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Abstract

A connected graph G is (v, k)-insensitive if the domination num-
ber ¥(G) is unchanged when an arbitrary set of k edges is removed.
The problem of finding the least number of edges in any such graph
has been solved for k =1 and for k¥ = ¥(G) = 2. Asymptotic results
as n approaches infinity are known for £ > 2 and k+1 £ 7(G) < 2k.
Note that for k = 2, this bound holds only for graphs G with
¥(G) € {3,4}. In this paper, we present an asymptotic bound for the
minimum number of edges in an extremal (v, k)-insensitive graph G,
where k = 2 and n > 39(G)? - 27(G) + 3 that holds for v(G) > 3.
For small n, we present tighter bounds (in some cases exact values)
for this minimum number of edges.

Dedicated to Prof. Stephen T. Hedetniemi
on the occasion of his 60th birthday.

1 Introduction

In a graph G = (V, E) the open neighborhood of a vertex v € V is N(v) =
{x € V|vz € E}, the set of vertices adjacent to v. The closed neighborhood
is N[v] = N(v)U{v}. A set SC V is a dominating set if every vertex in V
is either in S or is adjacent to a vertex in S, that is, V = |Js ¢ g N[s]. The
domination number ¥(G) is the minimum cardinality of a dominating set;
and a minimum dominating set of a graph G is called a y(G)-set, or simply
a v-set if the graph G is clear from the context. For a thorough study of
domination and terminology not defined here, see [5].

Many studies have considered the effects on 4(G) when G is modified
by deleting a vertex or deleting or adding an edge. For surveys of such
results, see Chapter 5 of [5] and Chapters 16 and 17 of [6].

Here we are interested in the effect that edge removal has on the dom-
ination number of a graph G. Obviously, the removal of an edge from G

JCMCC 31 (1999), pp. 113-127



cannot decrease the domination number and can increase it at most by
1. The graphs G for which the domination number changes upon the re-
moval of an arbitrary edge, that is, ¥(G — ¢) = v(G) + 1 for every edge
e € E(G), were first investigated by Walikar and Acharya in [11]. Bauer,
Harary, Nieminen, and Suffel [1] observed that such a graph is a union of
stars. On the other hand, obtaining a descriptive characterization of the
graphs for which the domination number does not change is not as easy.
Such graphs, that is, graphs G for which v(G - €) = ¥(G) for every edge
e € E(G), were called y-insensitive by Dutton and Brigham [2]. Walikar
and Acharya also studied these graphs and Hartnell and Rall [4] gave a
constructive characterization of y-insensitive trees.

Haynes, Brigham, and Dutton [7, 9] extended the notion of y-insensitive
graphs to (v, k)-insensitive graphs by considering the removal of £ > | ar-
bitrary edges. A graph G is (7, k)-insensitive if for cvery arbitrary set
F C E(G) of k > 1 edges, v(G = F) = y(G) = 7. Research on (v,k)-
insensitivity has been concerned mainly with extremal graphs. In this con-
text, a connected graph of order n is extremal if it is (v, k)-insensitive and
has the minimum number of edges among all such graphs of order n.

It is proposed in [8] that extremal (7, k)-insensitive graphs have applica-
tions in network design, where the vertices represent computers and an edge
represents a direct link between two computers. For example, if graph G
represents a communication network, a y-set of G is 2 minimized core group
that could function in a variety of ways, including as “masters”, fileservers,
or repositories for a global database essential to the other computers in the
network. If it is desirable that the number of processors in the core group
stay the same even after £ links (edges) fail, then a network corresponding
to an extremal (7, k)-insensitive graph has minimum link cost (minimum
number of edges) and the desired fault tolerant property.

Since our main result depends on and improves known results, we present
a brief review of the studies of (7, k)-insensitive extremal graphs. In par-
ticular, in Section 2 we present some background and discuss an existing
asymptotic result. Our first new results appear in Section 3, where struc-
tural properties of (7, k)-insensitive graphs are presented. These results
will be used in subsequent sections. Recalling our network application, it
seems logical that the problem is most practical for small &, that is, the
case where a small number of links fail. Thus, for the remaining sections,
we restrict our attention to k = 2 (that is, removing two edges).

Noting that for & = 2, the existing asymptotic result holds only for
graphs G with v(G) = 3 or 7(G) = 4, in Section 4 we present an asymptotic
result that holds for all values of v(G) > 3. Then in Section 5, better bounds
and in some cases exact values are found for k¥ = 2 and small n. Finally,
we summarize the results and conclude with open problems in Section 6.
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2 Background

2.1 Known extremal results

Dutton and Brigham [2] studied connected extremal (7, 1)-insensitive graphs.
‘The minimum number of edges in any (7, k)-insensitive graph of order n

is denoted Ei(n,v). Extremal graphs were determined in [2, 7, 9] for the

case when v(G) = L.

Theorem 1 [7) If G is a (1, k)-insensilive graph with order n > 2k > 2,

then
Ex(n,)=2k+1)(n=-k-1).

Dutton and Brigham [2] calculated Ei(n,v) for the case when k =
1. Note that Theorem 1 takes care of the case where y(G) = 1, so we
summarize their results for v(G) > 2.

Theorem 2 [2] For a (v, 1)-insensitive graph G with ¥(G) > 2,

n-—1 ifn < Iy(G) -2,
Ei(n,v)=¢( n ifn=3vG)-1,
2n - 3y(G) if n > 3y(G).

The value of E¢(n,y) and extremal graphs were determined in [10] for
the case when y(G) = k = 2.

Theorem 3 [10] For a (2,2)-insensilive graph G with n > 11,
Ea(n,2) = |(5n — 10)/2).

For an example of a family of extremal (2,2)-insensitive graphs, see
Figure 1.

Figure 1: A family of (2,2)-insensitive graphs.
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2.2 Known asymptotic bound

Although extremal (v, k)-insensitive graphs and the exact value of Er(n,v)
have not been found for the cases ¥(G) > 3.k = 2 and v(G) > 2,k > 3, up-
per and lower bounds on Ey(n,y) were determined in (9] and an asymptotic
bound on Ei(n,v) for k > 2 was derived in [7].

Theorem 4 (7] For k + 1 < 7(G) < 2k, Er(n,7) is asymplotically equal
to (k+ 3)n/2 as n approaches infinily.

Since our new result in Section 4 is dependent on the understanding of
Theorem 4, we discuss the proof here. First an upper bound was established
by constructing a family of (7, k)-insensitive graphs. Let £ and v be fixed
positive integers such that k+ 1<y <2k, n2y(k+1),t = L(n—=v)/k],
and r = (n — v) mod k. Note that ¢ > v. Construct graph G as follows:

(1) v= AUBUB.U...UB; where 4 = {al,ag,...,a.,}, B; = {b;1, bi2, ...,b,‘k}
for 1 S z S t—1 and Bg = {b!libt'.!,"')b!,k-i-r}'
(2) Each B;, 1 <i <t induces a complete subgraph.

(3) Each vertex b;; is adjacent to exactly two vertices of A, one of which
is a; and the other is from A — {a,}, such that for each B;, 1 <i <¢,
IN(Bi)N A — {ar}| 2 &.

(4) Each vertex in A — {a,} is adjacent to a vertex b;; for at least v — k&
distinct values of i.

Figure 2 shows a graph G having n = 17, 7(G) = 4, and ¥ =3 which
has been constructed according to the specifications described above.

Figure 2: A (4, 3)-insensitive graph.

Haynes, Brigham, and Dutton [7] proved that the graphs G obtained
from this construction are connected, (v, k)-insensitive, have ¥(G) = v, and

have
(k+3)n/2 — [(k + 3)y — 2kr — r° +1]/2
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edges. They also noted that the edge count is maximized when r has its
largest value of & — 1, and hence the following bound is established.

Lemma 35 [10] For a (v, k)-insensitive graph G with 2 < k+1 < v(G) < 2k
and n > y(G)(k + 1),

4 —((k + — 3k L5k =1
Ep(n.y) < E+3n=( +3)*.r2(G) 3%+ 5k = 2)

Therefore, for fixed & and ¥(G), the upper bound is asymptotically equal
to (k + 3)n/2 as n approaches 0.

Let S be a vy-set of an extremal (7, k)-insensitive graph G and denote
the maximum number of vertices in V — S having degree at most & by f(k).
The lower bound is based on the following lemma.

Lemma 6 [10] If G is a (7, k)-insensitive graph with k > 2, v(G) > 3, and
n > 7(G)* + 29(G) + f(k), then

4. - 4+ 2)v (G k— 2 k
Bunyy > D= T 20(G) (5~ DG + /)]

Finally, they showed that f(£) is bounded by an expression that is
independent of n, and hence the lower bound is asymptotically equal to
(k + 3)n/2 (the same asymptotic value as the upper bound), completing
the proof of Theorem 4.

3 Properties of (v, k)-insensitive graphs
Our first observation is straightforward, but useful.

Observation 7 Let & be a vertex in a (v,k)-insensitive graph G, where
1 < deg(x) < k. If F contains the sel of edges incident to z, then for every
v-set S of G — F, il follows that x € S and N(2)NS = 0.

Next we develop another useful property of (v, k)-insensitive graphs.

Proposition 8 If G is a (v, k)-insensilive graph, & > 1, with vertices u
and v where the distance d(u,v) < 2, then deg(u) + deg(v) > k + 2.

Proof. Let G be a (v, k)-insensitive graph with vertices u and v such that
d(u,v) < 2. Suppose that deg(u) + deg(v) < k + 1. Since d(u,v) < 2 and
deg(u) + deg(v) < k + 1, either uv € E(G) or u and v share a common
neighbor implying that there are at most k edges incident to v or v. Let F be
the set of edges incident to u or v. Then both u and v are isolates in G ~ F,
and hence u and v are in every y-set S of G— F. Since v(G) = v(G~ F), it
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follows that y(G) — 2 vertices dominate G — {u,v}. But since d(u,v) <2,
one vertex will dominate {u,v} in G. Hence, ¥(G) < |S|-2+1= 1G)-1,
a contradiction. O

Corollary 9 An ezxtremal (7, k)-insensitive graph G has at most ¥(G) end-
vertices.

The neighbor of an endvertex is called a support vertez.

Corollary 10 Let G be a (7, k)-insensitive graph. Ifz € V is an endverlez
with support vertex v, then dey(u) > k+ 1 for every u € N(v) - {z}.

4 New asymptotic results

The asymptotic result of Theorem 4, which is independent of n, was derived
from upper and lower bounds for Ei(n,7) that differ by O(v*). We note
that for & = 2. Theorem 4 applies only for graphs G with y(G) = 3 or
7(G) = 4. This restriction on 7(G) comes from the graphs G that yield the
upper bound. We construct a family of graphs to yield a suitable upper
bound that holds for 7(G) > 3. Also, we improve the lower bound of
Lemma 6 slightly to obtain the following asymptotic result.

Theorem 11 For v(G) > 3, Ea(n,v) is asymptotically equal to 5n/2 asn
approaches infinity.

The proof to Theorem 11 follows directly from the following two lemmas.
Let N; be maximum number of vertices of degree at most k having at least
i common neighbors in a (7, k)-insensitive graph, 1 < i < k. It is shown
in (7] that N; < 2. Our first lemma improves the lower bound given in
Lemma 6 by improving the known bound on f(2).

Lemma 12 If G is a (v,2)-insensitive graph with n > 37(G)* - 24(G) +3
and ¥y(G) > 3, then

5n — 37(G)? — 4v(G) -3
3 .

EZ(ni 7) Z

Proof. Let G be a (7, 2)-insensitive graph with y(G) > 3and n > 3v(G)* -
29(G) + 3. Substituting k& = 2 into the inequality of Lemma 6 yields

5n — v(G)* - 81(G) — f(2)
5 :

E’.’(n! 7) Z

The next two claims help verify a bound for f(£).
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Claim 1 N; < 2y(G) - 2.

Proof. Assume that X = {z;,za,...,2;} is a set of vertices such that
deg(x;) < 2for 1 € ¢ <t and vertex v is a common neighbor of all the
vertices in X. Let Y = {y1,y2, ..., yj } be the other neighbors of the vertices
in X. If x; € X is an endvertex, then Proposition 8 implies that z; is the
only neighbor of v in X, that is, |.X| = 1. Thus, assume that deg(z;) = 2
for 1 <i<t.

Since N2 < 2, we have that 1 < |[N(yx)N.X|<2for 1 <i<j. Assume
that |[N(y;) N .X| = 1 for all y; € Y. Then each z; is adjacent to y; and
Y| =t. Let G’ = G—2;y;i —x;v and S be a y(G’)-set. Then x; € S and for
each &; € X — {z;}, either £y or y; is in S. There can be at most ¥(G) — 1
of these vertices implying that ¢t < y(G).

Without loss of generality, assume that N(y;)N X = {z,,z2} for some
i €Y. Let S be a y-set of G — z v — ry;. By Observation 7, z; € S
and neither v nor y; is in S. Hence, r2 € S. Furthermore, each z; € X,
for i € {1,2}, or its neighbor in Y must be in S; and S can include at
most 7(G) — 2 vertices from X UY — {w,z2}. Since N2 < 2, it follows
that ¢ is maximized if each vertex in Y has exactly two neighbors in X and
S={z), L2} UY — {yi}. Thus, t <2y9(G)-2. O

Claim 2 f(2) < 29(G)? — 4v(G) + 3.

Proof. Assume that z is a vertex such that deg(z) < 2. Let G’ be the
graph obtained by removing all edges incident to 2. Then by Observation 7,
for any ¥(G’)-set S, z € S. Now |S — {z}| = v(G) — 1 and by Claim 1 each
vertex in S — {z} can dominate at most 2y(G) — 2 vertices having degree
at cst 2. Thus, f(2) < (7(G) = 1)M(27(G) = 2) + | = 29(G)? — 4v(G) + 3.
o

From Claim 2 we have f(2) < 2y(G)? — 4v(G) + 3. Since E%*(n,7)
is minimized when f(2) is maximized, substituting the maximum value
of f(2) into the bound of Lemma 6 gives a lower bound that holds for
n>3v(G)? -2y(G)+3. O

Our next lemma gives the desired upper bound.
Lemma 13 If G is a (v,2)-insensitive graph with v(G) > 3 and n >
¥(G)? + 1, then
5n — v(G)* - 4v(G) + 2
7 .

Proof. For a fixed positve integer v, we construct a graph G with order
n > 92+ 1 and ¥(G) = v as follows. Let A be a set of v vertices labeled
ay,as,...,ay. Let PA be the set of all possible pairs of vertices in A. For

E?(n’ 7) S
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each pair {a;,q;} € PA - {e1,a2}, add two vertices u;; and v;; such that
deg(uij) = deg(vij) = 2 and N(uij) = N(vij) = {a;,a;} for a total of
(¥ = 1) = 2 new vertices. Add a set B of n —v* + 2 vertices labeled b;, for
1 <i<n—7"+2 and add the edges ayb;, azb; for 1 <i < n—7y>+2.
First assume that n — 4% > 1. If n — 4% is even, we add edges b;b;,
for i = 1,3,5,...n =%+ 1 and if n — v* is odd, add edges b;b;4; for
i=1,3,...,n =% and b.b.y, for r = n — 4% + 1. Then G has a total of
29 =2y — 4+ 2(n — 7> 4+ 2) + [(n = ¥* + 2)/2] edges, which reduces to
the bound of the theorem. Figures 3 and 4 illustrate the construction for
v = 4. For the special case of n — y*> = I, |B| = 3 and the only additional
edge is byba. Thus, deg(bs) = 2 and G has [(5n — 7* — 47 + 2)/2] edges.
Figure 5 gives an example of this construction for n = I7 and ¥ = 4. In the
remainder of this proof, we shall refer to this case as the exceptional case.

Certainly, A dominates G, so ¥(G) < |4]| = ¥. To see that any domi-
nating set has at least y vertices, observe that each set {a;,a;} U {ujj, vi;}
induces a C4 and each Cy requires two vertices to dominate it. Since each
{ai,a;} dominates at least as many vertices as {ujj, v;j} does, it [ollows
that A is a y-set for G. It remains to be shown that (G —e; — €2) = ¥(G)
for arbitrary edges e; and es.

If each vertex in V — A is adjacent to a vertexin A in G’ = G —e; — e,
then A dominates G’ and the result follows. Thus we need only consider
cases where a vertex, say z, has both its edges to A removed. If » = u;j,
then S = A — {aj,q;} U {2,v;;} dominates G’. Notice that S dominates
B, since at least one of a; and as is not in N(u;;). If £ = b3 and we are
discussing the exceptional case, then A — {a;, a2} U {61, 43} dominates G'.
Finally, if 2 = b; and deg(b;) > 3, then 4~ {a2}U{b;} dominates G’, where
b; e N(b;). O

Since the upper and lower bounds differ by O(y?), the asymptotic result
of Theorem 11 follows.

We note that graphs constructed as described in the proof to Theorem
11 are generalizations of the extremal (2, 2)-insensitive graphs of Theorem
3 that have |(5n — 10)/2] edges. Although we have not been able to prove
that the graphs from Theorem 11 are extremal, both the fact that they
are generalizations of extremal (2, 2)-insensitive graphs and the asymptotic
result imply they are promising candidates.

5 Bounds on E5(n,v) for small values of n

We now consider small values of n. It is well-known that for any graph G
without isolates, y(G) < n/2. Hence, Ei(n,v) is not defined for n < 2¥(G).
For n > 24(G), we derive lower bounds. Our first two lower bounds are
straightforward and come from known results.
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b b2 by by bn-15 bn_14
Figure 3: n — v(G)? is even.

Studies of a related concept (called the bondage number) [L, 3] showed
that no tree is domination insensitive relative to the removal of two or more
edges, that is, they showed that if a tree T is (v, k)-insensitive tree, then
k must be 1. Hence, the (7, k)-insensitive trees are precisely the trees that
were characterized by Iartnell and Rall in [4]. Thus, for & > 2, we observe
the following lower bound on E(n,7v).

Observation 14 [fG is a (v, k)-insensitive graph with k > 2, then Er(n,y) >
n.

Since for any (7,k)-insensitive graph G with & > 2, G - F is (v, 1)-
insensitive for any arbitrary set F of k — | edges of GG, our next lower
bound follows from Theorem 2.

Proposition 15 If G is a (v, k)-insensitive graph with v(G) > 2 and k >
2, then

n+k—2 tfn < 3y(G) -2,
Er(n,v)> < n+k-1 fn=3G)-1,
2n -3v(G)+k~-1 ifn>3v(G).

To present a slight improvement of the lower bound of n, we construct
the only (7,2)-insensitive graphs having exactly n edges. A corona G o K,
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by ba b3 by ba_16 bn-15 bn-14
Figure 4: n —v(G)? is odd.

is the graph obtained from a graph G, where for each vertex v € V(G), a
new vertex v’ and the edge vv’ are added.

Theorem 16 If G is a (v,2)-insensitive graph with ¥(G) > 3, n # 2v(G)
and n # 3y(G) — 2, then Es(n,y) 2 n+1.

Proof. Let G be an extremal (7, 2)-insensitive graph with v(G) > 3. For
n € {27(G),2¥(G) — 2}, we show that E»(nr,7) =n.

Claim 3 Ifn =2¥(G), then Ex2(n,y) = n.

Proof. Since no tree it (v, k)-insensitive for k£ > 2, any connected (7,2)-
insensitive graph must have at least n edges. It suffices to find such a
graph having the insensitive property with n edges. Consider the corona
G = C, o K. Clearly, ¥(G) = t = n/2 and |E(G)| = n. All that remains
to be shown is that G is (7, 2)-insensitive. Let F' be two arbitrary edges of
E(G) and let I be the set of isolated vertices in G — F. If {I| = 0, then the
vertices of the cycle (or the set of endvertices) dominate G.

Otherwise, a dominating set with cardinality ¢ can be found that in-
cludes the vertices of I and vertices on the cycle which, in G, are not in
N(I). O
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ag a4

ay a:

Figure 5: Exceptional case.

Claim 4 [fn = 3v(G) — 2, then Eas(n,v) = n.

Proof. Again it suffices to give a (v, 2)-insensitive graph having order n =
3v(G) — 2 and n edges. Consider the cycle Cs;_» vertices. Clearly, C3i-2
has n edges and domination number ¥(C3-2) = t. Remove two arbitrary
edges e; and e» to create disjoint paths P; and P,_;, where | <7 < n/2.
Then [i/3] vertices dominate P; and [(n — i)/3] vertices dominate P,_;.
Since [i/3] + [(3t — 2¢)/3] =t = ¥(C3:-2), the cycle is (7, 2)-insensitive. O

Next we show that the graphs in Claims 3 and 4 are the only (v,2)-
insensitive graphs having n edges, and thereby establish that n+1 is a lower
bound for Ea(n,v) when n # 29(G) and n # 3y(G)—-2, v(G) > 3. Since any
graph having exactly n edges must be unicyclic, let G be a (v, 2)-insensitive
graph having n edges and a cycle subgraph C;, and let T" be a subtree rooted
at a vertex v on the cycle. Let u be the endvertex on a longest path from
vin T. If d(u,v) > 2 and w is the support vertex of u, then Proposition 8
implies that deg(y) > 3 for all y € N(w)— {u}. But this is impossible since
u is an endvertex on a longest path from v. Therefore, d(u,v) = 1 and
Proposition 8 implies that u is the only endvertex in N(v). Furthermore,
Proposition 8 implies that either every vertex on the cycle is adjacent to
an endvertex or no vertex on the cycle is adjacent to an endvertex. Since
either the endvertex or its support vertex must be in any y-set of G, the
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only situation where each vertex on the cycle is incident to a endvertex
is the graph G of order n = 2v(() as described in Claim 3. Therefore,
in what is remaining, we consider only cycles G = Ch. Ifn<3t—2o0r
n > 3¢, then 7(G) # ¢, a contradiction. Suppose that n =3t -l or 3t, and
remove two adjacent edges to form G' = PLUP._1. Then v(G'") = v(G)+1,
contradicting the fact that G is (7,2)-insensitive. llence the only unicyclic
graphs that are (7. 2)-insensitive are the ones described in Claims 3 and 4.
(]

Thus, Ea(n,v) is determined for graphs with order n < 2¥(G) and
n = 37(G) = 2. The next two theorems give upper bounds on Ea(n.v) for
I (G)+ 1 <n <3G —-3and 39(G) -1 <n < «(G)* - 1.

Proposition 17 If G is a (7,2)-insensilive graph with 24y(G)+1 < n <
379(G) — 3. then Ea(n,v) < 2n = 29(G).

Proof. Let v be a fixed positive integer such that 2y + 1 < n < 3y =3
Note that ¥ > 4. We construct a (7,2)-insensitive graph G having 2n — 2y
edges as follows. Begin with V = BUC where B = {b1,ba....,b,} and
C = {c1,¢2, .. Cn=y}, such that, the vertices of C form a cycle and each
b; € B is adjacent to either one vertex or two adjacent vertices on the cycle
and each vertex on the cycle has exactly one neighbor in B. Observe that
this construction can always be accomplished since y +1 <n—v < 2y-3.
It remains to be shown that G is (7, 2)-insensitive. Obviously, 3 dominates
G and since N[b;]N N[b;] = 0 for i # j, it follows that at least. one vertex
for each b; € B must be in every vy-set. Thus, y(G) = 7. Since v > 4
implies that n — v # 4, it is a simple exercise to see that any pair of edges
can be removed from G with no effect on the domination number. O

Corollary 18 If G is a (v,2)-insensitive graph with n = 29(G) + 1 and
¥(G) > 4, then Ea(n,y) =n+1.

Proposition 19 If G is a (7.2)-insensitive graph wilh (G -1<n <
(G)? =1, then Ea(n,v) < 3n—067(G) + 4.

Proof. We construct a (7,2)-insensitive graph G from a cycle C3—2 as
follows. Let c;,c2, and c3 be three consecutive vertices on the cycle. Add
n — 3t + 2 vertices such that each of them is adjacent to c¢;,c2, and c3.
Then G has 3n — 6t + 4 edges. Obviously, ¢ vertices dominate G and ¢
vertices are necessary since any vertex dominates at most three vertices
on the cycle. Hence, ¥(G) =t and it is straightforward to show that G
is (7, 2)-insensitive by considering the possible ways of removing any two
edges. O

Next we consider graphs with order n = v(G)?. See Figure 6 for an
example where n = 16 and 7(G) = 4.
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ag (/¥

Figure 6: A (4,2)-insensitive graph with n = v(G)* = 16.

Proposition 20 [fG is a (7v,2)-insensilive graph with v(G) > 3 and n =
Y(G)?, then
Es(n,7) < 2n - 29(G).

Proof. For a fixed positve integer v, we construct a graph G with order
n = 7% and v(G) = v as follows. Let A be a set of ¥ vertices labeled
aj,daa,...,ay, and let PA be the set of all possible pairs of vertices in A. For
each pair {a;,a;} € PA, add two vertices u;; and v;; such that deg(u;;) =
deg(vij) = 2 and N(u;) = N(vi;) = {ai,a;} for a total of y(y — 1) new
vertices. An argument similar to the one in the proof of Lemma 13 shows
that G has v(G) = v, 2n — 2v(G) edges, and is (v, 2)-insensitive. O

6 Concluding Remarks

Table 1 summarizes the results of this paper concerning Es(n,v) for y(G) =
¥ > 3 and all values of n. Let g(y) = 3v* — 2y + 3 and f(n,7) =

[(5n — v* — 47 +2)/2].
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n Ea2(n.v) Differcnce in Bounds
Lower, Upper
< 2y undelined —
2y 2y, 2« 0
29+ 1 2v+ 2, 2v+2 0
vy +2<n<3y-3 n4+l, 2n-12y O(v)
Iy -2 Iy -2, Jy-=-2 V]
v -1 n+l, n+?2 1
Jy<ngAt -1 Mm=-3y+1, 3n—-06v+4 o(+?)
¥2 =3y +1, 2n-2v o)
¥+ 1< n<gl) 2n=-3v+ 1, f(n,7) O(¥?)
n > g(v) {(5n — 3v? — 4y —3)/2, f(n.,v) o)

We conclude with open problems.

4.

[}

Determine Eix(n,v) for £ =2 and v > 3.

Determine Ep(n,v) for £ > 3 and v > 2.

Determine properties of extremal (7.k)-insensitive graphs G, such as
the diameter and independent domination number. (We think that

+(G) may equal i(G) for such graphs.)

Study extremal (7. k)-insensitive graphs G with the added restriction
that G remains connected when & arbitrary edges are removed.

For a given value of k, characterize the extremal (7, k)-insensitive

graphs.
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