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Abstract

A well-spread sequence is an increasing sequence of distinct pos-
itive integers whose pairwise sums are distinct. Some properties of
these sequences are discussed.

Dedicated to Prof. Stephen T. Hedetniemi on the occasion of his 60th
birthday.

Definitions

A well-spread sequence A = (ay,az, -, an) of length n is a sequence with
the following properties:

1. 0<a; <a3 < - < ay;

2. a; +a; # ax + a¢ whenever i # j and k # £ (except, of course, when
{ai,a;} = {ak, ae}).

We define

o(Ad) = ap—a1+1
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p(A) = ap+ap—1—az—a;1+1
= 0(A)+an-1—0a2
o*(n) = mino(A)
p*(n) = minp(4)

where the minima are taken over all well-spread sequences A of length n. ¢
is called the size of the sequence. Without loss of generality one can assume
a; = 1 when constructing a sequence, and then the size equals the largest
clement.

Well-spread sequences have application in the study of edge-magic total
labelings of graphs. Such a labeling on a graph G is a one-to-one map
A from V(G) U E(G) onto the integers 1,2,---,|V(G) U E(G)| with the
property that, given any edge (z,¥),

Az) + Mz, y) + My) =k

for some constant k. A graph with a such a labeling will be called a magic
graph. It is shown in [4] that, if a magic graph G contains a complete
subgraph H with n vertices, then the labels on the vertices of H form a
well-spread sequence, A say, and the number of vertices and edges in G is
at least p(A). This has been used to show that no complete graph on more
than six vertices can be magic (see [3, 4]) and there are also implications
for the edge-magic total labeling of other dense graphs. For this reason,
and because of their intrinsic mathematical interest, we would like to find
out more about well-spread sequences and the functions ¢*(n) and p*(n).

Evaluation, bounds
Theorem 1 [2] 6*(n) >4+ (";') whenn > 7.
Theorem 2 [2] p*(n) > 20*(n — 1) when n > 4.

Proof. (For completeness.) Consider the sequences

A = (alaa2)"'aan)
B = (01,02,"',an_1)
C = (0'270'3)"',‘111)

where n > 4. Clearly
pr(n) = p(A)
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apn+anp1—ag—a; +1

(an —a2+1) + (@p—y —ay +1) — 1
o(B)+0o(C)—-1

20*(n-1)-1.

vl

Moreover, equality can apply only if 6(B) = o(C) = ¢* (n—1). But

0(B)=0(C) = apn—ar3=an_;—a,
= Gn-1+a2 =a, +ay,
which is impossible for a well-spread sequence A. Since o* and p* are

integral,
p*(n) 2 20" (n-1).

Calculations for small values of n

In practise, values of 0*(n) and p*(n) have been calculated using an exhaus-
tive, backtracking approach. The following result is helpful in restricting
the search for p*(n), once some o* values are known. Typically, the se-
quence B used will be one for which ¢(B) = o*(n).

Theorem 3 Suppose the sequence (1,z,---,y, z) attains the value p*(n),
and suppose B is any well-spread sequence of length n. Then

0*(n) <z<p(B)~0*(n-2)+1

and
z<(p(B)—0c"(n-2)+1)—0*(n—1)+1.
Proof. Since (z,---,y) is a well-spread sequence,
y—z+12>20*(n-2).
But
pPn)=z+y—xz
s0
z = pn)-(y—x)
< ) -o'(n=2)+1
< p(B)—o0*(n—2)+1.
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Also (z,---,y, z) is well-spread, so
z—z2>0*(n—-1)-1
and the second part of the Theorem follows from the upper bound for z.

We know the following small values of the two functions. The values for
n < 8 are calculated in [2) and listed in [4].

o*(3) = 3 p*3) = 3
o*4) = 5 pr4) = 6
o*(5) = 8 pr(d) = 1
o*(6) = 13 p*(6) = 19
o*'(7) = 19 p(7) = 30
o*(8) = 2 °(8) = 43
o*(9) = 35 p*(9) = 62
o*(10) = 46 pr(10) = 80
o*(11) = 58 p*(11) = 110
0*(12) = 72 p*(12) = 137

Sample sequences attaining the o* values are:

o*(1) through o*(6): 12 3 5 8 13 (or part thereof);
o*(7): 123591419

o*(8): 1235915 20 25;

0*(9): 1235916 25 30 35;

0*(10): 12811 14 22 27 42 44 46;

o*(11): 126 10 18 32 34 45 52 55 58;

0*(12): 123813 23 38 41 55 64 68 72.

The same sequences attain p*(n) for n,=1,2,3,4,5,6,8. For the other
values, examples are

p*(7): 1681011 14 22;

p*(9): 15791217 26 27 40;

p*(10): 12359 16 25 30 35 47;
p*(11): 12359 16 25 30 35 47 65.
p*(12): 135811 21 30 39 51 62 63 77.

94



Note: The only other sequence of length 7 with p=30is 1,9, 12, 13, 15,
17, 22.

From Theorem 3, we have

Forn=7 <12 19<2<24
Forn=28 z<13 25<2<31
Forn=9 <21 35 <2<45
Forn=10 z <30 46 < z<64
For n =11 <32 <Lz 77
For n =12 <36 72<2<93

and these bounds were used in calculating the example sequences for
p*(n) whenn > 7.

A greedy approach

Here is a simple observation. If (a1,a2, - -,an—1) is well- spread, then none
of its sums can exceed an—2 + @n—1. Put a, = an_; + Qn-2. Then all
the sums a; + a, are new, and (since the sequence is strictly monotonic)
they are all different. So we have a new well-spread sequence. This will be
useful in constructing the smallest well-spread sequences for small orders:
for example, after observing that (1,2,3,5,8,13) is a minimal example for
n = 6, one need not test any sequence in the case n = 7 which has size
greater than 21. (Unfortunately, 21 is not small enough.)

Suppose (a1,a2,--+,a,—1) had minimal size, and put a; = 1. Then
0*(n—1) =an_,. Clearly an_2 < an_1, S0 we have the (bad) bound
o*(n) £20*(n—1) - 1.

Another application of this idea comes from noticing that the recursive
construction a; = 1,83 = 2,8, = @,_1 4+, gives a well- spread sequence.
This is the Fibonacci sequence (f,), except that the standard notation for
the Fibonacci numbers has f; = fo = 1, f3 = 2, etc. So we have a well-
spread sequence with its size equal to the (n 4 1)- th term of the Fibonacci
sequence. Therefore

o) < - (L5 (1=
AW VAU :

The same reasoning shows that
PP fari+fa—2= Stz — 2.
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Note. For further information on the Fibonacci numbers, see for example
Section 7.1 of [1}.
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