph of order n. If ¢ = n, then G = (), and so,
by Fact 1, either G € Cy, in which case v(G) = (¢+2)/3 or G € C3, in
which case 7(G) = (¢+1)/3. Hence if ¢ = n, then the result follows.
In particular, the base cases when ¢ = 3 or ¢ = 4 are true. So in
what follows we assume that ¢ > n. Assume the result is true for all
connected graphs G’ of size ¢’, where ¢’ < g, that satisfy §(G") > 2
and v(G') > ¢'/3. Hence we have the following result.

Lemma 10 If G’ is a connected graph of size ¢ < q with §(G') > 2,
then either G' € Cy, in which case v(G') = (¢’ + 2)/3, or G’ €
G* U (H* - Cy), in which case v(G') = (¢’ + 1)/3, or v(G') < ¢'/3.

By assumption G is not a cycle. Thus G contains at least one
vertex of degree at least 3. Let S = {v € V|degv > 3}. If [S]| =1,
then G is a daisy, and so, by Fact 5, G € H;. So we may assume
that |S| > 2. For each v € S, we define the 2-graph of v to be the
component of G— (S —{v}) that contains v. The 2-graph of v consists
of edge-disjoint cycles through v, which we call 2-graph cycles, and
paths emanating from v, which we call 2-graph paths.

Lemma 11 IfG contains a path on five vertices each internal vertex
of which has degree 2 in G, then G € G*U H*.

Proof. Let v and v be the two end-vertices of a path on five vertices
each internal vertex of which has degree 2. Let G’ be the graph
of size ¢’ = ¢ — 3 obtained from G by removing the three internal
vertices of this path and adding the edge uv. By Lemma 8, v(G') =
¥(G) — 1 > (¢' + 1)/3. By the inductive hypothesis, G' € G* U H*.
However, G is obtainable from G’ by an elementary 3-subdivision,
and so G also belongs to G*UH*. O

By Lemma 11, we may assume that G contains no path on five
vertices each internal vertex of which has degree 2 in G, for otherwise
G € G* UH*. Hence we may assume that
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every 2-graph path in G has length at most 2, and
every 2-graph cycle in G has length at most 5.

Hence, by Lemma 10 we have the following result.

Lemma 12 Suppose G’ is a connected subgraph of G of size ¢’ < q
with §(G') > 2. If the degrees of all but one of the vertices in G' are
the same as their degrees in G, then either G' & Hi, in which case
Y(G) = (¢'+2)/3, or G' € GU (K — H,), in which case Y(G) =
(¢'+1)/3, or v(G') < ¢'/3.

The following lemma will prove to be useful.

Lemma 13 Suppose G is obtained from two (disjoint) graphs G,
and G by identifying a vertez of Gy and a vertex of G into one
vertex v where v has degree at least 1 in G and degree at least 2 in
G2. Suppose G is a type-1 unit or a type-2 unit or can be obtained
from a type-2 unit by attaching a path of length 3 to a verter of the
d-cycle. Then G € G.

Proof. Since G is connected, GG; and G, are both connected. Fur-
thermore, since G has minimum degree at least 2, every vertex of
G, different from v has degree at least 2 in G; while every ver-
tex of (72 has degree at least 2 in G,. Suppose G; has size ¢; for
¢ = 1,2. Notice that y(G1) = (g1 + 1)/3 and v belongs to a -
set of G1. Hence, if G, is a cycle, then either G, =2 Cj3, in which
case ¥(G) = v(G1) = (¢ — 2)/3, or G, € {C4,C5}, in which case
YG) =vG1)+1= (1 +1)/3+1< q/3. Both cases produce a
contradiction. Hence G5 cannot be a cycle.

Let G be the graph of size ¢} obtained from G2 — v by adding
as few edges as possible between neighbours of v in G, until we
produce a connected graph with minimum degree at least 2 (possibly,

2=Gy—v). Then ¢} < g, — 1, and so ¢ > ¢ + ¢} + 1.

We show that G} € G*. If G is a cycle, then, since G is not a
cycle, g < g2 — 2. In particular, if G} € Hj, then Y(G) < (g1 +

57



1)/3+ (¢4 + 1)/3 < ¢/3, a contradiction. If G} € H* — {H;}, then,
since v belongs to a y-set of Gy, it follows from Observation 2(a) that
Y(G) < (1 +1)/3+ (¢4 +2)/3 — 1 < (g — 1)/3, a contradiction. If
v(G%) < ¢4/3, then ¥(G) < (q1 +1)/3+¢3/3 < ¢/3, a contradiction.
Hence G, ¢ H* and v(G3) > ¢3/3. Consequently, by Lemma 10,
G, € G* and v(G) = (¢ + 1)/3. Let F be the underlying forest of
Gy,

If ¢ < g2 —2, then ¥(G) < (1 +1)/3+ (2 -1)/3 = ¢q/3, a
contradiction. Hence g5 = g2 — 1. This implies that each neighbour
of v in G4 belongs to a different component of G3 —v. Thus each edge
of G/, that is not in G belongs to F. Hence each neighbour of v in G
must belong to F. If some neighbour of v in G is the central vertex
of a P3 in the path-partition of F — S, then, by Observation 2(b), it
follows that v(G) < v(G1) + v(G%) — 1 = (¢ — 2)/3, a contradiction.
Hence each neighbour of v in G, either belongs to the set S or is
an end-vertex of a Pz in the path-partition of F — Sp. But then
G € G*. (If G, is a type-1 or a type-2 unit, then the underlying tree
of G is obtained from the underlying tree of G by removing edges
joining vertices that are neighbours of v in G3, adding the vertex v
and adding the edges joining v to the vertices that are its neighbours
in Go. If G can be obtained from a type-2 unit by attaching a path
of length 3 to a vertex z of the 5-cycle, then the underlying tree of
G is as described earlier but with the addition of the v-z path of
length 3 which is attached to v. In the latter case, the neighbour of
v on the v-z path is a central vertex of a P3 in the path-partition
of F — Sr.) However, since every 2-graph path in G has length at
most 2 and every 2-graph cycle in G has length at most 5, G € G. D

Lemma 14 If S is not an independent set, then G € GUH.

Proof. Let e = uv be an edge, where u,v € S. Suppose G — e is a
connected graph (of size ¢ — 1). Then by the induction hypothesis,
7(G-e) < (g+1)/3. If 7(G —e) < ¢/3, then ¥(G) < y(G—€) < ¢/3,
a contradiction. Hence v(G — €) = (¢ + 1)/3, and so G — e € C;.
Thus G is obtained from a cycle Cy,, » = 1(mod3), by adding the
edge e. Hence, by Fact 6, G € {H,, Hs}.
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Suppose, next, that e is a bridge of G. Let G; and G5 be the two
components of G — e, where v € V(G)). For i = 1,2, let G; have
order n; and size ¢;. Then ¢ = ¢1+¢2+1. Each G; satisfies §(G;) > 2
and is connected. If G is a dumb-bell, then G = D(nq,ng2,1), and so,
by Fact 2, G = D, € G (where D; is the graph shown in Figure 2).
Hence we may assume that G is not a cycle. Thus, by Lemma 10,
7(G2) < (g2 +1)/3.

Suppose ¥(G1) < (q1 +1)/3. I 7(G2) < ¢2/3 or ¥(G1) < ¢1/3,
then v(G) < ¢/3, a contradiction. Hence v(G;) = (g; + 1)/3 for
¢=1,2, and so, by Lemma 12, G; € GUH. By Observation 1(c), we
can choose a y-set of G; to contain u and a vy-set of G5 to contain v.
Hence, if G € H, then, since G; ¥ H,, Observation 2(a) implies that
7(G) £ (g — 2)/3, a contradiction. Thus, G, € G. Furthermore, by
Observation 2(b), v belongs to a type-2 unit with both its neighbours
having degree 2 in G; or v is a vertex in the underlying forest F of
G2 and either belongs to the set Sr or is an end-vertex of a P; in
the path-partition of F — Sp, for otherwise v(G) < (g - 2)/3. If
G1 € H — {H,}, then ¥(G) < (g — 2)/3, a contradiction. Hence
G, € GU{H;}. If G; & H,, then G € G. On the other hand, if
G) € G, then by Observation 2(b), u belongs to a type-2 unit with
both its neighbours having degree 2 in G; or u is a vertex in the
underlying forest F of G; and either belongs to the set Sg or is an
end-vertex of a P in the path-partition of F — Sr, for otherwise
7(G) < (¢—2)/3. 1t follows then that G € G. Hence we may assume
that ¥(G1) = (1 + 2)/3, for otherwise G € G. Thus G; & H,, and
S0 g1 =n = 4. Let G} be the graph obtained from G; by adding v
and the edge e. Then G is a type-1 unit. Applying Lemma 13 (with
"G1” replaced by "G{”), G € G. O

By Lemma 14, we may assume that S is an independent set,
for otherwise G € GU H.

Lemma 15 If G contains a 2-graph cycle, then G € G.

Proof. Let v € S and suppose that C, is a 2-graph cycle of v of
length ¢;. By Lemma 11, we may assume that 3 <q <5

Case 1: degv > 4.
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Let Go = G — (V(C,) — {v}). Then G; is a connected graph with
minimum degree at least 2 and of size g2 = ¢ — ¢;. Since |S]| > 2,
G, is not a cycle. Hence, by Lemma 12, v(G2) < (g2 +1)/3 =
(¢g—q1+1)/3. Suppose g1 = 3. Then ¢ = g2+3. If G2 € GUH, then,
by Observation 1(c), there is a 7y-set of G containing v, whence
(G) < ¥(G2) < (g2 +1)/3 = (¢ — 2)/3, a contradiction. Hence
G2 ¢ GUH, ie., 7(G2) < g2/3 by Lemma 12. However, any y-set of
G2 can be extended to a dominating set of G by adding one vertex,
and so 7(G) < 1+ ¢2/3 = ¢/3, once again producing a contradiction.
Hence q; # 3. Suppose 1 = 4. Then ¢ = ¢ + 4. Any 7y-set of
G, can be extended to a dominating set of G by adding one vertex,
and so 7(G) < 1 + (g2 + 1)/3 = ¢/3, a contradiction. Hence ¢, # 4.
Thus, ¢; = 5, i.e., C, is a type-2 unit. Applying Lemma 13 (with
G = Cu), GEG.

Case 2: degv = 3.

Let v,vy,...,Vs, w be the path from v to the vertex w of S —
{v} every internal vertex of which belongs to V — S. Since S is
independent, k¥ > 1. Since every 2-graph path of G' has length at
most 2, k < 2. Let F) and F; be the two components of G — v;w,
where w € V(F3). The graph F; is connected of size g2 = ¢—q1 —k—1
with minimum degree at least 2. If F; is a cycle, then G is a dumb-
bell, and so, it follows from Fact 2 that G € {Dy, D3} C G (where
D; and Dj are the graphs shown in Figure 2). Hence we may assume
that F3 is not a cycle. Thus, by Lemma 12, y(F3) < (g2 +1)/3 =
(g —q = k)/3.

If y(F1) < (1 + k)/3, then ¥(G) < 7(F1) +7(F2) < ¢/3, a con-
tradiction. Hence (q1,%k) ¢ {(3,1),(4,2),(5,1)}. Suppose ¢ = 3
and k = 2. If y(F3) < ¢2/3, then v(G) < 2+ ¢2/3 = ¢/3, a con-
tradiction. Hence, by Lemma 12, F;, € GU (X — {Hy, H;}). Thus,
by Observation 1(c), w belongs to a vy-set of Fy. It follows that
¥(G) < 14+7(F2) = (g—2)/3, a contradiction. Hence (q1, k) # (3,2).
Thus (g1, k) € {(4,1),(5,2)}.

Suppose q; = 4 and k = 1. Notice that vx belongs to a y-set of
Fy. If v(F) < ¢2/3, then 7(G) < ¢/3, a contradiction. If F; €
H — {H,, H,}, then, by Observation 2(a), ¥(G) < 1+ (2 +1)/3 =



(9 = 2)/3, a contradiction. Hence F; € G. By Observation 2(b),
w belongs to a type-2 unit in F, with both its neighbours having
degree 2 in F, or w is a vertex in the underlying forest F of F, and
either belongs to the set Sg or is an end-vertex of a P; in the path-
partition of ' — S, for otherwise v(G) < (g — 2)/3. It follows that
Geg.

Suppose ¢; = 5 and k = 2. Let (1 be obtajned from Fy by adding
w and the edge viw and let G, = F;. Then G; can be obtained
from a type-2 unit by attaching a path of length 3 to a vertex of the
5-cycle. Hence, applying Lemma 13, G € G. O

By Lemma 15, we may assume that
there is no 2-graph cycle

in G. Hence, if |S| = 2, then G is a pumpkin, and so, by Fact 6,
G € HqUHjs (for otherwise v(G) < g/3). Hence we may assume that
S| > 3.

Lemma 16 Ifv € S and v,a,b is a 2-graph path of v of length 2,
then G — {a,b} is disconnected.

Proof. Let w € S be the neighbour of b different from a. Since S is
independent, vw is not an edge. Let G’ = G — {a,b}. Then G’ has
size ¢ = ¢ — 3 and has minimum degree at least 2. Suppose G is
connected. Since [S| > 3, G’ is not a cycle, and so, by Lemma 10,
7(G’) £ (¢'+1)/3. Any y-set of G’ can be extended to a dominating
set of G by adding either a or b. Hence, if 7(G') < ¢'/3, then v(G) <
q'/3+ 1= q/3, a contradiction. Thus 7(G') = (¢’ +1)/3, and so, by
Lemma 10, G’ € GU (X — {H1, H3}). If G’ € G, then, since G has
no 2-graph cycles, G’ has exactly two 2-graph cycles, one containing
v and the other containing w. However, we can then choose a v-set
of G’ to contain both v and w. Hence Y(G) < Y(G) = (¢ - 2)/3,
a contradiction. On the other hand, if G’ € {Hs, Hy, Hs}, then we
can choose a vy-set of G’ to contain any two nonadjacent vertices of
G’. In particular, we can choose a 7-set of G’ to contain both v
and w, once again producing a contradiction. Hence G must have
been disconnected. O
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An immediate consequence of Lemma 16 now follows.

Lemma 17 There is no 5-cycle or 6-cycle in G containing ezactly
two vertices of S.

Proof. Suppose G contains a 5-cycle C: v, a,b, w, c,v containing ex-
actly two vertices v and w of S. Then C contains the 2-graph path
v,a,b of length 2. Since G is connected, so too is G — {a, b}, con-
tradicting the result of Lemma 16. Hence, there is no 5-cycle in G
containing exactly two vertices of S. Similarly, there is no 6-cycle in
G containing exactly two vertices of S. O

Lemma 18 There is no 4-cycle in G containing ezactly two vertices

of S.

Proof. Suppose G contains a 4-cycle C:v,a,w,b, v containing ex-
actly two vertices v and w of S. Then C contains two 2-graph paths
of length 1. Let G’ be obtained from G — {a, b} by adding the edge
vw. Then G’ is a connected graph of minimum degree at least 2 with
size ¢' = ¢—3. Since |S| > 3, G’ is not a cycle, and so, by Lemma 10,
v(G) < (¢' +1)/3.

Suppose 7(G') < ¢'/3. Let D' be a y-set of G'. If v,w € D', then
D' is a dominating set of G, whence v(G) < (¢—3)/3, a contradiction.
Hence v or w, say v, does not belong to D', whence D' U {v} is a
dominating set of G and so v(G) < ¢/3, a contradiction. Hence
v(G") = (¢’ +1)/3 and so, by Lemma 10, G’ € GU (H — {H), Hj}).

If G' € G, then G’ has at least two 2-graph cycles, at least one
of which does not contain the edge vw. But then G has at least
one 2-graph cycle, producing a contradiction. On the other hand,
if G' € {H3, Hy, Hs}, then we can choose a y-set of G’ to contain
any two nonadjacent vertices of G’. In particular, we can choose -
set of G’ to contain v and a neighbour of w different from v. Hence
7(G) < 7(G') = (¢—2)/3, a contradiction. Hence, there is no 4-cycle
in G containing exactly two vertices of S. D

Among all vertices in S, let v be chosen so that G — v contains a
component of maximum order. Let S’ denote the subset of vertices
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of S — {v} that are adjacent to a vertex on some 2-graph path of
v. By Lemma 17 and Lemma, 18, the graph G’ of order ¢’ obtained
from G by removing v and all vertices on a 2-graph path of v has
minimum degree at least 2.

Lemma 19 The graph G’ is connected.

Proof. Suppose G is disconnected. Let w be a vertex of S’ that be-
longs to a component of G’ of minimum order. Then the component
of G — w that contains v has order exceeding that of any component
of G —v. This contradicts our choice of v. O

By Lemma 10, v(G’) < (¢ + 2)/3. Let D’ be a v-set of G’. Since
G’ is connected, Lemma 16 implies that v has no 2-graph path of
length 2. Hence every 2-graph path of v has length 1. Hence D’ can
be extended to a dominating set of G by adding v. Thus, v(G) <
(¢'+2)/3+1 < (¢-1)/3, a contradiction. This completes the proof
of Theorem 7. O
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