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ABSTRACT. A graph is said h-decomposable if its edge-set is
decomposable into hamiltonian cycles. In this paper, we prove
that if G = L; U L2 U L3 is a strongly hamiltonian bipartite
cubic graph (where L; is a perfect matching, for 1 < i < 3
and (L1, L2, L3) is a 1-factorization of G), then G X Can41 (n
odd and n > 1) is decomposable. As a corollary, we show
that for » > 1 odd and n > 3, K, r X K, is h-decomposable.
Moreover, in the case where G is a strongly hamiltonian non-
bipartite cubic graph, we prove that the same result can be
derived using a special perfect matching. Hence K2r X Kont1
will be h-decomposable, for r,n > 1.

To study the product of G = L1 U Ly U L3 by even cycle, we
define a dual graph G¢ based on an alternating cycle subset
of La U L3. We show that if a non-bipartite cubic graph G =
L1UL2U L3, with |V(G)| = 2m, admits L;UL> as a hamiltonian
cycle and G¢ is connected, then G x K. is hamiltonian and
G x C3, has two edge-disjoint hamiltonian cycles. Finally, we
prove that if C = Lz U L3 and L; U L3z admits a particular
alternating 4-cycle C’, then G x Ca, is h-decomposable.

1 Introduction

The Kronecker product G x H of two graphs G and H is a graph K with
vertex set V(K) = V(G) x V(H) and edge set E(K) = E(G x H) =
{(u1,u2) (v1,%2) : uyv; € E(G) and ugvz € E(H)}. This implies that
dexu(z,y) = de(z) x dy(y) (with z € V(G) and y € V(H)). It is well-
known that the Kronecker product is commutative and distributive with
respect to the edge-disjoint union of graphs [2].
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A graph G is said to be decomposable into hamiltonian cycles, i.e. h-
decomposable, if its set of edges can be partitioned into edge disjoint hamil-
tonian cycles. A linear factorization of a graph G = (V, E) is a partition of
E, E = L1UL3U.. ULy, such that foreachi = 1,2,... , k, L; is alinear fac-
tor of G (or a perfect matching) [3]. A graph G = LU L2V, ...U Ly is said
strongly hamiltonain if and only if foreach 1 <i#j <k, Cijj=L;UL; is
a hamiltonian cycle of G [3]. We denote an even and odd cycle respectively
by Czn and 02n+l-

Let now G = L; U L, U L3 be a cubic graph with |V(G)| = 2m. Let
C1,2 be a hamiltonian cycle with origin vertex zo. Let 012 : V(G) — {0,1}
be a mapping relative to the cycle Cy 2 = Lj U Lo, such that the vertices
of Cy2 are labeled alternatively by 0 and 1. By convention, we choose
o12(z0) = 0. In what follows, we say that[z,y] is a one-parity (resp. bi-
parity) edge (relatively to C ) if 012(z) = 012(y) (resp. 012(x) # 012(y))-
We remark that if [z,y] € L3 is a one parity edge, then the end-vertices of
each edge of [z,y] X Can are adjacent to the two components of Cy 2 X Can
in G x Cay, otherwise they belong to one only component of Cj 2 X Cay,.

A general problem on the Kronecker product is the following:

“If G1 has a decomposition into hamiltonian cycles and a 1-factor, and
G2 has a decomposition into hamiltonian cycles, then does G x G2 have a
decomposition into hamiltonian cycles?”

The problem is more difficult to solve when |[V(G?)| is even and G, is a
(2k+ 1)-regular graph. Muthusamy and Paulraja proved that Kor X Con+1
is h-decomposable [4], by using Walecki’s construction for the complete
graph. Agnihotri and al. [1] introduced the notion of an alternating 4-
cycle for decomposing into hamiltonian cycles the Kronecker product of
the cycle Ca,, and a 4-regular graph. In this paper, we solve this problem
for the cubic graphs which allow to decompose the Kronecker product of
a large family of graphs by cycles. In doing so we introduce the general
notion of an alternating cycle, which is a cycle whose two perfect matchings
or a cycle and a perfect matching.

The remainder of this paper is organized as follows. We start, in sec-
tion 2, by recalling some important results on the Kronecker product. In
Section 3, we prove that the product of a strongly hamiltonian bipartite
cubic graph and an odd cycle is decomposable into three hamiltonian cy-
cles. Consequently we show that, the Kronecker product of any complete
bipartite graph with an odd cycle is h-decomposable. From this, we deduce
that for every r,n > 1, Kyr X Kant1 is h-decomposable. Subsequently
we establish another result for a strongly hamiltonian non-bipartite cubic
graph G = LU L, U L3 which admits exactly two one-parity edges belong-
ing to a perfect matching L, that G x C, is h-decomposable. Finally we
deduce that Ko, X Ko, 41 is h-decomposable for r,n > 1.



The second part of section 3 is devoted to the Kronecker product of non-
bipartite cubic graphs by even cycles. We introduce the notion of the dual
graph G¢c of an alternating cycle C. Let G = Ly U Ly U L3 be a non-
bipartite cubic graph, let Cy2 = Ly U Ly be a hamiltonian cycle and let
C = (zo,1,Z2, - - - ,Tk—1, Zg) be an alternating cycle between Cj 2 and Ls.
Let g: V(C) — {0, 1} such that g(zo) =0 and

(:L‘- ) —_ m if [.’Dig xi-{»l] € L3 and (0’12(.’!.‘,-) = 0'12(3;“_1)
T = g(z;) otherwise

fori=0,1,2... ,k—2.
We remark that if [z,y] € (L1 U L2) N E(C) then g(z) = g(y). Let Go
be a graph associated to C and G such that V(G¢) = V(G) x {0,1} and

E(Ge) = {l(=, 9(=))(%, 9(¥))): Iz, %] € (E(C) N L)} E,
U {[(z,i)(v,9)): i € {0,1}, [z,9] € (L1 UL)\E(C))}  E»
U{[(=, i), 9)]: i # g(z), [z, 9] € (L1 U L2) N E(C))}  Es

G is said to be a dual graph of C (relatively to G). We may note that
Gc is a 2-factor (see Lemma 3.3). We show that, if G = LiU L, U L3
is a non-bipartite cubic graph and G¢ is a connected dual graph of an
alternating cycle C between C ; and L3, then G x K3 is hamiltonian. In
particular, if C C LoUL3 and G is connected, then GxCay, has two disjoint
hamiltonian cycles. Furthermore, if there exists an alternating cycle C’ of
size 4 between L; and L3 such that all edges of L3 are one-parity, then
G x Cy, is h-decomposable.

Finally, we conclude with the description of three classes of graphs sat-
isfying the hypotheses of this last result.

2 Preliminaries
In order to make our paper self contained, we recall in this section some pre-

vious results which characterize the connectivity of the Kronecker product
of two graphs [2].

Theorem 2.1 [2]. Let G and H be nontrivial connected graphs. If G and
H are both bipartite then the graph G x H consists of exactly two connected
components, otherwise it is connecled.

Theorem 2.2 [2]. For s,r > 3, the graph C; x C, admits a hamiltonian
decomposition if and only if either s or v is odd. If s and r are both even,
then C,; x C, consists of two isomorphic connected components, each of
which admits a hamiltonian decomposition (Figure 5).



3 Main Results

In what follows, we consider Cy 2 = LiULy = (20, 21,... ,22m—-1,%0) tobe a
hamiltonian cycle in G = L; U L U L3 such that Ly = {[2o, 21], [22, 23}, - - -,
[22m-2, 22m—1]} and Lz = {[21, 22}, [23, 24, - - - , [22m—1, 20]}-

3.1 Kronecker product of a strongly hamiltonian cubic graph by
an odd cycle

The purpose of this section is to present the h-decomposition of G x Can+1.
We discuss independently the bipartite and non-bipartite cases.

A. Bipartite Case

Theorem 3.1 If G is a strongly hamiltonian bipartite cubic graph, then
G x Capy1 8 h-decomposable.

Proof: Let G = (X,Y, E). Let H = (X,Y, E’) be a multigraph defined
as follows: each edge [z, y] of G is duplicated into two edges [x,y] colored
respectively by a; and az. We define C;;(cy,a2) to be the hamiltonian
cycle alternating between the edges of L; with color a; and those of L;
with color ap, for 1 < i # j £ 3. We can associate a hamiltonian de-
composition Hy of H to a linear factorization D = (L1, Ly, L3) of G as
follows: Hd = (Cl,z(al,az),cl,s(az, al),Cz,s(ahaz)) (Figure 1.8.). We
remark that Cj2(ay, a2), C1 3(a2, 1) and Ca3(e, a2) are pairwise edge
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Figure 1. a
The decomposition Hy corresponding to the
linear factorization of a graph G of order 6

Let Cony1 = (uo,u1,- .. ,U2n,up). Let ¢ be a function which associates
to each edge [z, y] with color a3 in H an edge in G X Can 41 and to each edge
[z, y] with color a1 a path in Gx Cany1, Which is ([z, y] X Con+1)\¢[[z, ¥]; a2).



Here [[z, y]; ax] stands for an edge [z,y] with color ai. In other words,
¢:  E(H)— E(G x Cans1)
[z, y}; 1] = [(z,w0) .- - (¥, u2n)] := [(2, u0) (v, w1)
(z,u2)(y us) . . . (¥, u2n—1)(=, u2n)
(3, u0)(z;21) . - - (2, uon—1)(y, u2n))
[[z, ¥} @2] = [(, u0) (@, u2n)],

forallze X andy e Y.

The path [(z, u0) . . . (¥, u2»)] is a hamiltonian path of [z, y] X C2p+1. Since
each Cjyj(ay, ) alternates between edges (ep; 1) and (epy1; 02) with ep
and ep4y edges of H, then ¢(C;j(ai, a2)) will alternate between the path
#(ep, 1) and the edge @(ept1,a2). It is easy to see that ¢(Cij(a, a2))
is a hamiltonian cycle of G x Capnt1, it covers all vertices of the prod-
uct and it is connected. Note that ¢ is an injective correspondence, since
Ci2(aa2), Ci3(azay) and Cp3(ajaz) are pairwise edge-disjoint, thus
#(C1,2(e1, @2)), $(C1,3(2, @1)) and ¢(C23(e1, a2)) are also pairwise edge-
disjoint. The product G x Ca, 41 Will be then decomposed into three edge-
disjoint hamiltonian cycles (Hy, Ha, H3) (Figure 1.b). o

Figure 1. b
The three edge-disjoint hamiltonian cycles of
G x Cs deduced from H,.



Corollary 3.1.1 K., X Cony1 is h-decomposable for r, n > 1.

Proof: Case 1: r is odd.

Let K, = (A, B, E), such that A = {a1,a2,... ,a-} and B = {by, bs,...,
b.}. Wallis [5] proved that K, , admits a linear factorization into r one-
factors, D = (Ly, Ly, ... , L), such that L; = {[aj,bj_it1); 5=1,...,7};
(j —i+1) being taken as integers modulo r in the range [1...7]. It is easy to
see that LiUL;41 = (@5, Bj—i41, @j41, bjr1-i+1, @j4+2, - - - 5 Cjt2r, bjg2r—it1,a5)
is a hamiltonian cycle because we visit a; the second time, crossing L;UL; 1,
after r steps. Using the definition of L; and since |X| = |Y| is odd, we
show that L; is also a hamiltonian cycle. Consequently, K, , = {C;, U
C34U...UCy_a,_1UL,}. Furthermore, the product of each even cycle by
Con+1 is h-decomposable (Theorem 2.2), and Cyr_2,_1 U L, is a strongly
hamiltonian bipartite cubic graph, thus by Theorem 3.1, K, » X Cony1 is
h-decomposable.

Case 2: r is even.

K., is decomposable into r/2 even edge-disjoint hamiltonian cycles, each
given by two consecutive 1-factors. Thus by theorem 2.2, K, » x Conyq is
then h-decomposable. ([

Corollary 3.1.2 K, ; X Kony1 8 h-decomposable for r,n > 1.

Proof: It is well known that K, .+ is decomposable into n odd hamiltonian
cycles, then K, » X Kony1 = Ky x {HiUH2U.. .UH,}, where (H;)1<i<n is
a hamiltonian decomposition of Ks,1. The result is an easy consequence
of the above corollary. o

B. Non-Bipartite Case

We prove the following result, using another construction based on a
special perfect matching Ls.

Theorem 3.2 Let G = L1ULyUL3 be a strongly hamiltonian non-bipartite
cubic graph. Suppose there exist integers h, t, q and i, such that L =
{[22n, 22p], [22¢4+1, 22¢41]} U {[2i,25] : 0 S i # j < 2m—1 andi,j #
2p,2q+1,2h,2t+1; 012(2i) # 012(25) }, then G X Cany1 is h-decomposable.

Proof: We construct three hamiltonian cycles in the product deduced
from the three hamiltonian cycles in G given by the strongly hamiltonian
property of G.

In order to construct the first hamiltonian cycle H; in G x C2,41 from
Ly U Ly, we define an auxiliary cycle I';.

Let I'y be a cycle constructed between columns up and uzy, from Cy 2 =
(20,21, .., 22m—1, %0), by duplicating each vertex z; of C; 2 into two adja-
cent vertices (2, u0) and (z;,u2s). Thus, I'1 = ((20, 0), (20, u2n), (21, o),
(21,U2n) - - -, (22m, Uzn), (20, u0)) (Figure 3.2).



Let

L E(Pl) — E(G X Cz,..H)
[(2, uo)(2i, uon )] = [(2,u0) - - - (2i,u2n)] := [(2i, u0) (24, u1)
(2i,u2) - - - (25, u2n—1)(2, u2n))
(2, u2n) (2i41,20)] = (21, u2n) (2141, u0)]

For each z; € V(C)2) and [, 7;] € Ls.

Hy = 1(T"1) covers all vertices of G x Cany1 because for each [z, 2;]
of Lg, 1([(2i, uo)(2i, u2n)]) U ¥1([2j, u0)(25, uan)]) is the product ([, z;] x
Ca)\{[(2:, u0) (25, u2s)], [(2:, u2n)(25, u0)]} (Figure 3 (b.1)). Furthermore,
since each horizontal edge of I'; is replaced by a path in H; then H, is an
extension of I'; which is a cycle, so H; will be connected.

The second hamiltonian cycle in G x Copy4 is based on Ly U Lz. We

prove that for the vertices z2:11 and zan (or z2441 and zs,), we associate
two vertex-disjoint paths P,,,,, and P;,, which cover all internal vertices
of G x Copyi.
Lemma 3.2.1 There ezist two vertez-disjoint paths P.,,,, and P, in
(L1U L3) x Conyy such that Py,,,, covers all odd vertices of even columns
and even vertices of odd columns (with ends (22¢4+1,u0) and (22:41,u2n))
except the odd vertices of uy,. The second path Pz'z;. covers all odd vertices
of odd columns and even vertices of even columns (with ends (225,u0) and
(zan,u2n)), ezcept the even vertices of ug.

Proof: The two paths are constructed as follows.

Poyrr = [(z2e41,%0) . . - (22641, U2n))

n—1 t+m-—2
= U ( U ([(z2i+l ’ ?lqr)(z2i+2, ’wzr'f'l)]
r=0 i=t

u [(22e+2, u2r+l)(z2i+3a uzr)]) U [(zzc— 1, U2r) (z2t y U2r+1 )]

U [(22¢, u2r+1)(22¢4+1, v2r+2)])
n—1

P,,, = [(z2n,u0) ... (221, u2n)] :== U ([(22n, u2r) (z2n+1, U2r+1))
r=0
h+m—2
U (2241, u2r01) (22042, v2r12)]
i=h

U [(z2i+2, var+2)(22i43, u2r+1)]) U [(z2n—1, u2r+1) (22h, u2r42)])
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Figure 2. P, and P, in (Cy,2 U {[20, 22], [25.27]}) x Cs

The paths P,,,,, and P;,, are vertex-disjoint (Figure 2), because P, , is
a right translation of P,,,,, with a column i.e. the path P;,, is the union
of edge [(z2n,u0)(z2n+1,%1)] and P,,, ., from u; to up,. These paths cover
all internal vertices (each vertex has degree 2) of G x Cay, 41 from columns
uy to ugn—1 except

A= {(22i,u0) : 0<i<m—1}U{(22e41,%0)}
B = {(2z2i4+1,u20) : 0 <4 <m —1} U {(224,u2n)}

O

Consider now c,g,) = (Zgh, 29p) Z22p4-13- -+ 1229+11 2241y 0+« zzh). Simi-
larly we construct I's between columns ugp and us, from Cs,, by replacing
2on by eo = [(22n,u0)(22h, u2n)] and 22041 by €1 = [(22¢41, u0) (22641, u2n))-
It follows that I'y = ((22},,, ugn), (ZQP,'LLO), (z2p+1, Un)s -+ - ,(zzq+1,u2n),
(22641, %0), (22641, 42m) - - - » (220, u0), (22, u2n)) . It is easy to see that the

11f C3,1 = (22}.,22?, Z2p41yv 226411 22q+15 - - »22n) then we choose
T2 = ((2z2n,u2n), (22p, %0), (22p+1,82n), - - . » (22641, U2n), (22041, u0), (229+1,%2n), ...,
(221, 40), (22h, U2n))-
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sets of vertices of columns g and ua, covered by I'; are respectively A and
B. This gives immediately the following Lemma.

Lemma 3.2.2 H; = (P,,,,,UP,,, )U(T2—{eo, e1}) is a hamiltonian cycle
in G x Czﬂ+1.

Proof: By Lemma 3.2.1, P,,,,, and P, are two vertex-disjoint paths
which cover all internal vertices of G X Cany1. The cycle I's covers all
vertices of A and B (Figure 3.(b.2)), thus H, is a hamiltonian cycle of

G x 02n+1- m]

Finally, we construct the third hamiltonian cycle in G x Canyy from
LsU L.

Let Cant1 = (30,91, .- ,¥2n,%0) Such that yx = up,_; with 0 < k < 2n.
Let Q.,,, and Q.,, be two vertex-disjoint paths from yo to s, con-
structed respectively as P,,,,, and P;, . Let D = {(22i41,20) : 0<i <
m—1}U {(22n,u0)} and E = {(z24,u2n) : 0<i<m — 1} U {(22¢+1,u2n)}
be the sets of vertices of columns up and usg, respectively not covered by
Quzeyr and Q7. Let C32 = (228, 22p, 22p—1, ... , 22q41, 22441, - - , Z28)-
We construct I's from C32 between D and E by replacing 2, by ep =
(22, u0), (228, u2n)] and 23041 by €1 = [(z2¢41, u0), (2241, u2q)]- This im-
plies that I‘3 = ((22;“ uO)) (z2p’ u2n): (32p—1, uO): ey (z2q+l, uO): (z2t+11 u2ﬂ))
(z2t+1,%0), - . ,(228,u0))%. Then Hj obtained as (Q,,,, UQ,,, ) U (Ts —
{eo, €1}) is a hamiltonian cycle in G x Cap, 41 for the same reason as Lemma
3.2.2.

The hamiltonian cycle H; constructed from C} 2 uses the edges of L; x
Con+1 and Ly X Cap 4y of the form [(2;, ugn), (2i41, u0)] and the edges of Lz x
Con+1 \ {[(21,40), (25, u2n)] : [2i,2j[€ L3}. However the edges of the form
[(2i, 20), (2i4+1,u2n)] of C1,2 X Can 11 and those of the form [(2:, uo), (25, u2n))
of Lz x Con+1 belong either to Hs constructed from Cs,1 or to H3 con-
structed from Cs2 (Figure 3). Moreover the paths (P,,,,, U P,, ) and
(Qz3¢41 VQ%,,) are in the opposite order of columns, thus they are disjoint.
Hence, the three hamiltonian cycles of G x Cyy, ., are edge-disjoint. ]
Example. Let [V(G)| =6, n =2, h=0 and ¢t = 2 (Figure 3).

From this theorem we deduce.

Corollary 3.2.3 Ko, x Kony1 is h-decomposable, for r,n > 1. 0

Remark. We note that the 1-factor used by Muthusamy and Paulraja [4]
for decomposing Ko, X Can41 is a special case of our perfect matching Ls.

2Asint,

1



The second part of this paper studies the h-decomposition of Gx Can. We
consider G a non-bipartite graph. Otherwise, by Theorem 2.1 the product
is not connected.

b)

Figure 3. a) The cycles I'y, I'; and I'3 correspond respectively to C},2,
Cs,1 and Cs 2, b) The three edge-disjoint hamiltonian cycles of G x Cs.
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3.2 Kronecker product of non-bipartite cubic graphs by an even
cycle

The connectedness of the dual graph introduced in this paper ensures the
hamiltonicity of the product of non-bipartite cubic graph by an even cy-
cle. Note that in the figures of section 3.2, the dotted lines represent the
removing edges. We begin with this lemma.

Lemma 3.3 The dual graph G¢ is a 2-factor.

Proof: Let (z,d) be any vertex of V(G¢) with d € {0,1}. Let y1, y2, ya
the neighbors of z in G such that [z,3:] € L; in G for 1 < i < 3. We
consider two cases:

Case 1: If z ¢ V(C), then [z, y3] ¢ E(C)N L3 and {[z, 3], [z, 32]} € (L1U
L2) N E(C). So [(z,d), (v:,d})] ¢ EyUE3, for 1 <i<3andd] €{0,1}. It
remains that {[(z, d), (y1,4d)), [(z, d), (v2, d)]} C E>. Then dg.((z,d)) = 2.
Case 2: If z € V(C), then one and exactly one of the edges [z,%:] and
[z, 2] belongs to (Ly U L) N E(C). Assume that [z,3] € (L1 U La) N
E(C). So [(z,d),(y2,d] € E». Furthermore, [z,ys] € E(C) N L3, thus
[(z, @), (y3, 9(y3)] € En, dac((z, 9(z))) = 2. o

Theorem 3.4 Let G = Ly U Lo U L3 be a non-bipartite cubic graph such
that:

o Ly U Ly is a hamiltonian cycle.

o C is an alternating cycle between C1,2 and Ls such that G¢ is con-
nected.

Then G x Ky is hamiltonian.

Proof: Since G¢ is connected then by Lemma 3.3 it is a hamiltonian cycle
of order 4m (|V(G)| = 2m). So let G¢ = ((zo, do), (z1,d1), (x2,dp), ... ,
(zam—1,dam—1), (o, do)) where d; € {0,1} deduced from the definition of
Gc. The hamiltonian cycle H in G x K> is obtained from G¢ as follows:
H = ((201 ‘u,o), (xlvul)r (1'2, uo)a veey (334";_1,111), (xO; 'Uo)), if Ko = ['Uo,'U.l]
see (Figure 4).

Corollary 3.4.1 Let G = LU LyU L3 be a non-bipartite cubic graph such
that:

o Ly U Ly is a hamiltonian cycle.

e C is an alternating cycle of size 4 between Cy 2 and L3 such that all
edges of L3 are one-parity edges.

Then G x Ky i3 hamiltonian.

13
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Figure 4.
The hamiltonian cycle of G x K» with an alternating cycle C = Lo U L3

Proof: It is clear in this case that G¢ is always connected. So the hamil-
tonian cycle is given from G¢ as in Theorem 3.4. (m]

We should now put some restriction on the alternating cycle. We assume
that it is a subset of only the two perfect matchings Ly and L3 (C C
LaU La).

Theorem 3.5 Let G = LU Lo U L3 be a non-bipartite cubic graph, where
(L1, Lo, L3 ) is a factorization of G such that:

e L1 U Ly is a hamiltonian cycle.

o C is an alternating cycle between Lo and L3 such that Go is con-
nected.

Then G x Cay, contains two hamiltonian edge-disjoint cycles (these two
cycles contain Ly x Con ).

Proof: By Theorem 2.2, Cy3 x Cy, has two components CP; and CP;

such that CP; (respectively CP,) admits an h-decomposition (A, D) (re-
spectively (B, E)) (Figure 5). Let A = [(20,u0)(21,%1)(20,u2)(21,u3) ...

14



(21, uan—1)][(21, v2n—1)(22, u0)][(23, u0) (24, u1) (23, u2) . . . (24, Uz2n—1)][(-+)]

[. . [ . ] e [(ng_lugn_l)(Zo, ‘uo)] and D = CPI\A Let h : CPI g CP2
such that h((zi,%;)) = (i, u2n—j—1). This implies that h(4) = B and
h(D)=FE=CP\B.

First of all let Go¢ = (vo,v1,v2,... ,Y4m—1). By the definition of the
dual graph, we know that each v; corresponds a pair (zj,d;) with zj €
V(Ci2),dj € {0,1}and 0 < i <4m —1.

We define two functions f; and f2 which construct the two hamiltonian
cycles recursively in G x Cay,.

Let

Ji: E(Gc) — E(GxCy,)
(i vit1) (e zaleLyy = [(2r,%0)(2s, w1) (21, u2) (20, 43) . - - (20, Uzn—1))]
i, vi+1]((z,-,z,]6L3uL3) —  [(2r,u2n-1)(2r, u0)]

f2r E(Gc) — E(G X Can)
[(s, Vit 1) ((2r 201 L1) [(zry u1)(0s, u2) (27, ua)(bs, ua) . . . (2r, U2n—1)(2s, uo)]
[ vita)(lar zaleraorsy = [(23,0)(Zit1, 11

!

such that if » < s then b; = 2,_, else b; = z.,;, with s and r in modulo
2m.

We remark that each function allows to replace any edge of L; of G¢ by
a path in G x Cay,. By definition, each function (f1(G¢) and f2(G¢)) cov-
ers all vertices of G x Cs,. Furthermore, G¢ is connected. Consequently
the graphs v = fi(E(G¢)) and v2 = f2(E(G¢)) are two hamiltonian
cycles of G x Cy,. We may note that G¢ connects each time two cy-
cles, each one in different components of C; 2 x Ca, (Figure (6,7)). Let
Ca = (a0, Po, a1,B, ... ,ak—1, Br—1) (With 2k is a size of C and k < m) be
isomorphic to the cycle C in G x C3, between columns ug and Ugp—1 With
edges {(ai)ogi<k-1} C L2 X Can, {(Bi)ogi<k—1} C L3 x Cay,. Let (2o, uo)
be the origin vertex of C,. Let Cj = (o}, 8h,a},8;,... 2 @_1,Pr_y) be
isomorphic to the cycle C in G x Ca, between columns ug and uq1 with
edges {(a{)oci<k-1} C Lz X Can, {(B)o<i<k—1} C L3 X Cay. Let (zo,u,)
be origin vertex of Cj. It is easy to see that v; = (AU B)\ {(ai)o<i<k—1U
{(Biogi<k-1} and 72 = (DU E) \ {(ef)ogick-1} U {(Bo<i<k—1}. This
implies that v; and «, are two edge-disjoint cycles in G x Coy,. a

Finally, we hold to the main result of the product by even cycle. Using the
two hamitonian cycles obtained in the preceding theorem (with slight mod-
ification of 1), we get, by an additional hypothesis, the h-decompostition
of G x Cy,.
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Figure 5.

Figure 6. v,
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Figure 9. H{

Theorem 3.6 Let G = Ly U L U L3 be a non-bipartite cubic graph such
that:

o Ly ULy and C = LaU L3 are two hamiltonian cycles.
o G is connected.

o L, U L3 contains an alternating 4-cycle C’', such that the edges of
L3N E(C’) are one-parity edges.

Then G x Cay, i3 h-decomposable.

Proof: Let Ly U L3 = (yo,%1,-.. ,¥2m-1)- One can see that each edge
e; € L3, e; x Co, gives two disjoint cycles 8; Ul; and B! U, such that I
and [ of size 2n — 1, B; € C, and B, € C,.

In fact, the spanning subgraph (G x Ca,)\ (71 U2) contains two cycles
oy and o3, such that o, is obtained from C, by replacing 8; by I;, and o5
is obtained from C), by replacing §; by I{. Then (E(G x Ca5)\ (11U 72)) =

(ao, lo,al, li,... ,ak_l,lk_l)U(a{), l(), Ot'l, l'l, N afc_l, l;c_l). These two cy-
cles of C x Cay, are also given as follows:
o1 = ([(yo,u0)(y1,21) (0, u2)(¥1,u3)... (¥1, u2n—1)}[(¥1, u2n—1) (Y2, u0)]

18



[(w2, wo)(¥s, u1)(y2, u2)(y3, ua) . .. (¥3, u2n—1)][(¥3, u2a—1)(. - Il - - [ - - (w2m-—1,
uzn—1)][(¥2m—1, U2n—1) (%0, u0)) and o2 = ([(wo, ©1)(v1, u2)(¥o, u3) (y1,24) - - -
(1, u0)] (91> 50) (¥, w1)][(¥2, ) (u, u2) (v, u3) (3, ua) . (953, wo)] (33, u0)
G- N-- ] - - (wom—1,u0))[(y2m—1, u0)] (Figure 8). This latter fact implies
that a; and as compose a 2-factor of G x Cy,. It is easy to see that the
edges of L3 x Co, not used in 4 and 7, are used in o1 and o2. We denote
Y2 by Hj.

Choose now the edges (e, f, g, h) corresponding to C’ in G x Ca,, between
two consecutive columns (or if necessary three consecutive columns) with
{e,g} C 1, f € a1 and h € a2 such that H] = (71 \ {e,9}) U{f, h}
and Hf = (q Uaz \ {f, h}) U {e,g} are connected. So (H{, H3, H3) is a
h-decomposition of G x Coy, (Figures 6,7,8,9). u]

3.3 Classes of Graphs

In this section we construct three classes of graphs satisfing the hypotheses
of the last theorem

e G = L, U Ly, U L3 is a non-bipartite cubic graph.

e LiU Ly and C = Ly U L3 are two hamiltonian cycles.

e G is connected.

e [; U L3 contains an alternating 4-cycle C’, such that the edges of
L3 N E(C") are one-parity edges.

3.3.1 The class 1

Each graph of F1 can be defined as follows

Let H = L{ U Ly U L} be any strongly hamiltonian non-bipartite cubic
graph, such that the dual greph Hpsur, is connected. Choose one edge [z,9]
of Ly and replace it by Gzy.

e’
’
L, %,
’
XI.QOI
a
b

FIgure 10. G,
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The new graph obtained G = L; U Ly U L3 is still a non-bipartite cubic
graph. The cycles L, ULy = (L{U{b, d})U(L3U{a, f,g}) and C = LyUL3 =
(LU {a, f,g}) U (L5 U{e, i}) are hamiltonian. The dual graph G is given
from Hp 1, by replacing the edge [(z, g(z))(y, 9(¥))] by a path as follows:

Ge = ([Hryur, \{[(=: 9(=))(y, 9@)IHVI(=, 9(2))(0, 9(2)) (P, 9(2)) (r, 9(=))

(9, 9(=))(p, 9(=))(0, 9(z))(g, 9())(r, 9(=)) (v, 9(2))))], with V(Gy) = {p,q,r,
z,y}. Gc is connected. The cycle C' = {e, d, i,b} is an alternating 4-cycle
such that the edges e and i are one-parity edges.

N

L LT T

Figure 11. Some graphs of class F2
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3.3.2 The class F2

Each graph G’ of this class F 2 is obtained recursively from K,, by replacing
the edges of Ly by Goy:

Figure 12. K

Let Y0 = {Ky,}.

We assume that T*~! is defined and for each cubic graph of T*~!, there
exists a 1-factorization (L1(G), L2(G), La(G)). We put Tt = {G’ = (G \
{lz,¥)]}) UGzy : [z,y] € L2(G), for some G € YTi~1}. G’ satisfies the
hypotheses of last theorem (Figure 11), the verification is left to the reader.

z2n

Figure 13.

3.3.3 The class 73

Let H be the strongly hamiltonian non-bipartite cubic graph of Figure 183,

where L3 = {[ZO, z2n]: [zh 2471—'1]) {22) 24,;_2], [23, z4'n—3]) ceey [z2n—l, z2n+l]}-
We create an alternating 4-cycle in L1 U L3, by removing the edges [z, z2n]
and [24n—2, 22| and replacing them by the edges [29, z4n—2] and [22, 22n].
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So in the obtained graph H’, the cycle L; U Ly remains hamiltonian
because its edges are not changed, and L, U L3 is still a hamiltonian cycle
because [2g, 24n—2] and [22, 22n) are two crossing chords of the cycle. The
dual graph Hj ., is still connected, the verification is left to the reader.
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