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ABSTRACT. For a graph facility or multi-facility location
problem, each vertex is typically considered to be the location
for one customer or one facility. Typically, the number of
facilities is predetermined, and one must optimally locate
these facilities so as to minimize some function of the
distances between customers and facilities (and, perhaps, of
the distances among the facilities). For example, p facility
locations (such as, for hospitals or fire stations) might be
chosen so as to minimize the maximum or the average
distance from a customer to the nearest facility. The problem
investigated in this paper considers all of the facilities to be
distinct, and we seck to minimize the average customer-to-
facility distance, primarily for grid graphs.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion of his 60th birthday.

1. INTRODUCTION

Within the realm of graph theory, one of the things of particular
interest to Hedet is the family of grid graphs. Indeed, his fascination with grids
once resulted in giving serious consideration to the publication of a journal
devoted exclusively to problems related to grid graphs. Obviously, to be
included would be papers concerned with his favorite chessboard problems
(queens-, rooks-, bishops-, knights-, and kings-domination), as well as
problems concerned with facility location, independence, colorings, packings,
tilings, communications, percolation, etc.
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Slater as her mentor.
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Figure 1. Three 5-by-6 patterns.
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Figure 2. Three 6-by-6 patterns.
Xl X[ X XXX X XX
X 1X] 1X] X X XXX XX XX
a)| X |X] |X b)| [X] [X] |X ©) XXX
X IXI X IX X XXX X IX1X] 1X
X XXX XX X

Figure 3. Three 5-by-7 patterns.

In this paper, we consider a planar facility location problem using the
Manhattan metric. Think of each square of an r-by-s chessboard as the possible
location for a facility or for a customer, or, equivalently, as the location for one
member of a black team or a white team. Note that Figures (1a), (2a) and (3a)
give the normal chessboard black/white alternating square patterns. Having
located m black team members and rs-m white team members (or m facilities
and rs-m customers) on the rs locations, assume we randomly choose a black
team player and a white team player. What is the average distance they must
travel to get together, assuming a Manhattan metric where one can only move
horizontally or vertically, and the distance from square (i,j) to square (h,k) is

[i-h| + | jk|? Surprisingly, the answer is the same for all three patterns in
each figure, where each X marks the location for a black team member. And if
we can choose where to locate the players, how should we do it so as to
minimize this average black/white distance? The patterns in Figures 1, 2 and 3
actually produce the minimum possible average black/white distance for
arrangements of 15 blacks and 15 whites, 18 blacks and 18 whites, and 17
blacks and 18 whites, respectively.
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Figure 4. The b-w distances.

For each black/facility location, add all of the distances from the
white/customer locations to it. These distance totals have been calculated for
the patterns in Figure 1 and are shown in Figure 4. In all three examples in
Figure 4, the sum of all the black-white distances is the same Total Distance
TD=799, and because there are 15*15=225 different black:white pairs, the
Average Distance is AD=799/225=3.5511. The Minimum Average Distance
for the 6-by-6 board with an 18:18 distribution is MAD=1260/324=3.8889, and
for the 5-by-7 board with a 17:18 distribution we have MAD=1190/306=
3.8889.

2. FACILITY LOCATION: BACKGROUND

We restrict our attention to unweighted vertex facility location
problems for a graph G=(V,E) with vertex set V and edge set E. Thus, each
vertex will be the site for one facility or for exactly one customer, and each edge
has length one so the distance between two vertices is the minimum number of
edges in a path connecting them.

If one is to locate an emergency response facility, such as a hospital or
police station, a typical optimization criterion is to minimize the maximum
distance (travel time) from the facility to a customer. In 1869 Jordan [4]
defined the eccentricity e(v) of a vertex v to be the maximum distance from v to
any vertex we V(G), e(v) = MAX{d(v,w): we V(G)}, and a center vertex isa
vertex for which e(v) is minimized. The center of G is C(G) = {ve V(G):
e(v)<e(w) for all we V(G)}. For the tree T in Figure 5(a), the eccentricity of
each vertex is indicated, and the only center vertex is g with e(g)=6.

For a service facility, one typically wants to select as a facility vertex
one for which the average (or, equivalently, the total) distance to the non-
facility vertices is minimized. In 1959 Harary [2] defined the status s(v) of a
vertex v to be the sum of the distances from v to the other vertices, s(v) =
T{d(v.w): weV(G)}. In 1964 Hakimi called s(v) the distance of v, and a
median vertex is a vertex for which s(v) is minimized. The median of G is
M(G) = {ve V(G): s(v) < s(w) for all weV(G)}. For the tree T in Figure 5(b),
the status of each vertex is indicated, and the only median vertex is x with s(x)
=177.
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Figure 5. Illustration of 1-Center and 1-Median Problems.

To this point, we have examined facility problems in which only one
facility is to be placed. There are numerous problems, however, that require
locating multiple facilities; many of these are described by Tansel, Francis and
Lowe in [6]. One such problem, introduced by Hakimi [1), is the p-Center
problem for similar facilities. The goal in this problem is to minimize the
largest distance from a customer location to the nearest of p indistinguishable
facility locations. For example, if we are to place p hospitals in a city,
assuming the hospitals all serve the same function, we need only minimize the
distance from a customer to the closest hospital instead of from a customer to a
particular hospital. Figure 6 displays several configurations for a 3-Center
problem, with facilities displayed as shaded vertices. The maximum (MAX)
distance from each non-facility vertex to the nearest facility is labeled. Since
the maximum distance from a non-facility vertex to a facility vertex is lowest in
Figure 6(a), it is apparent that the configuration in Figure 6(a) is the best of the
three configurations shown in terms of our mimimax criterion. For tree T of
Figure 5, each of {d,j}, {d,k}, and {c,j} is a 2-Center solution. For the p-
Median problem presented by Hakimi in [1] for graph G with [V(G)|=n vertices,
one selects p facility locations and n-p customer locations, the objective being
to minimize the SUM of the n-p values obtained by taking the distance of each
customer to the nearest facility. Again, see Figure 5. For this minisum
criterion, a 2-Median solution for tree T of Figure 5 is {d,x} or {e,x}. In
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addition, in Figure 6, it is apparent that Figure 6(a) is the best of the three
configurations shown in terms of the minisum criterion.

Figure 6. Illustration of 3-Center and 3-Median Problems.

In addition to the problems mentioned above, a problem that requires
locating multiple different facilities in a network was introduced in Hulme and
Slater [3] and Slater [S]. For this problem, it is assumed that each of the n-p
customers must make separate trips to each of the p facilities. For each
customer we compute a total distance, which equals the sum of the distances to
the p different facilities. Such problems, in which p different facilities are to be
placed, are referred to as p-Mean Median problems. Figure 7 displays three
configurations for a 3-Mean Median problem, with the shaded vertices
denoting facilities. Each non-facility vertex is labeled with its total distance to
all of the p different facilities. By adding up the total distance for all of the
non-facility vertices, we get an overall total distance which will enable us to
compare configurations. Since the total distance for each of Figure 7(a) and
7(b) is 54, while the total distance for Figure 7(c) is 52, it is apparent that the
configuration in Figure 7(c) is the best of the three configurations shown in
terms of the minimization criterion of total distance. Equivalently, we are
minimizing the average distance from a facility to a non-facility. This
particular type of facility problem with average/total distance as the
minimization criteria will be the principal focus of this paper for the special
case where the sites are vertices of a grid.

a) TOTAL =54
b) TOTAL =54
c) TOTAL =52

12
Figure 7. Illustration of 3-Mean Median Problem.
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In obtaining minimized solutions to facility location problems, it is
often convenient to begin with a starting configuration and to then move
facilities about the graph in a manner which better suits the minimization
criterion. One way of accomplishing this moving is by switching a pair of
adjacent facility and non-facility vertices. If facilities are moved about until no
adjacent switch will improve the minimization, we say that a locally minimal
solution has been reached. There may be numerous locally optimal solutions
which produce different values. Nevertheless, there is only one globally
optimum solution value. To reach a globally optimum solution from a locally
optimal solution, we might have to make adjacent switches that would at first
go against the optimization goal and would appear to be counterintuitive.
Hence, it is often difficult to discern the globally optimum solution for a graph.

A switching lemma for graphs can be used as a tool to determine when
an adjacent switch between a facility and a non-facility vertex will produce a
configuration closer to a locally optimal solution. For multi-facility problems
where the facilities are different and the minimization criterion is average
distance, we would want to make an adjacent switch if the combined benefit
from the facility moving closer to some customer vertices and the customer
moving closer to some facility vertices exceeds any concomitant increases.

This switching lemma for graphs is illustrated in Figure 8. Figure 8(b) was
obtained from Figure 8(a) by switching the highlighted facility and non-facility.
Each non-facility vertex is labeled with its distance to the three facility vertices.
Note that the switched facility and customer remain at distance one, that the
facility is one unit closer to seven customers and one unit farther from one
customer, and that the switched customer is one unit farther away from the
other two facilities. The net change is (-7+1) + (2) = -4, from 78 to 74. Thus,
the switch was a favorable one which brought the configuration closer to a
locally optimal solution.

a) Total =78 b) Total = 74

Figure 8, Illustration of Switching Lemma for Graphs.
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3. MAD(Gpy,p)

Several facility location problems have been studied for restricted
classes of graphs. This section will focus on a special class of facility location
problems in which the structure upon which the facilities are to be positioned
can be modeled by a grid. Lemmas specific to this problem type will be
developed and then used to find globally optimum solutions for the special class
of equipartitioned grid problems. First, we formally define the p-MAD
problem for arbitrary graphs.

For two vertices u and v in V(G), d(u,v) denotes the distance between
them. For SEV(G), let TD(S)=Z{d(u,v): ueS, veV(G)-S}. The p-mean
median problem is to minimize TD(S) for vertex sets of order p, and we let
MTD(G;p) = MIN{TD(S): SSV(G), S|=p}. Note that if TD(S)=MTD(G;p)
with |S|=p, then S is a p-set for which we have the Minimum Average Distance
between a (facility) vertex in S and a (customer) vertex in V(G)-S. This
minimum average distance is actually MAD(G;p)=MTD(G;p)/p(n-p) where
n=|V(G)) is the order of G.

A grid Gm n refers to a group of m*n blocks that are organized into m
rows and n columns. In this model, vertices correspond to the 1x1 square
blocks. For our study, we will be interested in the placement of black and white
vertices, representing facility and non-facility vertices respectively, on the grid.
B will refer to the set of black vertices on the grid, and W will refer to the set of
white vertices. When referring to a specific black vertex, b will be used, while
w will denote a specific white vertex. In this paper, grids will be presented in a
binary form in which a black block will be denoted by 1 while a white block
will be denoted by 0. Figure 9 depicts two 5-by-8 grids in binary form. For
each grid, the additional row, denoted the summary row, will contain the
numbers of black vertices in the columns of the grid. Likewise, the additional
right column, denoted the summary column, will contain the numbers of black
vertices in the rows of the grid. In general, for an m-by-n grid, b; will
represent the number of black vertices in row i, 1<i<m, and a; will represent the
number of black vertices in column j, 1sj<n. As such, the summary row will
hold all the aj values for 1<j<n, and the summary column will hold all the b;
values for 1<i<m.

Grids with corresponding numbers of rows and columns can differ due
to the placement of black and white vertices. A specific arrangement of black
and white vertices within a grid will be defined as a configuration. The
distribution for a grid configuration will be defined by the number of black and
white vertices in each column and row of the grid. As an example, Figure 9
depicts two 5x8 grids having the same distribution but different configurations.
Since the summary rows and summary columns for the two grids are the same,
the grids are said to have the same distribution; they have the same number of
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black and white vertices in their corresponding columns and rows. Although
the grids have the same distribution, their configurations are different since the
black and white vertices are arranged differently within the rows and columns.

01110010 4=b 10111000 4
00010010 2=b 00000011 2
11010010 4=0b 11010010 4
10100001 3=hb, 01010010 3
10011011 5 =pbs 10110011 5§
2=32241042=g 32241042

Figure 9. Illustration of Grids With the Same Distribution But Different
Configurations.

Since we are attempting to minimize the overall distance from each
non-facility vertex to each of the p different facility vertices, we will be
concerned with the total distance from each non-facility, or white vertex, to all
of the different facilities, or black vertices. Assume that B-W distance denotes
the total distance between all the black vertices and white vertices in the grid.
The B-W distance for a particular grid configuration will also be denoted by
TD(B,W), where B and W again represent the set of black and white vertices in
the grid. The distance from a black vertex to a white vertex can be calculated
by adding the vertical distance between the rows of the two vertices to the
horizontal distance between the columns of the two vertices, As such,
TD(B,W) corresponds to adding the horizontal and vertical differences between
all the black and white vertices in the grid. A globally optimum solution for a
grid will have the lowest possible TD(B,W). We will denote TD(B,W) for a
globally optimum solution on a grid G to be the Minimum Total Distance
MTD(G, j, k), where j represents the number of black vertices and k the
number of white vertices in grid G. (The actual average distance can be
obtained by dividing the Minimum Total Distance by the number of possible
black:white pairs, MAD(G,j,k)=MTD(G,j,k)/(jk).)

In pursuing an optimal solution, we will often want to reposition black
and white vertices on a grid as a means of decreasing the B-W distance. As an
example, Figure 10 shows two 5x6 grids, in which Grid 2 is obtained from Grid
1 by switching the adjacent black and white vertices (3.4) and (3,5). The set of
black vertices in Grid 2, B,, consists of the same set of black vertices as in Grid
1, B;, only with the addition of the new black vertex (3,5) and with the removal
of the old black vertex (3,4); thus, B, = B, - (3,4) + (3,5). In the same way, W,
=W, - (3,5) + (3,4), where W, and W, represent the set of white vertices in
Grid 1 and Grid 2, respectively. As indicated in the figure, TD(B,,W-) <
TD(By,W)), revealing that the switch of adjacent vertices lowered the B-W
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distance. The following Switching Lemma for grids tells us precisely when a
switch involving adjacent black and white vertices will yield a decrease in the
B-W distance.

Grid 1 Grid 2
TD(B{,W,) = 764 TD(B,W;) = 760
100111 4 100111 4
001101 3 0oo01101 3
100[_“_'_(”)}1 3 100011 3
111000 3 111000 3
111101 § 111101 §
423414 423324

Figure 10. Illustration of the Switching Lemma for Grids.

Switching Lemma. Suppose there is a grid G, ,, with a B-W configuration
producing row distribution (b}, b, ..., b,) and column distribution (a, a,, ...,
a,) and that a black block at (j,k) is switched with a white block at (j.k+1). The
change in TD(B,W) will be:

2km-mn-2(a,+a,*... ¥ @)+ 2y, Fay, ot Fa,)+2.

..... by
b2

a; a A 2 an

Figure 11. Grid Gy o To Be Used in the Switching Lemma Proof.

Proof: Consider the black block that is switched. (See Figure 11.) Since a;
equals the number of black blocks in column i and there are m blocks in a
column, (m-a;) is the number of white blocks in column i. Since the black
block is moving from column k to column (k+1), the black block is getting
closer to all the white blocks in the columns from column (k+1) to column n,
except for the white block with which it is switching (where the distance
remains the same). Hence, the black block is getting closer to (m-ay.; )+(m-
a.0)+...+H(m-a,)-1 white blocks, which can be written alternatively as m(n-k)-
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(ax+1+am+...+an)-l white blocks. It gets farther from all the white blocks in the
first k columns. "As such, it gets farther from (m-a, )+(m-ay)+...+(m-a,) white
blocks, or, alternatively, km-(a, +ax+...+ay) white blocks. Thus, in summary,
the distance from the black block increases by one to km-(a,+a,+...+a,) white
blocks but also decreases by one to m(n-k) - (ayn1+ago+...+a,)-1 white blocks,

Consider the white block that is switched. It gets farther from the
black blocks in the columns from column (k+1) to column n. Thus, the white
block gets farther from (a,., +awot...+ay,) black blocks. Since the white block is
getting closer to all the black blocks in the first k columns except for the black
block with which it is switching (where the distance remains the same), the
white block gets closer to (a;+a,+...+a,)-1 black blocks. Thus, the distance
from the white block increases by one to ay;+ay., + ... + a, black blocks but
also decreases by one to a;+a, + ... +a,-1 black blocks,

Now, adding the distance increases and decreases for the black and
white block, it is apparent that the change in TD(B,W) is: km-(a;+a, + ...
)t (@catapet ... +ay) - [OK)-(apntagot ... +a,)-1 Hatay + ... +ay) - 1]

= km-mn+km-2(a, tayt.. a2 tHags .. a2
= 2km-mn-2(a;+ax+.. +a )+ 22 Hago .. +a)+2, B

The following results follow in a similar manner.

(1) If a white block at (j,k) is switched with a black block at G.k+1),
the change in TD(B, W) will be mn-2km+2m-
2(a,+ay,, 1Te-ta)+2(a vayt. +ay )+2.

(2) If a black block at (k) is switched vertically with a white block at
G+1.k), the change in TD(B,W) will be 2jn-nm-2(b ;+b y+... +bj)+
2(b,, 1tbp ot +by,)+2.

(3) If a white block at (j,k) is switched vertically with a black block at
(+1.,k), the change in TD(B,W) will be mn-2jn-
Z(bj+ 11Bi ot b, )+ 2(b b+ +b)+2.

By applying the Switching Lemma to a pair of adjacent black and
white vertices, we can tell whether switching the adjacent vertices will lower
TD(B,W). Since the Switching Lemma tells us what the change in TD(B,W)
will be if the switch is performed, we know that if the calculated change is
negative, we should make the switch since TD(B,W) will be decreasing.
Similarly, if the change is positive, we should not make the switch since
TD(B,W) will increase. If the change is zero, the switch will not affect
TD(B,W).

The following lemma establishes the relationship between the
distribution of a grid configuration and TD(B,W).
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Distribution Lemma. Suppose there is a grid G, , with a B-W configuration
producing row distribution (b, b, ..., by) and column distribution (a;, a,, ...,
ay). TD(B,W) is given by:

> [n-bbyli-il+@-bbii-fi+ D ltm-a;)a|i-i+(m-a;)a; i~}
Isi<jsm I18i<j<n
In particular, TD(B,W) will be the same for any two bicolored grid
configurations having the same number of black and white blocks in their
corresponding rows and columns.

Proof: TD(B,W) can be found by calculating the distance from all of the white
blocks in the grid to all of the black blocks in the grid.

Suppose that a white block “travels" to a black block by first moving in
its column from its row to the row of the black block and then moving from its
column to the column of the black block. As such, the distance from a white
block to a black block is the sum of the vertical distance between the two
blocks' rows and the horizontal distance between the two blocks' columns.
Thus, the distance from all the white blocks in the grid to all the black blocks
in the grid is simply the sum of the vertical distances from the white blocks to
the black blocks and the horizontal distances from the white blocks to the black
blocks.

Consider a white block in row i. To reach a black block in row j, the
white block must travel a vertical distance of [j-il. However, since there are b;
black blocks in row j, the white block must travel a vertical distance of bjfj-i| to
reach all the black blocks in row j. Now, since one white block in row i travels
a distance of bylj-i| to reach all the b; black blocks in row j and there are (n-b)
white blocks in row i, the vertical distance from all the white blocks in row i to
all the black blocks in row j is (n-b)bjlj-i|l. In a similar manner, since there are
(n-b;) white blocks in row j and b; black blocks in row i, the vertical distance
from all the white blocks in row j to all the black blocks in row i is (n-b)byi-
jI=(n-b)bij-il. Thus, the total vertical distance between the white blocks and
black blocks in rows i and j is (n-b)bylj-i| + (n-b)byli-il.

As such, the total vertical distance from all the white blocks to all the
black blocks in the grid is

D n=b;)b;i—i|+m~b;)b; |-}
1<i<jsm
Similarly, the horizontal distance from all the white blocks to all the black
blocks is

D lm-a;)a;li-i[+m-a;a|j-i}
1<i<j<n

Thus, the total distance from the white blocks to the black blocks is
3 (@-bbjli-i|+@-bpbili-ifl+ > fm-aajlj-i|+am-aai-i) W

I<i<jsm 1<i<jsn
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The Switching Lemma and Distribution Lemma can be used in
conjunction with each other to find locally minimal solutions to grid problems.
A heuristic computer program, based on the two lemmas, was implemented to
identify locally minimal solutions. Heuristic programs do not necessarily yield
optimum answers; typically, they follow certain guidelines to produce an
optimal, but possibly suboptimum, answer. Given the size specifications for a
grid, our program implementation generated a random grid configuration and
then switched adjacent facility and non-facility vertices when the Switching
Lemma revealed that the switch would reduce the total/average distance. The
program produced locally optimal solutions in which no switch between an
adjacent facility and non-facility vertex for the final grid configuration would
decrease the total distance. By applying the Distribution Lemma to the final
solution grid, the total distance for the resulting grid configuration was
calculated, and we kept track of both the best and worst configurations found.
Figures 12(a) and 12(b) show the best and worst locally optimal configurations
found for a 10x10 grid with 16 facilities in which 500 solutions were generated.
Although Figure 12(a) shows the best locally optimal configuration found from
among the 500 solutions, this solution is not a globally optimum solution. In
fact, Figure 13 shows a 10x10 grid with 16 facilities which has a lower total
average distance than the configuration shown in Figure 12(a). In the next
section, we will examine a special class of grids for which all of the locally
optimal solutions will actually be globally optimum solutions.

a) BEST CASE: TD(B,W) = 7696 b) WORST CASE: TD(B,W) = 7902
0000000000 0 0000000000 o
0000000000 o 0000000000 o
0000000000 0 0000010000 1
0000111000 3 0000011000 2
0011111000 5 0000111110 5
0001111000 4 1111100000 5
0000111000 3 0001110000 3
0000100000 1 0000000000 o
0000000000 o 0000000000 o
0000000000 o 0000000000 o
0012544000 1112342110

Figure 12. Best and Worst Locally Minimal Solutions Found Among 500

Solutions.
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TD(B,W) = 7680
0000000000 O
0000000000 O
0000000000 0
0001111000 4
0001111000 4
0001111000 4
0001111000 4
0000000000 O
0000000000 0
0000000000 o
0004444000

Figure 13. A Better Locally Minimal Solution.

4. EQUIPARTITIONED GRIDS

With the Switching Lemma and Distribution Lemma as tools, we can
determine minimized solutions for the special class of equipartitioned grids.
The following four theorems present global minimized solutions for
equipartitioned grids, that is, where the number of black and white vertices is
equal or as close as possible to equal.

Theorem 1. Suppose there is a grid Gy, oy and that there are km black blocks
and km white blocks in the grid, where m can be either even or odd. TD(B,W)
will be a minimum only if there are an equal number of black and white blocks
in each row of the grid. (Likewise, for a grid G; ,,, with jm black blocks and
Jjm white blocks, TD(B,W) will be a minimum only if there are an equal number
of black and white blocks in each column of the grid.) (Figure 14(a) illustrates
the globally optimal distribution for a grid Gy, »1.)

..... k

k
k

e

.....

e

a; a a; A2-2a2-1 A2k

Figure 14(a). Illustration of the Globally Optimal Distribution for a Grid
G, -
'm,2k
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Figure 14(b). Grid G, To Be Used in the Proof.

Proof: Assume a minimum solution and suppose that there are not an equal
number of white and black blocks in each row of the grid. It will be shown that
switching some pair of black and white blocks that are adjacent will lessen
TD(B,W), contradicting the minimality.

Suppose that there are an equal number of black and white blocks in
each row of the grid for the first r rows, but not in row r+1. (See Figure 14(b).)
As such, in the (r+1)™ row, there are either more white blocks than black blocks
or more black blocks than white blocks. Suppose that the (r+1)* row has more
white blocks than black blocks. Now, since in total there are an equal number
of white and black blocks in the grid, there must be a row below the (r+1)* row
that has more black blocks than white blocks. As such, there must be a row
below the (r+1)* row where there is a black block in the same column as one of
the white blocks in the (r+1)* row.

Now, this row may or may not be directly below the (r+1)* row.
Suppose the first row below the (r+1)® row which has a black block in the same
column as one of the white blocks in the (r+1)* row is in the (r+s+1)* row.
This implies that, in rows (r+1) through (r+s), there was a white block in the
same column as each of the white blocks in the (r+1)* row. Thus, in each of
the rows (r+1) through (r+s), there are more white blocks than black blocks.
Suppose that in the s rows from row (r+1) to row (r+s) there are ks + ¢ white
blocks, where c 2 s 2 1. Now, since there are an equal number of black and
white blocks in the grid and in the first r rows, there must be an equal number
of black and white blocks in the final m-r rows of the grid. As such, since there
are ks + ¢ white blocks in the s rows from row (r+1) to row (r+s), there must be
kt - ¢ white blocks in the final t=m-(r+s) rows of the grid. Thus, in these s rows
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from row (r+1) to row (r+s), there are ks - ¢ black blocks and ks + ¢ white
blocks. In the final t rows, there are kt + ¢ black blocks and kt - ¢ white blocks.

Suppose that the adjacent black and white block where the white block
is in the (r+s) row and the black block is in the (r+s+1) * row are switched.

Consider the first r rows, where there are an equal number of black
and white blocks in each row. Since there are kr black blocks in this region
and the white block is moving one square away from these black blocks, the
distance from the white block to each of the kr black blocks will increase by 1.
But, since there are kr white blocks and the black block is moving one square
closer to them, the distance to the black block will decrease by 1 for each of the
kr white blocks. Since the distance from the black block to the kr white blocks
decreases by 1 and the distance from the white block to the kr black blocks
increases by 1, the net change in the distance from the white blocks to the black
blocks in this region is zero and indicates that, for the blocks in the first r rows,
the distance between black and white blocks is not affected by the switch.

Now, consider how the distance changes for the blocks in the
remaining m-r rows.

Consider the white block. It gets farther from the (ks - ¢) black blocks
in the s rows. There are a total of (kt + c) black blocks in the bottom t rows.
Since the white block is getting closer to all those blocks except for the black
block with which it is switching (where the distance remains the same), the
white block gets closer to (kt + ¢ -1) black blocks. Thus, in summary, the
distance from the white block increases by 1 to (ks - c) black blocks but
decreases by 1 to (kt + ¢ - 1) black blocks.

Consider the black block. It gets closer to the (ks + c) white blocks in
the s rows except for the white block with which it is switching (where the
distance remains the same). As such, the black block gets closer to (ks +¢ - 1)
white blocks. Since there are (kt - ¢) white blocks in the bottom t rows, the
distance from the black block to each of those (kt - c) white blocks increases by
one. Thus, the distance from the black block increases by 1 to (kt - ¢) white
blocks but decreases by 1 to (ks + ¢ - 1) white blocks.

Now, adding the distance increases and decreases for the black and
white block, we see that the changeisks-c+kt-c-[kt+c-1+ks+c-1] =
2-4¢c<0(sincec=zs21).

Thus, the overall distance between the black and white blocks in the
grid decreases due to the switch. But, since we assumed a minimum solution,
we have reached a contradiction.

(The proof for the 2jxm grid follows in a similar manner.) ll

Theorem 2: Suppose there is a grid Gy; o}, and that there are 2jk black
blocks and 2jk white blocks in the grid. TD(B,W) will be a minimum if and
only if there are k black and k white blocks in each row and j black and j white
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blocks in each column of the grid. (Figure 15 illustrates the unique globally
optimal distribution for an even-by-even grid G 2j, 2k)
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Figure 15. Illustration of the Globally Optimal Distribution for a Grid Gaj 2k-

Proof: Theorem 1 guarantees that TD(B,W) in an m x 2k grid will be a
minimum only if there are an equal number of black and white blocks in each
row of the grid. Similarly, it also ensures that TD(B,W) in a 2j x m grid will be
a minimum only if there are an equal number of black and white blocks in each
column of the grid. Thus, applying Theorem 1 to the grid sz’z,(, we see that
TD(B,W) in this grid will be a minimum only if there are an equal number of
black and white blocks in each row and in each column of the grid.

The Distribution Lemma guarantees that TD(B,W) will be the same
for any 2j x 2k grid with this distribution, ensuring that TD(B,W) will be
minimum if and only if there are an equal number of black and white blocks in
each row and in each column of the grid. Il

Applying the Distribution Lemma to grid sz,zj, we see that in particular
MID(Gy0;2)=21 Y. 22G-a)=4 Y b-a)=47(3")

12a<bs2j Isa<bs2j
Corollary. MAD(G,, , 2k?) = 2K _ L
3 3%k
The arguments for Theorem 3 and Theorem 4 are more complicated

than those for Theorem 1 and Theorem 2 but are similar in nature. Theorem 3
concerns globally optimum solutions for equipartitioned odd-by-odd grids,
while Theorem 4 concerns globally optimum solutions for equipartitioned odd-
by-even grids. The proof for each theorem consists of two parts. First, it is
shown that any optimum configuration satisfies the distribution guidelines
specified in the theorem. Second, the Distribution Lemma is applied to assure
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that any two configurations meeting the specified distribution have the same
TD(B,W).

Theorem 3. Suppose there is a 2j+1 x 2k+1 grid and that there are 2jk + j +
k black blocks and 2jk + j + k + 1 white blocks in the grid. The distance
between the black blocks and white blocks will be a minimum if and only if
there are k black blocks and k+ 1 white blocks in each odd row, k+1 black
blocks and k white blocks in each even row, J black blocks and j+ 1 white
blocks in each odd column, and j+1 black blocks and J white blocks in each
even column of the grid. Let this distribution be denoted the "alternating
distribution." (Figure 16 illustrates this unique globally optimal distribution
Jor an odd-by-odd grid sz+ 1.2k+1)
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Figure 16. Tllustration of the Globally Optimal Distribution For a Grid
Gojr1 241
Consider Figure 3. Figure 3 displays three equipartitioned 5x7 grids
with different configurations but the same alternating distribution. By
Theorem 3, since all three grids possess the alternating distribution, Figures
3(a), 3(b) and 3(c) are equivalent globally optimum solutions for
equipartitioned grid Gs 7.
Note that in Figure 1 we have three distinct column distributions (a,
4, ..., %), namely, (2.3,2,3,2.3), (2,3,2,3,3,2) and (3,2,2,3,2,3), producing the
same value TD(B,W) = 799,

Theorem 4. Suppose there is a 2j+1 x 2k grid G413 and that there are
k(2j+1) black blocks and k(2j+ 1) white blocks in ti;e grid. TD(B,W) will be a
minimum if and only if: (1) there are an equal number of black and white
blocks in each row of the grid and (2) there are 2j+1 black blocks and 2j+1
white blocks in each pair of columns 2i-1 and 2i, Jori=1tokand (3) for
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consecutive columns 2i-1 and 2i, for i = 1 to k, there are either j+1 black
blocks and j white blocks in column 2i-1 and, hence, j black blocks and j+ 1
white blocks in column 2i or there are j black blocks and j+ 1 white blocks in
column 2i-1 and j+1 black blocks and j white blocks in column 2i. (Figure 17
illustrates the 2* distinct globally optimal distribution for an odd-by-even grid

Gyv, )
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Figure 17. Illustration of the Globally Optimal Distribution For a Grid
Gaj,2c
Again consider Figure 1 which shows three distinct equipartitioned 5-
by-6 grids, each having a distribution which satisfies the three conditions
presented in Theorem 4. As such, Theorem 4 assures us that Figures 1(a), 1(b)
and 1(c) are equivalent globally optimum solutions for equipartitioned grid
Gs 6-

5. CONCLUSION

In this paper, useful tools and guidelines have been developed to help
find locally optimal as well as globally optimum solutions to certain gridlike
facility location problems. The Switching Lemma and Distribution Lemma can
be used for all grid facility problems in identifying locally optimal solutions.
The Switching Lemma identifies when a switch of adjacent black and white
vertices will yield an improvement in the overall B-W distance and, hence,
bring the configuration closer to a locally optimal solution, in which no
adjacent switch between any two black and white vertices will lower the B-W
distance. The Distribution Lemma assures us that grids with the same
distribution but different configurations have the same B-W distance.
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With the use of these tools, it has been shown that all locally optimal
solutions for the equipartitioned grid problems are actually globally optimum
solutions. Exact solutions for optimally placing facilities on a grid structure in
which the number of facilities and customers are equal (or near equal for the
odd by odd case) have been presented.

There are still a number of problems left to be considered even within
the special class of grid location problems alone. Foremost in this area is to
find globally optimum solutions for non-equipartitioned grids. Also under
study is the more general problem of partitioning a vertex set V(G) into t teams
of specified orders so as to minimize the average interteam distance.
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