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Abstract

A queen on a hexagonal board with hexagonal cells is defined as
a piece that moves along three lines, namely along the cells in the
same row, up diagonal or down diagonal. A queen dominates a cell
if the cell is in the same line as the queen. We show that hexagonal
boards with n > 1 rows and diagonals, where n = 3(mod 4), have
only two types of minimum dominating sets. We also determine the
irredundance numbers of the boards with 5 and 7 rows.

Dedicated to Steve Hedetniemi on the occasion of his 60th birthday

1 Introduction

The study of combinatorial problems on chessboards can be traced back to
the middle of the 19th century, when a German chess player, Max Bezzel
(1], first posed the problem of placing n queens on an n x n chessboard so
that no two queens attack each other. The study of chessboard domination
problems dates back to 1862, when C. F. de Jaenisch [4] first considered
the queens domination problem, that is, the problem of determining the
minimum number of queens required to dominate every squareon an n xn
chessboard. Since then many papers concerning combinatorial problems
on chessbhoards have appeared in the literature and surveys of the topic are
given in [5, 7]. The queens domination problem is also studied in depth in
the Ph. D. thesis [2].

In this paper we consider hexagonal boards (hives) consisting of hexag-
onal cells (see Figure 1). We define a queen on the hexagonal board as a
piece that moves along three lines, namely along the cells in the same row,
up diagonal or down diagonal. The edge consists of all the cells on the edge
of the hive. A cell or a line is empty if there is no queen on the cell or line,
otherwise it is occupied. A queen dominates or covers a cell if the cell is
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in the same line as the queen. (Thus a queen also dominates the cell on
which she is placed.) A cell is open if it is not dominated. The problem is
to determine the minimum number of queens necessary to dominate all the
cells on the board. Note that domination by queens on a square beehive
was studied by Theron and Geldenhuys in [9).

This problem can also be considered as a graph domination problem
in the following way: The hezagonal queens graph H, has the cells of a
board with n rows and diagonals as its vertices. Two vertices are adjacent
if the two corresponding cells are in the same row or diagonal. A set D of
vertices (cells) is a dominating set of H, if every cell of H,, is either in D or
adjacent to a vertex in D. If no two cells of a set I are adjacent, then I is an
independent set. Let y(H,) denote the minimum size of a dominating set of
H,, and let i(H,) denote the minimum size of an independent dominating
(i.e. a maximal independent — see [6, p. 70]) set of H,,.

We also study irredundance numbers of some small boards, and for this
purpose we need some definitions. The closed neighbourhood N{v] of the
vertex v in a graph G = (V, E) consists of v and the set of vertices adjacent
to v. The closed neighbourhood of a set § C V is defined by N[S] =
UvesN[v]. We define the private neighbourhood of v € S as pn(v,S) =
Nlv] — N[S — {v}]. If pn(v,S) # 0 for some vertex v, then every vertex
in pn(v, S) is called a private neighbour of v. Note that a vertex can be
its own private neighbour. We say that a set S of vertices is irredundant
if for every vertex v € S, v has at least one private neighbour. Note that
& minimal dominating set is also irredundant. An irredundant set S is
mazimal irredundant if for every vertex u € V — S, the set S U {u} is not
irredundant, which means that there exists at least one vertex w € SU {u}
which does not have a private neighbour. The minimum cardinality of a
maximal irredundant set in a graph G is called the irredundance number
and is denoted by ir(G). Note that for any graph G, ir (G) < v(G) < i(G)
(see [6, p. 58]).

If a vertex u is added to a set .S and it destroys all the private neighbours
of some vertex w in S (i.e., pn(w, S) # 0 and pn(w, SU {u}) = 0), we call
u an annthilator, and say that u annihilates w. If v € V has no private
neighbours with respect to S, we say u is pn-less with respect to S. We
say a vertex v (or a cell or a square in the case of hexagonal boards or
chessboards) is open (with respect to S) if it is not dominated by S.

We only consider hives with a centre cell, i.e., hives with an odd number
of rows and diagonals. The values for v(H,) and i(H,) (n odd) were first
determined by Theron and Burger (8] (these turn out to be equal). In this
paper we show that there are only two types of minimum Adominating sets
for Hyr43. We also determine ir (Hs) and ir (Hy).
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Figure 1: A dominating set for H1y

2 Domination and independent domination
numbers

Theron and Burger (8] first showed that v (Hax+1) = i(Hak+1) = v(Har+3)
= i(Hyi43). In order to show that there are only two types of minimum
dominating sets of Hyx43 for all & > 1, we need to repeat some of their
results here. The proofs given here are slightly different.

The lines of the hive are labelled as shown in Figure 2. Each cell has
three coordinates, namely row (r), up diagonal (u) and down diagonal (d),
which we denote as (r,u,d). We begin by noting the following.

Remark 1 For all cells we haver +u+d =0

Remark 2 A line with a negative (positive) label intersects an edge line
with a positive (negative) label.

We now describe a dominating set of queens on Hyk43 which was first
discovered in [8]. The placement consists of two columns with k£ + 1 and
k queens respectively — Figure 1 shows the case k = 2. In general, the
coordinates for k > 0 are given below (see Figure 3), where the second set
of coordinates is undefined (and to be ignored) when k = 0:

(2a — k,—a,k—a) fora=0,1,...,k

and
(2a+1-k,k—a,-1—a)fora=0,1,...,k—1.
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Figure 2: Numbering of rows and diagonals

We refer to this placement as the Double Column Placement (DCP). We
see that each of the rows, up diagonals and down diagonals covered by a
DCP has the labels

-k, —k+1,...,-1,0,1,...,k—1,k.

Thus the 2k + 1 lines closest to the centre are all covered. This is sufficient
to dominate the whole hive. Note that the queens form an independent
set. Since the case k = 0 is trivial, we assume henceforth that k& 21 We
state the following lemma without proof.

Lemma 3 For all k > 1, v(Hyry3) < i(Hypvs) < 2k + 1.

We define a ring as a six-sided convex polygon formed by the union
of six lines, where each line consists of at least two cells. The edge is an
example of a ring. The ring can be made smaller by replacing one line of
the ring with a line closer to the centre, as long as the ring has six sides.
For any set of queens on a hive we define the Biggest Empty Ring (BER),
if it exists, as the ring formed by the edge lines, if they are unoccupied, or
by replacing each of the occupied edge lines with the empty parallel line
closest to the edge line concerned (see Figure 4). Let the distance of a line
of the BER from the edge be the number of lines outside that side of the
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Figure 3: Double Column Placement for Hyx43

BER. Let § be the sum of all the distances of the six lines of the BER from
the edge. Note that § equals the number of cells in the edge minus the
number of cells in the BER, because if a line of the ring is replaced by a
line just closer to the centre, the number of cells in the ring decreases by
one. We now have the following lemma.

Lemma 4 For all k > 1, if 2k or fewer queens are placed on Haxy3, then
the BER exists.

Proof. We only have to verify that the BER always has six sides. If a line of
any ring is replaced by a line immediately closer to the centre, the number of
cells in two lines of the ring decreases by one. When constructing the BER,
each queen outside the BER caused either one or two such replacements
(depending on whether the queen is at a ”corner” or not). It is easy to see
that each queen outside the BER caused the number of cells in any side to
decrease by at most one. There are 2k + 2 cells in each edge line. Thus, if
there are 2k queens, each side of the BER must have at least two cells. [J

Let ¢ be the total number of times the BER is dominated by all the
queens. Thus if one BER cell is covered m times, it must be counted m
times. Let g be the number of queens on the board. We have the following
lemma:

Lemma 5 If the BER exists for a set of ¢ queens on Hany1, then ¢ <
6q — 26, where equality holds if and only if the queens are independent.

Proof. There are two types of queens outside the BER (see Figure 4):
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Figure 4: Biggest empty ring

(1) Queens that lie on the outside of only one line of the BER. Each of
them covers four cells of the BER.

(2) Queens that lie on the outside of two lines of the BER. Each of them
covers two cells of the BER.

Let there be b; and b2 queens of each type respectively. It is easy to see
that
6 < by + 2be,

with equality if and only if the queens are independent. Now,

¢ = 6(q— by — ba)+4b; + 2b,

= 6g—2b; —4by
= 6g— 2(by + 2by)
< 6g—26.
Again, equality holds if and only if the queens are independent. O

Lemma 6 If a set of n queens dominates Hony1, then
(a) the BER is the edge.
(b) each edge cell is covered ezactly once.

Proof. From Lemma 5 we have ¢ < 6n—26. Also |BER| = 6n — 6. For the
BER to be dominated we must have ¢ > |BER|. Thus

bn—6<c<6n-26
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and so § = 0. Thus the BER must be the edge. To prove (b) we note that
there are 6n edge cells and each of the » queens can cover six edge cells.
Therefore each edge cell must be dominated exactly once. a

The proofs of the following two results, first proved in [8], now follow
easily:

Theorem 7 (8] For all k > 0, i(Hax+3) = ¥(Hak43) =2k + 1.

Proof. As noted before we need only consider the case & > 1. We first
show that v(Hak+3) = 2k + 1. Consider any set of 2k queens. There are
6(2k + 1) — § cells in the BER. But by Lemma 5, ¢ < 6(2k) — 2. Thus we
have ¢ < 6(2k) — 26 < 6(2k + 1) — 6 = | BER)|. Therefore the BER cannot
be dominated. The result now follows from Lemma 3. O

Theorem 8 [8] For all k > 0, i(Hsr+1) = Y(Hary1) =2k + 1.

Proof. Hgp4y is Hykes with the edge removed. Therefore the Double
Column Placement also dominates Hyx1, which establishes y(Hyr41) <
i(Hgr+1) < 2k + 1. To show that y(Hyr+1) > 2k + 1, k > 1, we show that
2k queens cannot dominate Hyx+1. Suppose we have a set of 2k queens
dominating Hyi.1. From Lemma 6(b) we see that each cell on the edge
is dominated exactly once. The corner cells can only be dominated by a
queen on a main diagonal. Consider any main diagonal. It must contain
a queen, and the remaining 2k — 1 queens are on either side of (but not
on) the diagonal. A queen in a specific half of the board dominates four
cells of the edge in that half and two cells of the edge in the other half.
To dominate the same number of edge cells on the two sides, there must
be the same number of queens in the two halves. This is a contradiction,
because an odd number of queens remains. O

3 Minimum dominating sets of Hy;3

In this section we show that there are only two types of minimum dominat-
ing sets of Hyx43 for all k£ > 1. From Lemma 6 we see that any dominating
set of Hyr43 consisting of 2k + 1 queens leaves the edge empty. We use
the fact that each edge cell must be dominated exactly once to prove the
following lemmas.

Lemma 9 If Hypq3 is dominated by 2k + 1 queens, then lines with the
same label are either all occupied or all empty.

Proof. Each of the edge cells is dominated exactly once. Thus if the row
r = a(a > 0) is occupied (respectively empty), then d = 2k +1 —a and
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u = 2k + 1 — a are empty (respectively occupied). But then u = 2k +
1—-(2k+1—a) = a and d = a are occupied (respectively empty). The
arguments for the diagonals are the same. Also, if a < 0, the arguments
are similar. The lines with label 0 must be occupied, because the corner
cells can only be dominated by these lines. O

From Lemma 9 we see that we do not have to distinguish between labels
of rows and labels of diagonals. Consequently, we will only refer to the set
of labels

L={-2k—-1,-2k,..—2,—1,0,1, ..., 2k 2k + 1}.

This set can be partitioned into two disjoint sets: the set representing all
the occupied lines (O) and the set representing all the empty lines (E).

Lemma 10 Ifa € O, then
—a+2k+1€FEifa>0
—a—2k—1€E ifa<0.

Proof. The edge lines are labelled 2k+1 or —2k—1. Suppose a € O. Then
since each edge cell is dominated exactly once, it follows from Remarks 1
and 2that —a+2k+1€FEifa>0and —a—2k-1€ Eifa<0. 0
Lemma 11 Ifa,b€ E and |a+b| < 2k + 1, then

(a) —a-beO

(b) a+b+2k+1€Eifa+b<0

(c) a+b-2k—-1€Fifa+b>0.

Proof. If lines a and b are empty and they intersect inside the edge, the
third line going through the intersection must be occupied. From Remark
1 this line must be —a — b. Statements (b) and (c) follow from (a) and
Lemma 10. O

Lemma 12 If2a € E, then —a € O.

Proof. Suppose 2a € E and —a € E. Then from Lemma 11(a), ~2a +a =
—a € O. This is a contradiction. Therefore —a € O. W]

Lemma 13 If1 € E, then all odd elements of L are in E.

Proof. If1 € E, then from Lemma 11(c), 1+1—-2k—-1=1-2k € E. If
1,1 -2k € E, then from Lemma 11(b), 1+1—-2k+2k+1=3 ¢ E. If
1,3 € E, then from Lemma 11(c), 1 +3 -2k —1 =3 -2k € E. Continuing
in this way, we find the following elements in E:

1-2%,3,3—-2k,55—2k,...,.2k—3,~-3,2k—1,—1.
These are all the odd elements of L. 0
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Figure 5: Dominating sets of different types for His
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can only be open if three empty lines intersect in that cell. All empty lines

)

Proof. Eitherl€ Eorle€O. If1 € E, then from Lemma 13 we have (a).
have odd labels. Thus the sum of the coordinates of such a cell would be

We must show that every set of vertices satisfying (a
odd. This is impossible because the sum must be 0.

—k—1€FE. If 2k € E and

, then by Lemma 10 we have 2k € E. It follows from Lemma
—k —1 € E, then it follows from Lemma 11(c) that -k ~2€ E. If2k € E

— 2 € E, then again from Lemma 11(c), —k — 3 € E. Continuing

in this way, we find that

IflieO
12 that —k € O, and then from Lemma 10 that

and —k

y,—2k € E.

=2k +1

—k-1,-k—-2,-k-3,
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Figure 6: The central section of Hy3

The whole argument can be repeated with —2k € E to show that
k+1,k+2,...,2k-1,2kc E.

Thus (b) follows, and every set of vertices satisfying (b) is also dominating
as explained in the case of a DCP. a

We note that in Theorem 14 the labels in (a) are double the labels
in (b). Thus if we take the coordinates of a dominating set of type (b)
and multiply it by two, we have the coordinates of a dominating set of
type (a). The reverse can also be done. We therefore have a one-to-one
correspondence between all the dominating sets of type (a) and (b). Figure
5 shows a few examples.

Table 1 lists the number of dominating sets found by computer. We see
that the number of dominating sets is large for large boards. Dominating
sets for Hyx41 are even more numerous, and they are not restricted to two
types of minimum dominating sets.

We can construct minimum dominating sets of larger boards using the
dominating sets of smaller boards. In Figure 6 a dominating set of Hy3
is obtained by repeating the pattern of a dominating set of Hys. Note
that only the central section of the board is shown. This method has so
far not been successful for minimum dominating sets of queens on n x n
chessboards. As illustrated in Figure 7, the hexagonal queen domination
problem is the same as the queen domination problem for chessboards with
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k| 4k+3 | v | number
1 7 3 1

2 11 5 1

3 15 7 5

4 19 9 56

5 23 11 540
6 27 13| 6996

Table 1: Number of dominating sets found

[

Figure 7: Relation between hexagonal boards and chessboards

the queens’ domination restricted to three lines (row, cclumn and one di-
agonal) and with two corners of the board cut off. The diagonal not used
by queens on the hive will be useful to dominate squares in those corners
of the 7 x n board that have been cut off, so it may be possible that dom-
inating sets of queens on hives can lead to dominating sets of queens on
chessboards.

4 Irredundance

Before we consider irredundance on hexagonal boards, we state the follow-
ing general results on irredundance. For a vertex subset S of a graph G we
denote the set of all open vertices (vertices not dominated by S) by Rs.

Theorem 15 [3] An irredundant set S of a graph G is mazimal irredun-
dant if and only if each v € N[Rg] is an annihilator.

Since every vertex in an independent set is its own private neighbour,
it follows directly from the definition of irredundance that every (maximal)
independent set is (maximal) irredundant. We obtain the following result
as an immediate corollary.
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Proposition 16 If S is a mazimal irredundant set in a graph G and |S| <
i(G), then S is not independent.

We now return to hexagonal boards. Recall that a cell or line is empty
if there is no queen on the cell or line, and that a cell is open if it is not
dominated by any queen.

Lemma 17 If S = {q1,492} is a mazimal irredundant set of two queens on
Hg, then:

(a) There are at least two open cells.

(b) The number of pn-less cells is at most four.

(c) Fach queen has at least two private neighbours.

(d) Each queen can be annihilated from at most siz cells.

Proof. The queens q; and ¢ are adjacent (Proposition 16); assume without
loss of generality their coordinates are (r,u;,d;) and (r, uz, d2) respectively.

(a) Suppose firstly that ¢; (say) is on the central cell, in which case its
coordinates are (0,0,0). Then g; covers 13 cells. There are at most six cells
on uz and dp which are not on 7 = 0, and u; (d;, respectively) intersects
da (ug, respectively) in exactly one cell. Hence there are at most four cells
that are covered by go but not ¢; and since Hs has 19 cells, at least two
cells are open. Now suppose there is no queen with coordinates (0,0, 0).
A queen on the edge dominates at most nine cells; hence we may assume
without loss of generality that g; is not on the edge. It is now easy to see
that g; covers 11 cells and that exactly one of r, u; and d; is equal to 0. If
r = 0, then as above g covers at most four cells not covered by q;, while
if (say) u; = 0, then g2 covers at most five cells not covered by ¢;. In each
case at least three cells are open.

(b) Since S is irredundant, the pn-less cells are the empty cells not in
line with the open cells and thus they are empty cells on occupied lines.
There are at least two open cells. Even if there are exactly two open cells,
it is easy to check that there are at most six cells not in line with them.
(The extremal case occurs when new queens on the open cells cover as few
cells as possible and share the longest possible line - see Figure 8, where the
open cells are indicated by open circles.) This leaves at most four pn-less
cells, because q; and ¢z are also not in line with the open cells.

(c) On each of the two lines occupied by g; but not gy, there are at least
two cells that can possibly be private neighbours of ¢;. But go dominates
at most one cell on such a line. Thus ¢; (and similarly ¢2) has at least two
private neighbours.

(d) Consider the ¢ > 2 private neighbours of ¢; and suppose firstly
that they are on the same line l. If g; is also on this line, then ¢; can be
annihilated from at most four cells (the empty cells) on {, and from at most
two cells not on ! (since any two cells on the same line can be dominated
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Figure 8: There are at most four pn-less cells not in line with open cells.

AVAAN
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Figure 9: If ir(Hs) = 2, then there are at most six pn-destroyers

simultaneously from at most two cells not on the line). If q; is not on [,
that is, if { ¢ {u,,d,}, then ¢; can be annihilated from at most five cells on
! and at most one cell not on . Suppose the private neighbours are not all
on the same line. Then the cells which are annihilators are those cells that
lie on the intersection of ¢ lines, each of which contains a private neighbour.
(Some of the lines may be parallel.) There are at most six such positions —
the maximum occurs when t = 2. (See Figure 9.) O

Theorem 18 ir(Hs) = 3.

Proof. We know that ir (Hs) < y(Hs) = 3. Suppose ir (Hs) < 3. It is
easy to see that ir (Hs) > 1, so consider a maximal irredundant set of Hy
consisting of two queens. There are 17 unoccupied cells. All of them must
be either annihilators or pn-less. This is impossible, because each queen’s
private neighbours can be annihilated from at most 6 cells, and the number
of pn-less cells is at most 4, i.e. the total number of annihilators or pn-less
cellsis6+6+4 < 17. O
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Figure 10: If ir (H7) = 2, there are no pn-destroyers

Lemma 19 If S = {q1,92} is a mazimal irredundant set of two queens on
H7 ’ then:

(a) There are at least eight open cells.

(b) FEach queen has at least four private neighbours.

(c) There are no annihilators.

Proof. The two queens are adjacent (Proposition 16) and therefore occupy
a total of five distinct lines. Suppose without loss of generality that q; and
g2 have coordinates (r,u;,d;) and (r,us,ds) respectively.

(2) By Lemma 4, the BER exists. There are 18 edge cells and each
line through a cell not on the edge intersects the edge in exactly two cells.
Therefore if the BER is the edge, there are at least 18 — 2(5) = 8 open
cells in the BER. Suppose the BER is not the edge. Then § > 1 and the
BER contains 18 — § cells. By Lemma 5, the BER is dominated at most
12—26 —1 times and hence the BER alone contains at least 7+ 6 > 8 cells.

(b) Since the queens are adjacent, each queen g; has the two lines u;
and d; that can contain its private neighbours. Proceeding as in the proof
of Lemma 17(c), it is easy to see that each line has at least two private
neighbours.

(c) For any line [ and any cell a not on [, a queen on a dominates at
most two cells on {. The private neighbours of g; lie on the lines u; and d;,
with at least two private neighbours on each line. Consider any empty cell
a on u;. Then a (new) queen ¢ on a dominates the cell on d; containing ¢,
and at most one other cell on d;. Hence g does not annihilate ¢;. Hence
no new queen on u; (d;, respectively) annihilates ¢; because it does not
dominate more than one private neighbour of ¢; on d; (u;, respectively).
A queen not on u; or d; dominates at most two private neighbours of g;
on each line. Thus, in order for a new queen to annihilate ¢; (say), ¢; has
exactly four private neighbours and the only possibility is that ¢; lies on a
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corner cell with gz not on one of the edge lines, i.e., r = 0. (See Figure 10,
where alternative positions of g2 are indicated by shaded circles.) It is now
easy to see that in this case there are also no annihilators. 0O

Theorem 20 ir(H;) =3.

Proof. We know ir < -y = 3. Suppose ir(H;) = 2 and consider a maximal
irredundant set of H7 with two queens. By Lemma 19 there are no anni-
hilators and there are at least eight open cells. But all open cells must be
annihilators (Theorem 15), a contradiction. Thus the theorem follows. O
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