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Abstract

In this note we consider finite, undirected, and simple graphs.
A subset D of the vertex set of a graph G is a dominating set if
each vertex of G is either in D or adjacent to some vertex of D. A
dominating set of minimum cardinality is called a minimum dom-
inating set. A vertex v of a graph G is called a cut-vertex of G if
G —v has more components than G. A block of a graph is a maximal
connected subgraph having no cut-vertex. A block-cactus graph is
a graph whose blocks are either complete graphs or cycles, and we
speak of a cactus if the complete graphs consists of only one edge.
In our main theorem we shall show that the minimum dominating
set problem of an arbitrary graph can be reduced to its blocks. This
theorem provides a linear time algorithm for determining a minimum
dominating set in a block-cactus graph, and thus, it can be seen as a
supplement to a linear time algorithm for finding a minimum dom-
inating set in a cactus, presented by S.T. Hedetniemi, R.C. Laskar,
and J. Pfaff in 1986.
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1. Terminology and introduction

We consider finite, undirected, and simple graphs G with the vertex set
V(G). For a vertex z of a graph G, the neighborhood is denoted by N(z, G)
and the closed neighborhood by N{z,G]. For a subset X of the vertex set
V(G), we define N(X,G) = U,ex N(z,G) and N[X,G] = N(X,G)U X.
A subset D C V(G) is an X-dominating set of G if X C N[D,G]. An
X-dominating set D of minimum cardinality is a minimum X-dominating
set, and |D| is the X-domination number, denoted by ¥(G, X). Note that
the case X = V(G) leads to the ordinary dominating sets, minimum dom-
inating sets, and domination number ¥(G) = 7(G,V(G)). A vertex v of
a graph G is called a cut-vertex of G if G — v has more components than
G. A connected graph without a cut-vertex is called a block. A block of a
graph G is a subgraph of G, which is itself a block and which is maximal
with respect to that property. A block B of a graph G is called an end
block of G if B contains at most one cut-vertex of G. A block-cactus graph
is a graph in which each block is either a cycle or a complete graph, and
we speak of a cactus graph if the complete graphs consist of only one edge.
A graph is a block graph if every block is complete.

It is well-known that the problem of determining a minimum dominating
set in an arbitrary graph is NP-hard, and the analogous decision problem
is NP-complete, see e.g. the books of Garey and Johnson [5] or Haynes,
Hedetniemi, and Slater [6]. Therefore, most of the work has been devoted
to solving this problem for special families of graphs. The first domination
algorithm was a linear time algorithm for computing ¥(T") for an arbitrary
tree T, by Cockayne, Goodman, and Hedetniemi [2] in 1975. A graph is
chordal if it contains no cycle of length greater than three as an induced
subgraph. Booth and Johnson [1] were the first to show that the minimum
dominating set problem remains NP-complete when restricted to chordal
graphs. However, Farber [4] has shown that for strongly chordal graphs,
a subclass of chordal graphs, the domination problem is solvable in linear
time. Since block graphs are strongly chordal, as one can see by one of the
characterizations of this class given by Farber [3], we deduce that the dom-
ination problem for block graphs is linear. A further efficient algorithm for
block graphs can be found in [9]. In 1986, Hedetniemi, Laskar, and Pfaff
(8] have given a linear time algorithm for locating a minimum dominating
set in a cactus. With a so called “reduction theorem” we show that the
minimum dominating set problem of an arbitrary graph can be reduced to
its blocks. This theorem provides a linear time algorithm for determining
a minimum dominating set in a block-cactus graph. Since block-cactus
graphs are a common generalization of block graphs and cactus graphs,
this can be seen as a supplement to some of the above mentioned results.
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The books by Haynes, Hedetniemi, and Slater [6] and [7] on domination in
graphs are an excellent source of additional information.

2. A reduction principle

Reduction Theorem. Let G be a graph and X C V(G). If B is an
end block of G' with the unique cut-vertex v of G and X5 = X N V(B),
then 7(G, Xp — v) < 7(G, Xg). Now we distinguish two cases.

Case 1. Assume that

(G, Xg —v) < 7(G, Xp). (1)

If D' is a minimum X’-dominating set of G with X’ = X — (XB —v), and
Dp-y a minimum (Xp — v)-dominating set of G,then D=D'UDg_, is
a minimum X-dominating set of G.

Case 2. Assume that

(G, X —v) =7(G, Xp). 2

Subcase 2.1. There exists a minimum X p-dominating set D, of G with
the property that v € D,. If D” is a minimum X "-dominating set of G
with X" = X — (V(B) U N(,G)), then D = D" U D, is a minimum X-
dominating set of G.

Subcase 2.2. There exists no minimum X p-dominating set D, of G with
v € Dy. If D* is a minimum X *-dominating set of G with X* = X — V(B)
and Dg is a minimum X p-dominating set of G, then D = D*U Dg is a
minimum X-dominating set of G.

Proof. Every X g-dominating set is an (Xp — v)-dominating set and thus,
it follows that v(G, Xp — v) < (G, XB).

Case 1. First, we note that the inequality (1) implies immediately that
v € Xp. Now let Dy be an arbitrary minimum X -dominating set of G. By
the definition of D = D' U Dg_,, it is evident that D is an X -dominating
set of G and therefore, it is enough to show that |D| < |Do|. Next, we
consider two further subcases.

Subcase 1.1. Let v € Dy. According to (1), we observe that v € Dp_, and
hence, we conclude that

|Do N (V(B) = v)| 2 |Dp-|, (3)

because otherwise, Dy N V(B) would be an X p-dominating set with the
property that |Do N V(B)| < |Dp-,|, a contradiction to (1). In addition,
with G' = G — (V(B) — v), it follows at once that

[DoNV(G")| 2 |D'|. (4)
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Combining the two inequalities (3) and (4), we obtain the desired estima-
tion

|D| = |D'|+|Dp-s| < [DoNV(G")|+]|DoN(V (B)-v)| = [ DoV (G)| = |Do-

Subcase 1.2. Let v € Dy. If we define the vertex set D by Dy = DyNV (B),
then we investigate three cases.

If |Dy| < |Dp—y|, then Dy U{v} is an X g-dominating set with | D, U{v}| <
|Dp-v|, & contradiction to (1).

In the case |Dy| = |Dp—yl|, the inequality (1) yields v ¢ N[Dy,G]. But
since v € X, we deduce that v € N[Dy — D,,G] and hence, Do — D, is an
X'-dominating set of G. From the fact that D, is an (Xp — v)-dominating
set of G, we conclude

|Dj = |D'| + |Dp—-y| < |Do — Dy| + | D] = | Do

In the remaining case |Di| > |Dp—,| + 1, it is evident that Do ~ D, is
an (X' — v)-dominating set of G and therefore, (Dy — D;) U {v} is an
X'-dominating set of G. This leads us to

|D| = |D'| + |Dp—s| < |Do = D1| + 1+ |Dyi| = 1 = |Dy|,

which completes the proof of Case 1.

Case 2. Let again Dy be an arbitrary minimum X-dominating set of G.
Subcase 2.1. Since D = D"UD,, is an X-dominating set of G, it is sufficient
to show that |D| < |Dp|-

If v € Dy, then it follows analogously to Subcase 1.1 that | DgNV (B)| > |D,|
and |Dy — V(B)| > |D"|, and therefore, |D| = |Dy| + |D"| < |Dy-

If v € Dy, then, D, = Do NV(B) is an (X — v)-dominating set of G and
hence, the hypothesis (2) yields |Dy| > |D,|. Clearly, Dy — V(B) is an
X"-dominating set of G and so we obtain |Dg — D1| > |D"”|. The last two
inequalities imply

|D} = |D"| +|Dy| < |Do = D1| + |D1| = | Dol.
Subcase 2.2. Since D = D* U Dpg is an X-dominating set of G, it is again
enough to show that |D| < |Dy.

In the case v € Dy, our condition that there doesn’t exist a minimum X g-
dominating set containing the cut-vertex v, leads to |[DoNV (B)| > |Dpg|+1.
In addition, since (Dg — V(B)) U {v} is an X*-dominating set, we deduce
that

|D*| < [(Do = V(B)) U{v}| = |Do - V(B)| + 1.
Altogether, we find the desired estimation

|D| = |D*| +|Dp| < |Do = V(B)| + 1+ |Do N V(B)| = 1 =|Dol-
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In the remaining case v ¢ Dy, the set D; = Dy N V(B) is an (Xp — v)-
dominating set of G and hence, in view of (2), we have |Dy| > |Dp|.
Furthermore, Dy N (V(G) — V(B)) is an X *-dominating set and we see, as
before that | D| < |Dy|. This completes the proof of the reduction theorem.

We will now give some comments on the application of our reduction the-
orem to the minimum dominating set problem in block-cactus graphs.

In the introduction we have surveyed several complexity results for the
minimum dominating set problem restricted to special classes of graphs.
These results do not immediately imply that the more general minimum
X-dominating set problem is of similar complexity. However, it is straight-
forward to verify that for every graph G = (V, E) and every set X C V
there is a graph G’ = (V', E') such that G is an induced subgraph of G',
V'l = O(IV]), |E'| = |E| + O(|[V]), all cycles in G’ are cycles in G and
if D C V' is a minimum dominating set of G’ then D NV is a minimum
X-dominating set of G. (One way of constructing G’ could be to join a
complete graph K to all vertices of V' \ X.) Hence, we see that the mini-
mum X-dominating set problem can be solved in linear time for trees and
cactus graphs.

Applying our reduction theorem, we see that we can solve the minimum
X-dominating set problem for the graph in linear time if we can solve it
in linear time for its blocks. Hence our approach and the use of the pre-
viously known complexity results immediately implies the existence of a
linear time algorithm to solve the minimum X. -dominating set problem for
block-cactus graphs.
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