A characterisation of graphs with minimum degree 2 and domination number exceeding a third their size

Michael A. Henning *
University of Natal
Private Bag X01, Scottsville
Pietermaritzburg, 3209 South Africa

Abstract

Let G = (V, E) be a graph. A set $S \subseteq V$ is a dominating set if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. Sanchis [8] showed that a connected graph G of size q and minimum degree at least 2 has domination number at most (q+2)/3. In this paper, connected graphs G of size q with minimum degree at least 2 satisfying $\gamma(G) > q/3$ are characterised.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion of his 60th birthday

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V, E) be a graph with vertex set V of order n and edge set E, and let v be a vertex in V. The open neighbourhood of v is N(v) = V

^{*}Research supported in part by the South African Foundation for Research Development and the University of Natal.

 $\{u \in V \mid uv \in E\}$ and the closed neighbourhood of v is $N[v] = \{v\} \cup N(v)$. For a set S of vertices, the open neighborhood of S is defined by $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood of S by $N[S] = N(S) \cup S$. The subgraph of G induced by the vertices in S is denoted by $\langle S \rangle$. The minimum (maximum) degree among the vertices of G is denoted by $\delta(G)$ (respectively, $\Delta(G)$). A cycle of length n is an n-cycle. A graph of order n that is a path or a cycle is denoted by P_n or C_n , respectively.

A set $S \subseteq V$ is a dominating set if every vertex not in S is adjacent to a vertex in S. (That is, N[S] = V.) The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. A dominating set of G of cardinality $\gamma(G)$ is called a γ -set of G. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The book by Chartrand and Lesniak [1] includes a chapter on domination. For a more thorough study of domination in graphs, see Haynes, Hedetniemi and Slater [2, 3].

The decision problem to determine the domination number of a graph is known to be NP-complete. Hence it is of interest to determine upper bounds on the domination number of a graph. Various authors have investigated upper bounds on the domination number of a connected graph in terms of the minimum degree and order of the graph. The earliest such result is due to Ore [5].

Theorem 1 (Ore) If G is a graph of order n with $\delta(G) \geq 1$, then $\gamma(G) \leq n/2$.

A large family of graphs attaining the bound in Theorem 1 can be established using the following transformation of a graph. The *corona* of a graph G, denoted by G^+ , is the graph obtained from G by adding an adjacent end-vertex to each vertex of G. Payan and Xuong [6] characterised those graphs with no isolated vertex and with domination number exactly half their order.

Theorem 2 (Payan, Xuong) If G is a connected graph of order n, then $\gamma(G) = n/2$ if and only if $G \cong C_4$ or $G \cong H^+$ for some connected graph H.

McCraig and Shepherd [4] investigated upper bounds on the domination number of a connected graph with minimum degree at least 2.

Theorem 3 (McCraig, Shepherd) If G is a connected graph of order n with $\delta(G) \geq 2$, and if G is not one of seven exceptional graphs (one of order 4 and six of order 7), then $\gamma(G) \leq 2n/5$.

McCraig and Shepherd [4] also characterised those graphs G of order n which are edge-minimal with respect to satisfying G connected, $\delta(G) \geq 2$, and $\gamma(G) \geq 2n/5$. Reed [7] investigated upper bounds on the domination number of a connected graph with minimum degree at least 3.

Theorem 4 (Reed) If G is a connected graph of order n with $\delta(G) \geq 3$, then $\gamma(G) \leq 3n/8$.

Sanchis [8] investigated upper bounds on the domination number of a connected graph in terms of the minimum degree and size of the graph.

Theorem 5 (Sanchis) If G is a connected graph of size q with $\delta(G) \geq 2$, then $\gamma(G) \leq (q+2)/3$ with equality if and only if G is a cycle of length n where $n \equiv 1 \pmod{3}$.

In this paper, we characterise connected graphs G of size q with minimum degree at least 2 satisfying $\gamma(G) > q/3$.

2 Main result

We will refer to a graph G as an $\frac{q}{3}$ -graph if G is a connected graph of size q with minimum degree at least 2 satisfying $\gamma(G) > q/3$. We shall characterise $\frac{q}{3}$ -graphs. For this purpose, we introduce a family G of $\frac{q}{3}$ -graphs and a collection \mathcal{H} of five $\frac{q}{3}$ -graphs.

We define a unit to be either a 4-cycle with a path of length 1 attached to a vertex of the 4-cycle, which we call a type-1 unit, or a 5-cycle, which we call a type-2 unit. If v is a vertex of a graph, then by attaching a type-1 unit to v we mean adding a 4-cycle and joining v with an edge to one vertex of the cycle (see Figure 1(a)). By attaching a type-2 unit to v we mean adding a (disjoint) 5-cycle to the graph and identifying one of its vertices with v (see Figure 1(b)). We now introduce a family \mathcal{G} of $\frac{q}{3}$ -graphs.

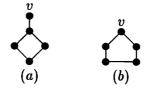


Figure 1: (a) type-1 unit and (b) type-2 unit.

Let F be a forest that consists of $k \geq 1$ nontrivial components F_1, \ldots, F_k . For $i \in \{1, \ldots, k\}$, we let S_i be a distinguished set of vertices of F_i that satisfies the following two conditions: (i) every end-vertex of F_i belongs to S_i (but not every vertex of S_i is necessarily an end-vertex of F_i); (ii) if $V(F_i) \neq S_i$, then $F_i - S_i$ is a forest whose vertex set can be partitioned into $\ell \geq 1$ sets each of which induce a path P_3 on three vertices, the central vertex of which has degree 2 in F_i . We refer to the partition in (ii) as the path-partition of $V(F_i) - S_i$. Let $S_F = \bigcup_{i=1}^k S_i$.

If $k \geq 2$, then we construct a tree T from the forest F by adding k-1 edges e_1,\ldots,e_{k-1} to F where both ends of e_i belong to S_F for $i=1,\ldots,k-1$. Let $E^*=\{e_1,\ldots,e_{k-1}\}$ and let S_F^* denote the vertices incident with some edge of E^* . (Thus, $S_F^*\subset S_F$.) Let $S_F'=S_F$ if k=1 and let $S_F'=S_F-S_F^*$ if $k\geq 2$. If k=1, then we let T=F.

We now construct a graph G from T as follows. Notice that each component of the subgraph $\langle E^* \rangle$ induced by E^* is a nontrivial tree. Each component of $\langle E^* \rangle$ of order ℓ we replace with a $(3\ell-1)$ -cycle in which the ℓ vertices in the component are the ℓ vertices on the $(3\ell-1)$ -cycle in positions $1,3,6,\ldots,3(\ell-1)$. (In particular, each component of $\langle E^* \rangle$ that is a path P_2 is replaced with a 5-cycle in which the two vertices of the path are non-adjacent vertices on the cycle.) Finally, we attach a type-1 unit or a type-2 unit to each vertex of S_F' . Let G denote the resulting graph. We refer to the forest F as the underlying forest of G and the tree T as the underlying tree of G. The collection of all such graphs G we denote by G.

If $F \cong K_2$, for example, then T = F and G is one of the three graphs shown in Figure 2 (where u and v denote the two vertices of F).

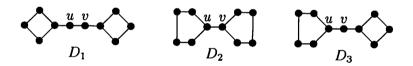


Figure 2: Three graphs in the family \mathcal{G} constructed from $F = K_2$.

As a further example of our construction, consider the graph G in the family \mathcal{G} that is shown in Figure 3.

The underlying forest F of the graph G of Figure 3 is shown in Figure 4 where the vertices of S_F are darkened. In this example, the forest F consists of two components, namely a component F_1 containing the vertex named u and a component F_2 containing the vertex named v. The underlying tree T of G is constructed from F by adding the edge uv. The graph G is constructed from T by replacing

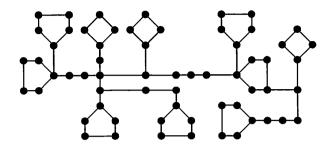


Figure 3: A graph G in the family G.

the edge uv with a 5-cycle in which u and v are non-adjacent vertices on the 5-cycle, and by attaching a type-1 unit or a type-2 unit to each vertex of $S_F' = S_F - \{u, v\}$.

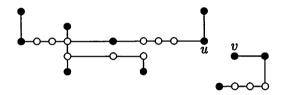


Figure 4: The underlying forest F of the graph G of Figure 3.

The final two examples of our construction are shown in Figure 5 and Figure 6. These examples serve to illustrate two graphs G in the family $\mathcal G$ with different underlying trees T but with the same underlying forest F.

Next we define a collection \mathcal{H} of five $\frac{q}{3}$ -graphs.

Let G be a nonempty graph. We define an elementary 3-subdivision of G as a graph obtained from G by subdividing some edge three times. A 3-subdivision of G is a graph obtained from G by a succession of elementary 3-subdivisions (including the possibility of none). We denote the family of all 3-subdivisions of G by G^* ; that is,

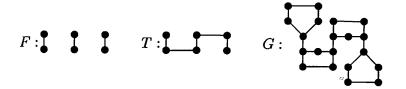


Figure 5: A graph G in G with underlying tree T and underlying forest F.

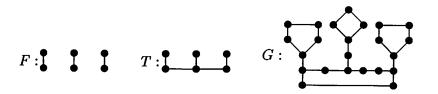


Figure 6: A graph G in $\mathcal G$ with underlying tree T and underlying forest F.

$$G^*=\{H\mid H \text{ is a 3-subdivision of }G\}.$$
 Let
$$\mathcal{G}^*=\bigcup_{G\in\mathcal{G}}G^*\text{ and }\mathcal{H}^*=\bigcup_{H\in\mathcal{H}}H^*.$$

For i=0,1,2, let $C_i=\{C_n\mid n\equiv i\ (mod\ 3)\}$. Notice that $H_1^*=C_1$ and $H_2^*=C_2$. We shall prove:

Theorem 6 If G is a $\frac{q}{3}$ -graph, then $G \in \mathcal{G}^* \cup \mathcal{H}^*$.

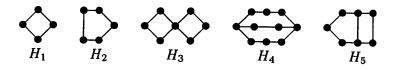


Figure 7: Graphs in the collection \mathcal{H} .

As a consequence of Theorem 6, we have the following result.

Theorem 7 If G is a connected graph of size q with minimum degree at least 2, then $\gamma(G) \leq q/3$ unless either $G \in C_1$, in which case $\gamma(G) = (q^*+2)/3$, or $G \in \mathcal{G}^* \cup (\mathcal{H}^* - C_1)$, in which case $\gamma(G) = (q+1)/3$.

3 Preliminary Results

The following lemma will prove to be useful.

Lemma 8 Let G be a connected nontrivial graph and let G' be obtained from G by an elementary 3-subdivision. Then $\gamma(G') = \gamma(G) + 1$.

Proof. Suppose e = uv is the edge of G that is subdivided three times to produce G'. Let u, a, b, c, v be the resulting u-v path of length 4. Let D be a γ -set of G. If $u, v \in D$, then $D \cup \{b\}$ is a dominating set of G'. If $u \in D$ and $v \notin D$ (say), then $D \cup \{c\}$ is a dominating set of G'. In any event, D can be extended to a dominating set of G' by adding one vertex. Hence $\gamma(G') \leq \gamma(G) + 1$. Now let D' be a γ -set of G'. If $b \in D'$, then we may assume $a, c \notin D'$ (if $a \in D'$, then we replace a with u in D'), whence $D' - \{b\}$ is a dominating set of G. If $b \notin D'$, then we may assume $a \in D'$ and $v \in D'$, whence $D' - \{a\}$ is a dominating set of G. In any event, we can construct a dominating set of G of cardinality |D'| - 1, and so $\gamma(G') \geq \gamma(G) + 1$. Consequently, $\gamma(G') = \gamma(G) + 1$. \square

An immediate corollary of Lemma 8 now follows.

Corollary 9 Let G be a connected nontrivial graph and let G' be obtained from G by an elementary 3-subdivision. If G has size q and G' has size q', then G is a $\frac{q}{3}$ -graph if and only if G' is a $\frac{q'}{3}$ -graph.

The domination number of a cycle C_n or a path P_n on $n \geq 3$ vertices is easy to compute.

Fact 1 For
$$n \geq 3$$
, $\gamma(C_n) = \gamma(P_n) = \lceil n/3 \rceil$.

For $n_1, n_2 \geq 3$ and $k \geq 1$, we define a dumb-bell $D(n_1, n_2, k)$ to be the graph obtained from $C_{n_1} \cup C_{n_2}$ by joining a vertex of C_{n_1} to a vertex of C_{n_2} and subdividing this edge k-1 times. Thus the dumb-bell $D(n_1, n_2, k)$ has order $n = n_1 + n_2 + k - 1$ and size q = n + 1. The following result is straightforward to verify.

Fact 2 Suppose $G \cong D(n_1, n_2, k)$ is a dumb-bell of size q where $3 \le n_i \le 5$ and $1 \le k \le 3$. Then $\gamma(G) \le (q+1)/3$ with equality if and only if $G \in \{D_1, D_2, D_3\}$ where D_1, D_2, D_3 are the three graphs of Figure 2.

An immediate consequence of Lemma 8 and Fact 2 now follows.

Fact 3 If G is a dumb-bell of size q, then $\gamma(G) \leq (q+1)/3$ with equality if and only if $G \in D_1^* \cup D_2^* \cup D_3^*$ where D_1, D_2, D_3 are the three graphs of Figure 2.

A daisy with $m \geq 2$ petals is a connected graph with one vertex of degree 2m and all other vertices of degree 2. That is, a daisy with $m \geq 2$ petals is constructed from m disjoint cycles by identifying a set of m vertices, one from each cycle, into one vertex.

Fact 4 If G is a daisy of size q that contains no cycle of length greater than 5, then $\gamma(G) \leq (q+1)/3$ with equality if and only if $G \cong H_3$.

Proof. Let v denote the vertex of degree 2m in G, and let F_1 , F_2, \dots, F_m denote the m cycles passing through v, where $F_i \cong C_{n_i+1}$ for $i=1,2,\dots,m$. By assumption, $2 \le n_i \le 4$ for all $i=1,2,\dots,m$. Let $I=\{i \mid 1 \le i \le m, n_i \ge 3\}$. Then G has order $n=1+\sum_{i=1}^m n_i \ge 3$

 $1+\sum_{i\in I} n_i \geq 1+3|I|$ and size $q=\sum_{i=1}^m (n_i+1)=n+m-1\geq 3|I|+m$. Hence $(q+1)/3\geq (3|I|+m+1)/3\geq |I|+1=|I|+|\{v\}|\geq \gamma(G)$. Furthermore, if $(q+1)/3=\gamma(G)$, then we must have m=2 and $n_i=3$ for all $i=1,2,\ldots,m$, i.e., $G\cong H_3$. Clearly, if $G\cong H_3$, then $\gamma(G)=(q+1)/3$. \square

An immediate consequence of Lemma 8 and Fact 4 now follows.

Fact 5 If G is a daisy of size q, then $\gamma(G) \leq (q+1)/3$ with equality if and only if $G \in H_3^*$.

We define a pumpkin to be a graph of maximum degree at least 3 obtained from a forest F every component of which is a path (possibly trivial) by adding two new (possibly adjacent) vertices u and v (of degrees at least 3), joining u and v to every isolated vertex of F, and for each nontrivial path in F joining u to one end-vertex and v to the other end-vertex on the path. We call F the underlying forest of the pumpkin.

Fact 6 If G is a pumpkin of size q and if every path in the underlying forest of G has order at most 3, then $\gamma(G) \leq (q+1)/3$ with equality if and only if $G \in \{H_4, H_5\}$.

Proof. Let u and v be the two vertices in G of degrees at least 3. For i=1,2,3,4, let n_i denote the number of u-v paths of length i. Suppose firstly that u and v are adjacent vertices, i.e., $n_1=1$. Since u (v) has degree at least 3, $n_2+n_3+n_4\geq 2$. Suppose $n_4=0$. If $n_3=0$, then $\gamma(G)=1<5/3\leq q/3$. On the other hand, if $n_3\geq 1$, then $\gamma(G)=|\{u,v\}|=2\leq q/3$. Suppose then that $n_4\geq 1$. If $n_2+n_3=0$, then $n_4\geq 2$ and $\gamma(G)=n_4+1\leq (4n_4+1)/3\leq q/3$. Hence $n_2+n_3\geq 1$. If $n_3=0$, then $\gamma(G)=n_4+1<(4n_4+3)/3\leq q/3$. On the other hand, if $n_3\geq 1$, then $\gamma(G)=|\{u,v\}|+n_4=2+n_4\leq (4n_4+5)/3\leq (q+1)/3$ with equality if and only if $n_2=0$ and $n_3=n_4=1$, i.e., if and only if $G\cong H_5$. Hence if $n_1=1$, then $\gamma(G)\leq (q+1)/3$ with equality if and only if $G\cong H_5$.

Suppose, next, that u and v are not adjacent, i.e., $n_1 = 0$. Then $n_2 + n_3 + n_4 \ge 3$. If $n_4 = 0$, then $\gamma(G) = 2 \le 6/3 \le q/3$. Suppose

 $n_4 \geq 1$. If $n_2 + n_3 = 0$, then $n_4 \geq 3$ and $\gamma(G) = n_4 + 1 \leq 4n_4/3 = q/3$. Hence we may assume $n_2 + n_3 \geq 1$. If $n_3 = 0$, then $\gamma(G) = n_4 + 1 \leq (4n_4 + 2)/3 \leq q/3$. So we may assume $n_3 \geq 1$. Then $\gamma(G) = |\{u,v\}| + n_4 = 2 + n_4$. If $n_4 = 1$, then $q \geq 9$, and so $\gamma(G) = 3 \leq q/3$. On the other hand, if $n_4 \geq 2$, then $q + 1 \geq 4n_4 + 4 \geq 3n_4 + 6$ with equality if and only if $n_2 = 0$, $n_3 = 1$, and $n_4 = 2$, i.e., if and only if $G \cong H_4$. Hence if $n_4 \geq 2$, then $\gamma(G) = 2 + n_4 \leq (q+1)/3$ with equality if and only if $G \cong H_4$. Thus if $n_1 = 0$, then $\gamma(G) \leq (q+1)/3$ with equality if and only if $G \cong H_4$. \square

An immediate consequence of Lemma 8 and Fact 6 now follows.

Fact 7 If G is a pumpkin of size q, then $\gamma(G) \leq (q+1)/3$ with equality if and only if $G \in H_4^* \cup H_5^*$.

The following two observations about graphs in the families $\mathcal{G} \cup \mathcal{H}$ will be useful.

Observation 1 Let $G \in \mathcal{G} \cup \mathcal{H}$ have size q, and let v be a vertex of G. Then

- (a) G is a connected graph and $\delta(G) = 2$,
- (b) $\gamma(G) = (q+2)/3$ if $G \cong H_1$ and $\gamma(G) = (q+1)/3$ otherwise,
- (c) there is γ -set of G that contains v.

In particular, notice that each graph in $\mathcal{G} \cup \mathcal{H}$ is a $\frac{q}{3}$ -graph.

Observation 2 Suppose G is obtained from the disjoint union $G_1 \cup G_2$ of two nontrivial connected graphs G_1 and G_2 by joining a vertex v_1 of G_1 to a vertex v_2 of G_2 . Suppose v_1 belongs to a γ -set of G_1 .

- (a) If $G_2 \in \mathcal{H} \{H_2\}$, then $\gamma(G) \leq \gamma(G_1) + \gamma(G_2) 1$.
- (b) If $G_2 \in \mathcal{G}$, and either v_2 belongs to a $(3\ell-1)$ -cycle $(\ell \geq 2)$ of G_2 and is adjacent to a vertex of degree at least 3 in G_2 or v_2 belongs to a 4-cycle of a type-1 unit of G_2 or v_2 is the central vertex of a P_3 in the path-partition of $F S_F$, where F is the underlying forest of G_2 , then $\gamma(G) \leq \gamma(G_1) + \gamma(G_2) 1$.

4 Proof of Theorem 6

We proceed by induction on the size $q \geq 3$ of a $\frac{q}{3}$ -graph. Suppose G = (V, E) is a $\frac{q}{3}$ -graph of order n. If q = n, then $G \cong C_n$, and so, by Fact 1, either $G \in \mathcal{C}_1$, in which case $\gamma(G) = (q+2)/3$ or $G \in \mathcal{C}_2$, in which case $\gamma(G) = (q+1)/3$. Hence if q = n, then the result follows. In particular, the base cases when q = 3 or q = 4 are true. So in what follows we assume that q > n. Assume the result is true for all connected graphs G' of size q', where q' < q, that satisfy $\delta(G') \geq 2$ and $\gamma(G') > q'/3$. Hence we have the following result.

Lemma 10 If G' is a connected graph of size q' < q with $\delta(G') \ge 2$, then either $G' \in \mathcal{C}_1$, in which case $\gamma(G') = (q'+2)/3$, or $G' \in \mathcal{G}^* \cup (\mathcal{H}^* - \mathcal{C}_1)$, in which case $\gamma(G') = (q'+1)/3$, or $\gamma(G') \le q'/3$.

By assumption G is not a cycle. Thus G contains at least one vertex of degree at least 3. Let $S = \{v \in V \mid deg \ v \geq 3\}$. If |S| = 1, then G is a daisy, and so, by Fact 5, $G \in H_3^*$. So we may assume that $|S| \geq 2$. For each $v \in S$, we define the 2-graph of v to be the component of $G - (S - \{v\})$ that contains v. The 2-graph of v consists of edge-disjoint cycles through v, which we call 2-graph cycles, and paths emanating from v, which we call 2-graph paths.

Lemma 11 If G contains a path on five vertices each internal vertex of which has degree 2 in G, then $G \in \mathcal{G}^* \cup \mathcal{H}^*$.

Proof. Let u and v be the two end-vertices of a path on five vertices each internal vertex of which has degree 2. Let G' be the graph of size q'=q-3 obtained from G by removing the three internal vertices of this path and adding the edge uv. By Lemma 8, $\gamma(G')=\gamma(G)-1\geq (q'+1)/3$. By the inductive hypothesis, $G'\in \mathcal{G}^*\cup \mathcal{H}^*$. However, G is obtainable from G' by an elementary 3-subdivision, and so G also belongs to $\mathcal{G}^*\cup \mathcal{H}^*$. \square

By Lemma 11, we may assume that G contains no path on five vertices each internal vertex of which has degree 2 in G, for otherwise $G \in \mathcal{G}^* \cup \mathcal{H}^*$. Hence we may assume that

every 2-graph path in G has length at most 2, and every 2-graph cycle in G has length at most 5.

Hence, by Lemma 10 we have the following result.

Lemma 12 Suppose G' is a connected subgraph of G of size q' < q with $\delta(G') \geq 2$. If the degrees of all but one of the vertices in G' are the same as their degrees in G, then either $G' \cong H_1$, in which case $\gamma(G') = (q'+2)/3$, or $G' \in \mathcal{G} \cup (\mathcal{H} - H_1)$, in which case $\gamma(G') = (q'+1)/3$, or $\gamma(G') \leq q'/3$.

The following lemma will prove to be useful.

Lemma 13 Suppose G is obtained from two (disjoint) graphs G_1 and G_2 by identifying a vertex of G_1 and a vertex of G_2 into one vertex v where v has degree at least 1 in G_1 and degree at least 2 in G_2 . Suppose G_1 is a type-1 unit or a type-2 unit or can be obtained from a type-2 unit by attaching a path of length 3 to a vertex of the 5-cycle. Then $G \in \mathcal{G}$.

Proof. Since G is connected, G_1 and G_2 are both connected. Furthermore, since G has minimum degree at least 2, every vertex of G_1 different from v has degree at least 2 in G_1 while every vertex of G_2 has degree at least 2 in G_2 . Suppose G_i has size q_i for i=1,2. Notice that $\gamma(G_1)=(q_1+1)/3$ and v belongs to a γ -set of G_1 . Hence, if G_2 is a cycle, then either $G_2\cong G_3$, in which case $\gamma(G)=\gamma(G_1)=(q-2)/3$, or $G_2\in\{C_4,C_5\}$, in which case $\gamma(G)=\gamma(G_1)+1=(q_1+1)/3+1\leq q/3$. Both cases produce a contradiction. Hence G_2 cannot be a cycle.

Let G_2' be the graph of size q_2' obtained from $G_2 - v$ by adding as few edges as possible between neighbours of v in G_2 until we produce a connected graph with minimum degree at least 2 (possibly, $G_2' = G_2 - v$). Then $q_2' \le q_2 - 1$, and so $q \ge q_1 + q_2' + 1$.

We show that $G_2' \in \mathcal{G}^*$. If G_2' is a cycle, then, since G_2 is not a cycle, $q_2' \leq q_2 - 2$. In particular, if $G_2' \in H_2^*$, then $\gamma(G) \leq (q_1 + q_2)$

1)/3 + $(q'_2 + 1)/3 \le q/3$, a contradiction. If $G'_1 \in \mathcal{H}^* - \{H_2^*\}$, then, since v belongs to a γ -set of G_1 , it follows from Observation 2(a) that $\gamma(G) \le (q_1 + 1)/3 + (q'_2 + 2)/3 - 1 \le (q - 1)/3$, a contradiction. If $\gamma(G'_2) \le q'_2/3$, then $\gamma(G) \le (q_1 + 1)/3 + q'_2/3 \le q/3$, a contradiction. Hence $G'_2 \notin \mathcal{H}^*$ and $\gamma(G'_2) > q'_2/3$. Consequently, by Lemma 10, $G'_2 \in \mathcal{G}^*$ and $\gamma(G'_2) = (q'_2 + 1)/3$. Let F be the underlying forest of G'_2 .

If $q_2' \leq q_2 - 2$, then $\gamma(G) \leq (q_1 + 1)/3 + (q_2 - 1)/3 = q/3$, a contradiction. Hence $q'_2 = q_2 - 1$. This implies that each neighbour of v in G_2 belongs to a different component of G_2-v . Thus each edge of G_2' that is not in G_2 belongs to F. Hence each neighbour of v in G_2 must belong to F. If some neighbour of v in G_2 is the central vertex of a P_3 in the path-partition of $F - S_F$, then, by Observation 2(b), it follows that $\gamma(G) \leq \gamma(G_1) + \gamma(G_2) - 1 = (q-2)/3$, a contradiction. Hence each neighbour of v in G_2 either belongs to the set S_F or is an end-vertex of a P_3 in the path-partition of $F - S_F$. But then $G \in \mathcal{G}^*$. (If G_1 is a type-1 or a type-2 unit, then the underlying tree of G is obtained from the underlying tree of G'_2 by removing edges joining vertices that are neighbours of v in G_2 , adding the vertex vand adding the edges joining v to the vertices that are its neighbours in G_2 . If G_1 can be obtained from a type-2 unit by attaching a path of length 3 to a vertex x of the 5-cycle, then the underlying tree of G is as described earlier but with the addition of the v-x path of length 3 which is attached to v. In the latter case, the neighbour of v on the v-x path is a central vertex of a P_3 in the path-partition of $F - S_F$.) However, since every 2-graph path in G has length at most 2 and every 2-graph cycle in G has length at most 5, $G \in \mathcal{G}$. \square

Lemma 14 If S is not an independent set, then $G \in \mathcal{G} \cup \mathcal{H}$.

Proof. Let e = uv be an edge, where $u, v \in S$. Suppose G - e is a connected graph (of size q - 1). Then by the induction hypothesis, $\gamma(G - e) \leq (q + 1)/3$. If $\gamma(G - e) \leq q/3$, then $\gamma(G) \leq \gamma(G - e) \leq q/3$, a contradiction. Hence $\gamma(G - e) = (q + 1)/3$, and so $G - e \in C_1$. Thus G is obtained from a cycle C_n , $n \equiv 1 \pmod{3}$, by adding the edge e. Hence, by Fact 6, $G \in \{H_4, H_5\}$.

Suppose, next, that e is a bridge of G. Let G_1 and G_2 be the two components of G-e, where $u \in V(G_1)$. For i=1,2, let G_i have order n_i and size q_i . Then $q=q_1+q_2+1$. Each G_i satisfies $\delta(G_i) \geq 2$ and is connected. If G is a dumb-bell, then $G \cong D(n_1, n_2, 1)$, and so, by Fact $2, G \cong D_2 \in \mathcal{G}$ (where D_2 is the graph shown in Figure 2). Hence we may assume that G_2 is not a cycle. Thus, by Lemma 10, $\gamma(G_2) \leq (q_2+1)/3$.

Suppose $\gamma(G_1) \leq (q_1 + 1)/3$. If $\gamma(G_2) \leq q_2/3$ or $\gamma(G_1) \leq q_1/3$, then $\gamma(G) \leq q/3$, a contradiction. Hence $\gamma(G_i) = (q_i + 1)/3$ for i=1,2, and so, by Lemma 12, $G_i\in\mathcal{G}\cup\mathcal{H}$. By Observation 1(c), we can choose a γ -set of G_1 to contain u and a γ -set of G_2 to contain v. Hence, if $G_2 \in \mathcal{H}$, then, since $G_2 \ncong H_2$, Observation 2(a) implies that $\gamma(G) \leq (q-2)/3$, a contradiction. Thus, $G_2 \in \mathcal{G}$. Furthermore, by Observation 2(b), v belongs to a type-2 unit with both its neighbours having degree 2 in G_2 or v is a vertex in the underlying forest F of G_2 and either belongs to the set S_F or is an end-vertex of a P_3 in the path-partition of $F - S_F$, for otherwise $\gamma(G) \leq (q-2)/3$. If $G_1 \in \mathcal{H} - \{H_2\}$, then $\gamma(G) \leq (q-2)/3$, a contradiction. Hence $G_1 \in \mathcal{G} \cup \{H_2\}$. If $G_1 \cong H_2$, then $G \in \mathcal{G}$. On the other hand, if $G_1 \in \mathcal{G}$, then by Observation 2(b), u belongs to a type-2 unit with both its neighbours having degree 2 in G_1 or u is a vertex in the underlying forest F of G_1 and either belongs to the set S_F or is an end-vertex of a P_3 in the path-partition of $F - S_F$, for otherwise $\gamma(G) \leq (q-2)/3$. It follows then that $G \in \mathcal{G}$. Hence we may assume that $\gamma(G_1)=(q_1+2)/3$, for otherwise $G\in\mathcal{G}$. Thus $G_1\cong H_1$, and so $q_1 = n_1 = 4$. Let G'_1 be the graph obtained from G_1 by adding vand the edge e. Then G_1^\prime is a type-1 unit. Applying Lemma 13 (with " G_1 " replaced by " G_1 "), $G \in \mathcal{G}$. \square

By Lemma 14, we may assume that S is an independent set, for otherwise $G \in \mathcal{G} \cup \mathcal{H}$.

Lemma 15 If G contains a 2-graph cycle, then $G \in \mathcal{G}$.

Proof. Let $v \in S$ and suppose that C_v is a 2-graph cycle of v of length q_1 . By Lemma 11, we may assume that $3 \le q_1 \le 5$.

Case 1: deg v > 4.

Let $G_2=G-(V(C_v)-\{v\})$. Then G_2 is a connected graph with minimum degree at least 2 and of size $q_2=q-q_1$. Since $|S|\geq 2$, G_2 is not a cycle. Hence, by Lemma 12, $\gamma(G_2)\leq (q_2+1)/3=(q-q_1+1)/3$. Suppose $q_1=3$. Then $q=q_2+3$. If $G_2\in \mathcal{G}\cup\mathcal{H}$, then, by Observation 1(c), there is a γ -set of G_2 containing v, whence $\gamma(G)\leq \gamma(G_2)\leq (q_2+1)/3=(q-2)/3$, a contradiction. Hence $G_2\notin \mathcal{G}\cup\mathcal{H}$, i.e., $\gamma(G_2)\leq q_2/3$ by Lemma 12. However, any γ -set of G_2 can be extended to a dominating set of G by adding one vertex, and so $\gamma(G)\leq 1+q_2/3=q/3$, once again producing a contradiction. Hence $q_1\neq 3$. Suppose $q_1=4$. Then $q=q_2+4$. Any γ -set of G_2 can be extended to a dominating set of G by adding one vertex, and so $\gamma(G)\leq 1+(q_2+1)/3=q/3$, a contradiction. Hence $q_1\neq 4$. Thus, $q_1=5$, i.e., C_v is a type-2 unit. Applying Lemma 13 (with $G_1=C_v$), $G\in \mathcal{G}$.

Case 2: deg v = 3.

Let v, v_1, \ldots, v_k, w be the path from v to the vertex w of $S - \{v\}$ every internal vertex of which belongs to V - S. Since S is independent, $k \geq 1$. Since every 2-graph path of G has length at most $2, k \leq 2$. Let F_1 and F_2 be the two components of $G - v_k w$, where $w \in V(F_2)$. The graph F_2 is connected of size $q_2 = q - q_1 - k - 1$ with minimum degree at least 2. If F_2 is a cycle, then G is a dumbbell, and so, it follows from Fact 2 that $G \in \{D_1, D_3\} \subset \mathcal{G}$ (where D_1 and D_3 are the graphs shown in Figure 2). Hence we may assume that F_2 is not a cycle. Thus, by Lemma 12, $\gamma(F_2) \leq (q_2 + 1)/3 = (q - q_1 - k)/3$.

If $\gamma(F_1) \leq (q_1 + k)/3$, then $\gamma(G) \leq \gamma(F_1) + \gamma(F_2) \leq q/3$, a contradiction. Hence $(q_1, k) \notin \{(3, 1), (4, 2), (5, 1)\}$. Suppose $q_1 = 3$ and k = 2. If $\gamma(F_2) \leq q_2/3$, then $\gamma(G) \leq 2 + q_2/3 = q/3$, a contradiction. Hence, by Lemma 12, $F_2 \in \mathcal{G} \cup (\mathcal{H} - \{H_1, H_2\})$. Thus, by Observation 1(c), w belongs to a γ -set of F_2 . It follows that $\gamma(G) \leq 1 + \gamma(F_2) = (q - 2)/3$, a contradiction. Hence $(q_1, k) \neq (3, 2)$. Thus $(q_1, k) \in \{(4, 1), (5, 2)\}$.

Suppose $q_1=4$ and k=1. Notice that v_k belongs to a γ -set of F_1 . If $\gamma(F_2)\leq q_2/3$, then $\gamma(G)\leq q/3$, a contradiction. If $F_2\in\mathcal{H}-\{H_1,H_2\}$, then, by Observation 2(a), $\gamma(G)\leq 1+(q_2+1)/3=$

(q-2)/3, a contradiction. Hence $F_2 \in \mathcal{G}$. By Observation 2(b), w belongs to a type-2 unit in F_2 with both its neighbours having degree 2 in F_2 or w is a vertex in the underlying forest F of F_2 and either belongs to the set S_F or is an end-vertex of a P_3 in the pathpartition of $F - S_F$, for otherwise $\gamma(G) \leq (q-2)/3$. It follows that $G \in \mathcal{G}$.

Suppose $q_1 = 5$ and k = 2. Let G_1 be obtained from F_1 by adding w and the edge $v_k w$ and let $G_2 = F_2$. Then G_1 can be obtained from a type-2 unit by attaching a path of length 3 to a vertex of the 5-cycle. Hence, applying Lemma 13, $G \in \mathcal{G}$. \square

By Lemma 15, we may assume that

there is no 2-graph cycle

in G. Hence, if |S|=2, then G is a pumpkin, and so, by Fact 6, $G\in H_4\cup H_5$ (for otherwise $\gamma(G)\leq q/3$). Hence we may assume that $|S|\geq 3$.

Lemma 16 If $v \in S$ and v, a, b is a 2-graph path of v of length 2, then $G - \{a, b\}$ is disconnected.

Proof. Let $w \in S$ be the neighbour of b different from a. Since S is independent, vw is not an edge. Let $G' = G - \{a, b\}$. Then G' has size q' = q - 3 and has minimum degree at least 2. Suppose G' is connected. Since $|S| \geq 3$, G' is not a cycle, and so, by Lemma 10, $\gamma(G') \leq (q'+1)/3$. Any γ -set of G' can be extended to a dominating set of G by adding either a or b. Hence, if $\gamma(G') \leq q'/3$, then $\gamma(G) \leq q'/3$ q'/3+1=q/3, a contradiction. Thus $\gamma(G')=(q'+1)/3$, and so, by Lemma 10, $G' \in \mathcal{G} \cup (\mathcal{H} - \{H_1, H_2\})$. If $G' \in \mathcal{G}$, then, since G has no 2-graph cycles, G' has exactly two 2-graph cycles, one containing v and the other containing w. However, we can then choose a γ -set of G' to contain both v and w. Hence $\gamma(G) \leq \gamma(G') = (q-2)/3$, a contradiction. On the other hand, if $G' \in \{H_3, H_4, H_5\}$, then we can choose a γ -set of G' to contain any two nonadjacent vertices of G'. In particular, we can choose a γ -set of G' to contain both vand w, once again producing a contradiction. Hence G^\prime must have been disconnected. 🗆

An immediate consequence of Lemma 16 now follows.

Lemma 17 There is no 5-cycle or 6-cycle in G containing exactly two vertices of S.

Proof. Suppose G contains a 5-cycle C: v, a, b, w, c, v containing exactly two vertices v and w of S. Then C contains the 2-graph path v, a, b of length 2. Since G is connected, so too is $G - \{a, b\}$, contradicting the result of Lemma 16. Hence, there is no 5-cycle in G containing exactly two vertices of S. Similarly, there is no 6-cycle in G containing exactly two vertices of S. \square

Lemma 18 There is no 4-cycle in G containing exactly two vertices of S.

Proof. Suppose G contains a 4-cycle C: v, a, w, b, v containing exactly two vertices v and w of S. Then C contains two 2-graph paths of length 1. Let G' be obtained from $G - \{a, b\}$ by adding the edge vw. Then G' is a connected graph of minimum degree at least 2 with size q' = q - 3. Since $|S| \ge 3$, G' is not a cycle, and so, by Lemma 10, $\gamma(G') \le (q'+1)/3$.

Suppose $\gamma(G') \leq q'/3$. Let D' be a γ -set of G'. If $v, w \in D'$, then D' is a dominating set of G, whence $\gamma(G) \leq (q-3)/3$, a contradiction. Hence v or w, say v, does not belong to D', whence $D' \cup \{v\}$ is a dominating set of G and so $\gamma(G) \leq q/3$, a contradiction. Hence $\gamma(G') = (q'+1)/3$ and so, by Lemma 10, $G' \in \mathcal{G} \cup (\mathcal{H} - \{H_1, H_2\})$.

If $G' \in \mathcal{G}$, then G' has at least two 2-graph cycles, at least one of which does not contain the edge vw. But then G has at least one 2-graph cycle, producing a contradiction. On the other hand, if $G' \in \{H_3, H_4, H_5\}$, then we can choose a γ -set of G' to contain any two nonadjacent vertices of G'. In particular, we can choose γ -set of G' to contain v and a neighbour of w different from v. Hence $\gamma(G) \leq \gamma(G') = (q-2)/3$, a contradiction. Hence, there is no 4-cycle in G containing exactly two vertices of S. \square

Among all vertices in S, let v be chosen so that G - v contains a component of maximum order. Let S' denote the subset of vertices

of $S-\{v\}$ that are adjacent to a vertex on some 2-graph path of v. By Lemma 17 and Lemma 18, the graph G' of order q' obtained from G by removing v and all vertices on a 2-graph path of v has minimum degree at least 2.

Lemma 19 The graph G' is connected.

Proof. Suppose G' is disconnected. Let w be a vertex of S' that belongs to a component of G' of minimum order. Then the component of G-w that contains v has order exceeding that of any component of G-v. This contradicts our choice of v. \square

By Lemma 10, $\gamma(G') \leq (q'+2)/3$. Let D' be a γ -set of G'. Since G' is connected, Lemma 16 implies that v has no 2-graph path of length 2. Hence every 2-graph path of v has length 1. Hence D' can be extended to a dominating set of G by adding v. Thus, $\gamma(G) \leq (q'+2)/3+1 \leq (q-1)/3$, a contradiction. This completes the proof of Theorem 7. \square

5 Acknowledgements

I thank the Lord, the Maker of heaven and earth, for the privilege to enjoy and discover some of the mathematics that in His infinite wisdom He has so wonderfully created.

References

- [1] G. Chartrand and L. Lesniak, Graphs & Digraphs: Third Edition, Chapman & Hall, London, 1996.
- [2] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [3] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.

- [4] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two. J. Graph Theory 13 (1989), 749-762.
- [5] O. Ore, Theory of graphs. Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI), 1962.
- [6] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982), 23-32.
- [7] B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996), 277-295.
- [8] L.A. Sanchis, Bounds related to domination in graphs with minimum degree two, J. Graph Theory 25 (1997), 139-152.