On nesting of path designs*

Salvatore Milici and Gaetano Quattrocchi
Department of Mathematics
University of Catania
viale A. Doria, 6
95125 Catania, Italy

ABSTRACT. Let $h \geq 1$. For each admissible v, we exhibit a nested balanced path design H(v, 2h+1, 1). For each admissible odd v, we exhibit a nested balanced path design H(v, 2h, 1). For every $v \equiv 4 \pmod{6}$, $v \geq 10$, we exhibit a nested balanced path design H(v, 4, 1) except possibly if $v \in \{16, 52, 70\}$.

For each $v \equiv 0 \pmod{4h}$, $v \geq 4h$, we exhibit a nested path design P(v, 2h+1, 1). For each $v \equiv 0 \pmod{4h-2}$, $v \geq 4h-2$, we exhibit a nested path design P(v, 2h, 1). For every $v \equiv 3 \pmod{6}$, $v \geq 9$, we exhibit a nested path design P(v, 4, 1) except possibly if v = 39.

1 Introduction

Let H = (V(H), E(H)) be a graph. Denote by λH the graph H in which every edge has multiplicity λ . The multigraph λH is said to be G-decomposable if it is a union of edge disjoint subgraphs of K_v , each of them isomorphic to a fixed graph G. This situation is denoted by $\lambda H \to G$; λH is also said to admit a G-decomposition. A G-design is a G-decomposition of λK_v . A G-design is denoted by a pair (V, \mathcal{B}) , where V is the vertex set of K_v and \mathcal{B} is the edge-disjoint decomposition of λK_v into copies of G. Usually \mathcal{B} is called the block-set of the G-design and any $B \in \mathcal{B}$ is said to be a block. A G-design (W, \mathcal{A}) is called to be a subdesign of (V, \mathcal{B}) if $W \subseteq V$ and $\mathcal{A} \subseteq \mathcal{B}$.

A path design P(v, k, 1) of order v and block size k, is a P_k -design of K_v , where P_k is the simple path with k-1 edges (k vertices), $P_k = [a_1, a_2, \ldots, a_k] = \{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{k-1}, a_k\}\}.$

^{*}Research supported by MURST and GNSAGA of CNR Italy.

M. Tarsi [8] proved that the necessary conditions for the existence of a P(v, k, 1), $v \ge k$ (if v > 1) and $v(v - 1) \equiv 0 \pmod{2(k - 1)}$, are also sufficient.

We denote by S(v, m+1, 1) a decomposition of K_v into m-stars $S_m = [a; a_1, a_2, \ldots, a_m] = \{\{a, a_1\}, \{a, a_2\}, \ldots, \{a, a_m\}\}$. The vertex a of degree m in S_m is called the centre of the star and the vertices a_i of degree 1 are called the terminal vertices of the star. It is well-known [8] that the necessary conditions for the existence of a $S(v, m+1, 1), v \geq 2m$ (if v > 1) and $v(v-1) \equiv 0 \pmod{2m}$, are also sufficient.

A balanced G-design is a G-design such that each vertex belongs to exactly r copies of G. Obviously not every G-design is balanced. A (balanced) G-design of λK_v is also called a (balanced) G-design of order v, block size |V(G)| and index λ .

We denote by H(v, k, 1) a balanced path design P(v, k, 1). Clearly a H(v, 2, 1) (V, \mathcal{B}) exists for every $v \geq 2$. S.H.Y. Hung and N.S. Mendelsohn [5] proved that a H(v, 2h + 1, 1), $(h \geq 1)$, exists if and only if $v \equiv 1 \pmod{4h}$, and a H(v, 2h, 1), $(h \geq 2)$, exists if and only if $v \equiv 1 \pmod{2h-1}$.

An m-cycle system of order v (mCS) is a C_m -design of K_v , where C_m is an m-cycle (cycle of length m), $(a_1, a_2, \ldots, a_m) = \{\{a_1, a_2, \}, \{a_2, a_3\}, \ldots, \{a_{m-1}, a_m\}, \{a_1, a_m\}\}$. The obvious necessary conditions for the existence of an mCS of order v are: $v \ge m$ (if v > 1), v is odd and $v(v-1) \equiv 0$ (mod 2m). The sufficiency of these conditions has been proved in several classes, namely when 2m divides either v or v-1, and for all v when $m \le 50$, but not in general, though no counter example has been found so far. For the history of the problem and detailed references, see [7].

A nesting of an m-cycle system (V, \mathcal{C}) of order v is a function $f: \mathcal{C} \to V$ such that $\{\{x, f(C)\} | x \in V(C), C \in \mathcal{C}\}$ is a partition of the edges of K_v . Notice that any nesting of (V, \mathcal{C}) maps each cycle $C \in \mathcal{C}$ to any m-star: The graph S(C) with vertex set $V(C) \cup \{f(C)\}$ and edge set $\{\{x, f(C)\} | x \in C\}$ is an m-star centered on f(C). Therefore, any nesting of an mCS of order v produces an edge-disjoint decomposition of K_v into m-stars. Also, notice that the graph $C \cup S(C)$ is obviously a wheel W_m . It is clear then that a nesting of an mCS of order v is equivalent to an edge-disjoint decomposition of $2K_v$ into wheels W_m having the additional property that for each pair of vertices a_1 and a_2 , one of the edges joining a_1 to a_2 is on the rim of a wheel and the other is the spoke of a wheel.

Example 1. $(Z_9, \{C^i = (i, 1+i, 7+i, 2+i) | i \in Z_9\})$ is a 4-cycle system of order 9 that has a nesting defined by $f(C^i) = 3+i$, reducing all sums modulo 9.

The spectrum problem for mCS of order v that have a nesting was studied in many papers, see [7] for more details and references.

Theorem 1 For all $m \ge 3$, there exists a nested mCS of order v for all v = 2mx + 1 except possibly if $x \in \{2, 3, 4, 6, 22, 23, 24, 26, 27, 28, 30, 34, 38\}$ when m is not a power of 2, and except possibly if $x \in \{2, 3, 4, 7, 8, 12, 14, 18, 19, 23, 24, 33, 34\}$ when m is a power of 2.

The list of possible exceptions can be reduced when m is odd (see [7]).

It is natural to define a nesting of a G-design of K_v in a similar way as a nesting of an mCS of order v:

A nesting of a G-design of K_v (V, \mathcal{B}) is a pair $\{(V, \mathcal{S}), F\}$ where (V, \mathcal{S}) is a S(v, m+1, 1) and $F: \mathcal{B} \to \mathcal{S}$ is a 1-1 mapping such that: (n_1) for every $B \in \mathcal{B}$ the centre of the m-star $S_m = F(B)$ is not in V(B) and any terminal vertex of S_m is in V(B);

 (n_2) For every pair $B_1, B_2 \in \mathcal{B}$ the graphs $B_1 \cup F(B_1)$ and $B_2 \cup F(B_2)$ are isomorphic.

It is $|\mathcal{B}| = |\mathcal{S}|$ and $|V(S_m)| \le |V(G)| + 1$. Then, for v > 1, a necessary condition for the existence of a nested G-design of K_v is

$$|E(G)| = m \le |V(G)| \tag{1}$$

In this paper we study the case where G is a path P_k and either $v \equiv 0$ or 1 (mod 2(k-1)) if k is odd or $v \equiv 0$ or 1 (mod k-1) if k is even. Let (V, \mathcal{P}) be a nested P(v, k, 1). The necessary condition (1) implies m = k-1, then every path $P \in \mathcal{P}$ contains exactly one vertex, say x, missing on the vertex set of F(P). So, to satisfy the (n_2) it is necessary to decide the *position* of x into the path P.

Example 2. $(Z_9, \{P^i = [i, 1+i, 8+i, 2+i, 7+i] | i \in Z_9\})$ is a P(9,5,1) that has a nesting defined by the S(9,5,1) $(Z_9, \{S^i = [6+i; i, 8+i, 2+i, 7+i] | i \in Z_9\})$, reducing all sums modulo 9, and by the 1-1 mapping F defined by $S^i = F(P^i)$.

Example 3. $(Z_9, \{[i, 1+i, 7+i], [i, 2+i, 7+i] | i \in Z_9\})$ is a P(9, 3, 1) that has a nesting defined by the S(9, 3, 1) $(Z_9, \{[3+i; i, 1+i], [3+i; 7+i, 2+i] | i \in Z_9\})$ and by the 1-1 mapping F defined by F([i, 1+i, 7+i]) = [3+i; i, 1+i] and F([i, 2+i, 7+i]) = [3+i; 7+i, 2+i], reducing all sums modulo 9.

Theorem 2 The existence of a nested 2m-cycle system of order v implies the existence of a nested path design P(v, m+1, 1).

Proof: Let (V,\mathcal{C}) be a 2m-cycle system of order v that has a nesting defined by $f(C^i)=b^i$ for $i=1,2,\ldots,v(v-1)/4m$. For every i split the 2m-cycle $C^i=(a_1^i,a_2^i,\ldots,a_{2m}^i)$ into the two following paths: $P^i=[a_1^i,a_2^i,\ldots,a_{m+1}^i]$ and $\overline{P}^i=[a_{m+1}^i,a_{m+2}^i,\ldots,a_{2m}^i,a_1^i]$. Define $S^i=F(P^i)=[b^i;a_1^i,a_2^i,\ldots,a_m^i]$ and $\overline{S}^i=F(\overline{P}^i)=[b^i;a_{m+1}^i,a_{m+2}^i,\ldots,a_{2m}^i]$. It is easy to see that $(V,\mathcal{P})=$

 $\{P^i, \overline{P}^i | i = 1, 2, \dots, v(v-1)/4m\}$) is a P(v, m+1, 1) that has a nesting defined by $(V, S) = \{S^i, \overline{S}^i | i = 1, 2, \dots, v(v-1)/4m\}$) and F.

Applying Theorem 2 to the nested 4CS of Example 1, we obtain the nested P(9,3,1) of Example 3.

Corollary 1 For all $2m \ge 4$, there exists a nested P(v, m + 1, 1) for all v = 4mx + 1 except possibly if x is defined as in Theorem 1.

Let H be a subgraph of K_v and let $\widehat{G_k} = \langle a_1, a_2, \ldots, a_{k-1}, \widehat{a_k}; a \rangle = (\{a, a_1, a_2, \ldots, a_k\}, [a_1, a_2, \ldots, a_k] \cup [a; a_1, a_2, \ldots, a_{k-1}])$. From now on we shell suppose that any edge disjoint decomposition $2H \to \widehat{G_k}$, (V, \mathcal{B}) satisfies the following properties:

 (p_1) $(V(H), \{P_k(B)|B \in \mathcal{B}\})$ (where $P_k(B)$ is the subgraph of B isomorphic to the path $[a_1, a_2, \ldots, a_k]$) is a decomposition $H \to [a_1, a_2, \ldots, a_k]$;

 (p_2) $(V(H), \{S_{k-1}(B)|B \in \mathcal{B}\})$ (where $S_{k-1}(B)$ is the subgraph of B isomorphic to the (k-1)-star $[a; a_1, a_2, \ldots, a_{k-1}]$) is a decomposition $H \to [a; a_1, a_2, \ldots, a_{k-1}]$.

When $H = K_v$, we say that a $2K_v \to \widehat{G}_k$ is a \widehat{G}_k -design N(v, k+1, 2).

Let (V,\mathcal{P}) be a nested P(v,m+1,1) constructed as in Theorem 2 starting from a nested 2m-cycle system. Let $P\in\mathcal{P}$, then it is easy to see that the vertex of P that is not a vertex of S=F(P) has degree one in P. In this paper we ask that any nested path design satisfies this property. I.e. we look for a nesting of a (balanced) path design $P(v,k,1), (V,\mathcal{P})$, that is equivalent to a $N(v,k+1,2), (V,\mathcal{B})$, such that $\mathcal{P}=\{P_k(B)|B\in\mathcal{B}\}$, $S=\{S_{k-1}(B)|B\in\mathcal{B}\}$ and $F:\mathcal{P}\to\mathcal{S}$ is defined by $F(P_k(B))=S_{k-1}(B)$ for every $B\in\mathcal{B}$.

In this paper we exhibit a $\widehat{G_k}$ -decomposition N(v,k+1,2) for the following values of v and k: each $v \equiv 0$ or $1 \pmod{4h}$, $v \geq 4h$ if k = 2h + 1; each odd $v \equiv 1 \pmod{2h-1}$, $v \geq 2h$ if k = 2h; each $v \equiv 0 \pmod{4h-2}$, $v \geq 4h-2$ if k = 2h; each $v \equiv 3$ or $4 \pmod{6}$, $v \geq 9$, except possibly if $v \in \{16, 39, 52, 70\}$ if k = 4. Moreover if either $v \equiv 1 \pmod{4h}$ or $v \equiv 1 \pmod{2h-1}$ or $v \equiv 4 \pmod{6}$, the nested path design is balanced.

Generally, two well-known methods are used in construction: the difference method (see f.e. [3]) and the composition method (see f.e. [9] and [1]).

Usually, using the difference method, we will give only the base blocks of the decomposition since the rest of the blocks can be obtained by applying an automorphism of the group Z_v on the vertices of the base blocks, as illustrated in the following example.

Example 4. (4.1) The base blocks of the N(9,4,2) given in Example 3 are $< 0,1,\widehat{7};3 >$ and $< 7,2,\widehat{0};3 >$ (mod 9).

(4.2) Let
$$V(K_{10}) = Z_5 \times Z_2$$
. For a $2K_{10} \to \widehat{G}_5$ take the base blocks (mod $(5, -)$):

$$<(2,1),(4,1),(4,0),\widehat{(1,0)};(1,1)>,<(2,1),(1,1),(2,0),\widehat{(1,0)};(3,0)>,$$

 $<(3,1),(0,0),(2,1),\widehat{(1,0)};(2,0)>\pmod{(5,-)}$. Hence the blocks of the decomposition are

$$<(2+i,1),(4+i,1),(4+i,0),(1+i,0);(1+i,1)>,$$

$$<(2+i,1),(1+i,1),(2+i,0),(1+i,0);(3+i,0)>,$$

$$<(3+i,1),(i,0),(2+i,1),(\widehat{1+i,0});(2+i,0)>$$
, for $i\in \mathbb{Z}_5$.

(4.3) For a N(16, 6, 2) we have $V(K_{16}) = Z_{15} \cup \{\infty\}$ and the base blocks are:

 $<\infty,0,14,1,\widehat{13};4>$ and $<10,1,11,0,\widehat{7};2>\pmod{15}$. Hence the blocks of the decomposition are

$$<\infty, i, 14+i, 1+i, \widehat{13+i}; 4+i>$$
 and $<10+i, 1+i, 11+i, \widehat{i, 7+i}; 2+i>$, for $i\in Z_{15}$.

(4.4) For a $2K_v \to \widehat{G}_3$ put:

 $V(K_v)=Z_v$ and base blocks $<0,\widehat{\rho};v-\rho>\pmod{v},\ \rho=1,2,\ldots,(v-1)/2,$ if $v\geq 3$ is odd;

$$V(K_v) = Z_{v-1} \cup \{\infty\}$$
 and base blocks $<\infty, \widehat{0}; 1>, <0, \widehat{\rho}; v-1-\rho> \pmod{v-1}, \ \rho=1,2,\ldots,(v-2)/2, \ \text{if } v\geq 4 \ \text{is even}.$

Let Y be a finite set of points, C a family of distinct subsets of Y called groups which partition Y, and A a collection of subsets of Y called blocks. Let v be a positive integer and K and M sets of positive integers. The triple (Y, C, A) is called a group divisible design (GDD) GD[K, M; v] if:

- $(c_1)|Y|=v;$
- (c_2) { $|C||C \in C$ } $\subseteq M$;
- (c_3) { $|B||B \in A$ } $\subseteq K$;
- $(c_4) |C \cap B| \le 1$ for every $C \in \mathcal{C}$ and every $B \in \mathcal{A}$;
- (c_5) every pairset $\{x,y\} \subseteq Y$ such that x and y belong to distinct groups is contained in exactly one block of A.

If C contains t_i groups of size m_i , for i = 1, 2, ..., s, we call $m_1^{t_1} m_2^{t_2} ... m_s^{t_s}$ the group type of the GDD. When $K = \{k\}$ we will write GD[k, M; v] instead of $GD[\{k\}, M; v]$.

Let $2K_{n_1,n_2,\ldots,n_h}$ be the complete multipartite multigraph on vertices $\bigcup_{i=1}^h X_i$ where $|X_i| = n_i$ with two edges joining each pair of vertices from different sets X_i , X_j , $i \neq j$. The composition method is based on the following four lemmas.

Lemma 1 If $2K_{n_i} \to \widehat{G}_k$ for i = 1, 2, ..., h and $2K_{n_1, n_2, ..., n_h} \to \widehat{G}_k$, then $2K_n \to \widehat{G}_k$ where $n = n_1 + n_2 + ... + n_h$.

Lemma 2 If $2K_{n_i} \to \widehat{G}_k$ for i = 1, 2, ..., h and $2K_{n_1, n_2, ..., n_h} \to \widehat{G}_k$, then $2K_n \to \widehat{G}_k$ where $n = 1 + n_1 + n_2 + ... + n_h$.

Lemma 3 ([1]) If $2K_{n,n,n,n} \to \widehat{G}_k$ then $2K_{pn,pn,pn,pn} \to \widehat{G}_k$ for every positive integer $p \neq 2, 6$.

Lemma 4 Suppose there exists a GD[t, M; v], a $2K_{n_1, n_2, ..., n_t} \to \widehat{G}_k$ (with $n_1 = n_2 = ... = n_t = n$) and for any $m \in M$ a \widehat{G}_k -design N(mn + w, k + 1, 2) containing a subdesign N(w, k + 1, 2) (or w = 0, 1). Then there exists a \widehat{G}_k -design N(nv + w, k + 1, 2).

Example 5. Let $X_i = Z_3 \times \{i\}$ $i \in Z_3$ and $V(K_{3,3,3}) = \bigcup_{i=0}^2 X_i$. For a $2K_{3,3,3} \to \widehat{G}_5$ take the base blocks:

$$<(2,1),(1,0),(0,1),\widehat{(0,0)};(0,2)>,<(1,0),(2,2),(0,0),\widehat{(0,2)};(0,1)>,<(0,2),(1,1),(1,2),\widehat{(0,1)};(0,0)>\pmod{(3,-)}.$$

Put w = 1 in Lemma 4. Since there exists a $GD[3, \{3\}; 9]$ (or a Kirkman triple system of order 9) and a N(10, 5, 2) (see Example (4.2)), then Lemma 4 implies the existence of a N(28, 5, 2).

At last we give the following notation that we will use in the next two sections. Let $x \in \mathbb{Z}_v$. Define

$$|x| = \begin{cases} x & \text{if } 0 \le x \le \chi(v) \\ v - x & \text{if } \chi(v) + 1 \le x \le v - 1 \end{cases}$$

where

$$\chi(v) = \begin{cases} (v-1)/2 & \text{if } v \text{ is odd} \\ v/2 & \text{if } v \text{ is even} \end{cases}$$

2 Nesting of path designs of order v and block size odd

In this section we construct a nested path design P(v, 2h+1, 1), $h \ge 1$, for any $v \equiv 0$ or $1 \pmod{4h}$. Moreover for $v \equiv 1 \pmod{4h}$, the nested path design is balanced.

Theorem 3 Let $h \ge 1$. For every $v \equiv 1 \pmod{4h}$, $v \ge 4h + 1$, there is a nested balanced path design H(v, 2h + 1, 1).

Proof: Let $v = 1 + 4\alpha h$, $\alpha \ge 1$. For $\rho = 1, 2, ..., \alpha$ and j = 0, 1, ..., h-1, put

$$a_i^{\rho} = 1 + j + 2h(\rho - 1), b_j = 4\alpha h - j, \text{ and } c_{\rho} = (\alpha + \rho - 1)h + 1.$$

Let $V(K_v) = Z_v$. For a $2K_v \to \widehat{G_{2h+1}}$, N(v, 2h+2, 2), take the base blocks

$$<0, a_0^{\rho}, b_0, a_1^{\rho}, b_1, \dots, a_{h-1}^{\rho}, \widehat{b_{h-1}}; c_{\rho}> \pmod{v}.$$

Let \mathcal{P} be the path set constructed by the base paths

$$[0, a_0^{\rho}, b_0, a_1^{\rho}, b_1, \ldots, a_{h-1}^{\rho}, b_{h-1}] \pmod{v}.$$

It is well-known [6] that (Z_v, \mathcal{P}) is a balanced path design H(v, 2h + 1, 1).

Reducing all the sums \pmod{v} , it is easy to see that

$$|c_{\rho}-0|=h(\alpha+\rho-1)+1,$$

$$|c_{\rho} - a_{j}^{\rho}| = h(\alpha + 1 - \rho) - j$$
 for $j = 0, 1, ..., h - 1$, and, if $h \ge 2$,

$$|c_{\rho} - b_{j}| = (\rho + \alpha - 1)h + j + 2$$
 for $j = 0, 1, \dots, h - 2$.

Let

$$D_1 = \{ |c_{\rho}| \mid \rho = 1, 2, \ldots, \alpha \},$$

$$D_2 = \{ |c_{\rho} - a_{j}^{\rho}| \mid \rho = 1, 2, \dots, \alpha, j = 1, 2, \dots, h - 1 \},$$

$$D_{2} = \{ |c_{\rho} - a_{j}^{\rho}| \mid \rho = 1, 2, ..., \alpha, j = 1, 2, ..., h - 1 \},$$

$$D_{3} = \{ |c_{\rho} - b_{j}| \mid \rho = 1, 2, ..., \alpha, j = 1, 2, ..., h - 2, h \ge 2 \}.$$

It is $D_1 \cup D_3 =$

$$= \{(\alpha + \rho - 1)h + 1, (\alpha + \rho - 1)h + 2, \dots, (\alpha + \rho - 1)h + h \mid \rho = 1, 2, \dots, \alpha\} =$$

$$= \{h\alpha + 1, h\alpha + 2, \dots, 2h\alpha\},\$$

$$D_2 = \{(\alpha - \rho)h + 1, (\alpha - \rho)h + 2, \dots, (\alpha - \rho)h + h \mid \rho = 1, 2, \dots, \alpha\} = \{1, 2, \dots, h\alpha\}.$$

Since $\bigcup_{i=1}^{3} D_i = \{1, 2, \dots, 2h\alpha\}$, then

$$[c_{\rho}; 0, a_0^{\rho}, b_0, a_1^{\rho}, b_1, \dots, a_{h-2}^{\rho}, b_{h-2}, a_{h-1}^{\rho}] \pmod{v}$$

are the base blocks of the S(v, 2h + 1, 1).

Theorem 4 Let $h \ge 1$. For each $v \equiv 0 \pmod{4h}$, $v \ge 4h$, there is a nested path design P(v, 2h + 1, 1).

Proof: Let $v = 4h\alpha$, $\alpha \ge 1$. Put:

$$a_{-1}^{\alpha-1}=2h-1;$$

$$a_j^{-1} = 4h\alpha - j - 2$$
, for $j = 0, 1, ..., h - 1$;

$$a_j^{\rho} = (4\alpha - 2\rho)h - j - 1$$
, for $\rho = 1, 2, ..., \alpha - 1$ and $j = 0, 1, ..., h - 1$; $c_{\rho} = (\alpha - \rho)h$, for $\rho = 0, 1, ..., \alpha - 1$.

Let $V(K_v) = Z_{v-1} \cup \{\infty\}$. For a $2K_v \to \widehat{G_{2h+1}}$, take the base blocks $(\text{mod } 4h\alpha - 1)$:

$$<\infty,0,a_0^0,1,a_1^0,\ldots,h-1,\widehat{a_{h-1}^0};c_0>,$$

and, if $\alpha \geq 2$, the followings ones

$$<0, a_0^{\rho}, 1, a_1^{\rho}, \ldots, h-1, a_{h-1}^{\rho}, \widehat{h}; c_{\rho}>, \text{ for } \rho=1, 2, \ldots, \alpha-2,$$

$$< a_{h-1}^{\alpha-1}, h-1, a_{h-2}^{\alpha-1}, h-2, \ldots, a_1^{\alpha-1}, 1, a_0^{\alpha-1}, 0, \widehat{a_{-1}^{\alpha-1}}; c_{\alpha-1} > .$$

It is easy to verify that the base paths $\pmod{4h\alpha-1}$:

$$[\infty, 0, a_0^0, 1, a_1^0, \ldots, h-1, a_{h-1}^0],$$

$$[0, a_0^{\rho}, 1, a_1^{\rho}, \dots, h-1, a_{h-1}^{\rho}, h],$$

$$[a_{h-1}^{\alpha-1}, h-1, a_{h-2}^{\alpha-1}, h-2, \dots, a_1^{\alpha-1}, 1, a_0^{\alpha-1}, 0, a_{-1}^{\alpha-1}],$$

give a $P(4h\alpha, 2h+1, 1)$.

Reducing all the sums $\pmod{4h\alpha-1}$, it is:

$$D_{1} = \{|c_{\rho} - j| = (\alpha - \rho)h - j \mid \rho = 0, 1, \dots, \alpha - 1, \ j = 0, 1, \dots, h - 1\} = \{1, 2, \dots, h\alpha\}; \ D_{2} = \{c_{0} - a_{j}^{0}| = h\alpha + j + 1 \mid j = 0, 1, \dots, h - 2\} = \{h\alpha + 1, h\alpha + 2, \dots, h(\alpha + 1) - 1\}, \ \text{and, if } \alpha \ge 2$$

$$D_{3} = \{|c_{\rho} - a_{j}^{\rho}| = h(\alpha + \rho) + j \mid \rho = 1, 2, \dots, \alpha - 1, \ j = 0, 1, \dots, h - 1\} = \{h(\alpha + 1), h(\alpha + 1) + 1, \dots, 2h\alpha - 1\}.$$
Since $\bigcup_{i=1}^{3} D_{i} = \{1, 2, \dots, 2h\alpha - 1\}$, then

$$\begin{split} [c_0; \infty, 0, a_0^0, 1, a_1^0, \dots, h-2, a_{h-2}^0, h-1], \\ [c_\rho; 0, a_0^\rho, 1, a_1^\rho, \dots, h-1, a_{h-1}^\rho], & \rho = 1, 2, \dots, \alpha-2, \\ [c_{\alpha-1}; a_{h-1}^{\alpha-1}, h-1, a_{h-2}^{\alpha-1}, h-2, \dots, a_1^{\alpha-1}, 1, a_0^{\alpha-1}, 0], \end{split}$$

are, $(\text{mod } 4h\alpha - 1)$, the base blocks of the $S(4h\alpha, 2h + 1, 1)$.

3 Nesting of path designs of order v and block size even

In this section we deal with the problem of constructing a nested path design P(v, 2h, 1), $h \ge 1$, when $v \equiv 0$ or $1 \pmod{2h-1}$. For h=1 the problem is solved in Example (4.4). For h=2 we solve the problem for any $v \equiv 0$ or $1 \pmod{3}$, $v \ge 6$, except possibly if $v \in \{16, 39, 52, 70\}$. When $h \ge 2$, we construct a nested balanced path design of order v for each odd $v \equiv 1 \pmod{2h-1}$, $v \ge 4h+1$, and for each even $v \equiv 0 \pmod{2h-1}$, $v \ge 4h-2$.

Theorem 5 Let $h \ge 2$. For every odd $v \equiv 1 \pmod{2h-1}$, $v \ge 4h-1$, there is a nested balanced path design H(v, 2h, 1).

Proof: Let $v = 1 + 2\alpha(2h - 1)$, $\alpha \ge 1$. For $\rho = 0, 1, ..., \alpha - 1$ and j = 0, 1, ..., h - 1 put $a_j^{\rho} = (2\alpha - \rho)(2h - 1) - j$, and $c_{\rho} = (\alpha - \rho)h$.

Let $V(K_v) = Z_v$. For a $2K_v \to \widehat{G_{2h}}$, N(v, 2h+1, 2), take the base blocks

$$<0, a_0^{\rho}, 1, a_1^{\rho}, \dots, h-1, \widehat{a_{h-1}^{\rho}}; c_{\rho}> \pmod{v}.$$

Let P be the path set constructed by the base paths

$$[0, a_0^{\rho}, 1, a_1^{\rho}, \dots, h-1, a_{h-1}^{\rho}] \pmod{v}.$$

It is well-known [6] that (Z_v, \mathcal{P}) is a H(v, 2h, 1).

Reducing all the sums \pmod{v} , it is easy to see that $\{|c_{\rho}-j|=|(\alpha-\rho)h-j| \mid \rho=0,1,\ldots,\alpha-1,\ j=0,1,\ldots,h-1\} \cup \{|c_{\rho}-a_{j}^{\rho}|=|\alpha h+j+\rho(h-1)+1| \mid \rho=0,1,\ldots,\alpha-1,\ j=0,1,\ldots,h-2\} = \{1,2,\ldots,\alpha(2h-1)\}$. Then

$$[c_{\rho}; 0, a_0^{\rho}, 1, a_1^{\rho}, \dots, h-2, a_{h-2}^{\rho}, h-1] \pmod{v}$$

are the base blocks of the S(v, 2h, 1).

Theorem 6 For every $v \equiv 1 \pmod{3}$, $v \geq 7$, there is a nested balanced path design H(v, 4, 1) except possibly if $v \in \{16, 52, 70\}$.

Proof: If $v \equiv 1 \pmod{6}$ the result follows from Theorem 5. Let $v \equiv 4 \pmod{6}$, $v \geq 10$. The case v = 10 is proved in Example 4.2.

Case v = 22. Let $V(K_{22}) = Z_{11} \times Z_2$. The base blocks, $\pmod{(22, -)}$, are:

$$<(6,1),(1,1),(1,0),(2,0);(7,1)>,<(3,1),(2,1),(1,0),(3,0);(6,1)>,$$

$$<(7,1),(3,1),(1,0),(5,0);(4,0)>,<(7,1),(4,1),(1,0),(4,0);(6,0)>,$$

$$<(7,1),(5,1),(1,0),(6,0);(5,0)>,<(8,0),(7,1),(1,0),(6,1);(5,1)>,$$

Case v = 34. Let $V(K_{34}) = Z_{17} \times Z_2$. The base blocks, (mod (34, -)), are:

$$<(3,1),(1,1),(0,0),(1,0);(5,0)>,<(10,1),(2,1),(0,0),(2,1);(8,0)>,$$

$$<(7,1),(3,1),(0,0),(\widehat{3,1});(6,0)>,<(13,1),(6,1),(0,0),(\widehat{6,0});(7,0)>,$$

$$<(8,1),(7,1),(0,0),(8,0);(0,1)>,<(5,1),(0,1),(0,0),(4,0);(3,1)>,$$

$$<(16,1),(10,1),(0,0),\widehat{(5,0)};(4,1)>,<(8,1),(5,1),(0,0),\widehat{(7,0)};(9,1)>,$$

$$<(8,1),(0,0),(11,1),(14,0);(3,0)>,<(9,1),(0,0),(12,1),(14,0);(2,0)>,$$

$$<(14,0),(13,1),(0,0),\widehat{(4,1)};(1,0)>.$$

Case v = 40. We give a decomposition $2K_{2,2,2,2} \to \widehat{G}_5$. Let $V(K_{2,2,2,2}) = \bigcup_{i=0}^3 Z_2 \times \{i\}$. The base blocks (mod (2,-)) are:

$$<(0,3),(0,2),(0,1),\widehat{(1,0)};(0,0)>,<(0,1),(0,3),(0,0),\widehat{(0,2)};(1,2)>,$$

$$<(0,0),(0,1),(1,2),(0,3);(1,3)>,<(1,2),(0,0),(1,3),(0,1);(1,1)>.$$

By Lemma 3 (with p = 5) and the existence of a N(10, 5, 2), it follows the existence of a N(40, 5, 2).

Now we proceed as in Example 5. For $\alpha \geq 1$, the existence of a $GD(3,\{3\};3+6\alpha)$ (or Kirkman triple system) is well-known. The existence of a $GD(3,\{3,7\};7+6\alpha)$ of type $3^{2\alpha}7^1$ for any $\alpha \geq 2$ and of a $GD(3,\{3,11\};11+6\alpha)$ of type $3^{2\alpha}11^1$ for any $\alpha \geq 3$ is proved by Colbourn, Hoffman and Rees [2]. Then Lemma 4 (where we put w=1), implies the existence of a $N(10+18\alpha,5,2)$ $\alpha \geq 1$, a $N(22+18\alpha,5,2)$ $\alpha \geq 2$ and a $N(34+18\alpha,5,2)$ $\alpha \geq 3$. At last note that all nested path designs constructed in this theorem are balanced.

Theorem 7 Let $h \geq 2$. For each $v \equiv 0 \pmod{4h-2}$, $v \geq 4h-2$, there is a nested path design P(v, 2h, 1).

Proof: Let $v = \alpha(4h-2)$, $\alpha \ge 1$. Define $a_i^0 = 2\alpha(2h-1) - j - 2$, for $j=0,1,\ldots,h-2$, and, if $\alpha\geq 2$, $a_{j}^{\rho}=(4\alpha-2\rho)h-2\alpha+\rho-j-1$, for $j = 0, 1, \ldots, h - 1, \quad \rho = 1, 2, \ldots, \alpha - 1.$ If $\alpha = 1$, let $c_0 = 3(h-1)$. If $\alpha \geq 2$, let $c_{\alpha-1}=h,$ $c_{\rho-1} = a_0^{\rho} - c_{\rho} + h$, for $\rho = 2, 3, ..., \alpha - 2, \alpha - 1$, and $c_0 = a_0^1 - c_1 + h - 1.$

Let $V(K_v) = Z_{v-1} \cup \{\infty\}$. Let \mathcal{B} be the block set constructed from the following base blocks (mod $\alpha(4h-2)-1$):

$$<\infty,0,a_0^0,1,a_1^0,\ldots,h-2,a_{h-2}^0,\widehat{h-1};c_0>,$$

and, if $\alpha \geq 2$,

$$<0, a_0^{\rho}, 1, a_1^{\rho}, \ldots, h-1, \widehat{a_{h-1}^{\rho}}; c_{\rho}>, \text{ for } \rho=1, 2, \ldots, \alpha-1.$$

To prove that $(V(K_v), \mathcal{B})$ is a $N(\alpha(4h-2), 2h+1, 2)$ suppose at first $\alpha = 1$. In this case it is easy to see that

 $= \{1, 2, \ldots, 2h-2\}.$

Hence $V(K_{4h-2}, \mathcal{B})$ is a N(4h-2, 2h+1, 2).

Now suppose $\alpha \geq 2$. It is

A₀ = {
$$|a_j^0 - j|$$
, $|a_j^0 - j - 1|$ | $j = 0, 1, ..., h - 2$ } = {1, 2, ..., 2h - 2},

Since

$$\left(\bigcup_{\rho=1}^{\alpha-1} A_{\rho}\right) \cup A_{0} = \{1, 2, \dots, (2h-1)\alpha - 1\},\$$

then

$$[\infty, 0, a_0^0, 1, a_1^0, \ldots, h-2, a_{h-2}^0, h-1],$$

and, for $\rho = 1, 2, \ldots, \alpha - 1$,

$$[0, a_0^{\rho}, 1, a_1^{\rho}, \dots, h-1, a_{h-1}^{\rho}]$$

are $(\text{mod }\alpha(4h-2)-1)$ the base blocks of a $P(\alpha(4h-2),2h,1)$. To prove that this path design is nested by $(V(K_v), \mathcal{B})$ we value the following difference sets:

$$\begin{array}{lll} D_0^1 = \{|c_0 - j| \mid j = 0, 1, \dots, h - 2\}, \ D_0^2 = \{|c_0 - a_j^0| \mid j = 0, 1, \dots, h - 2\}, \\ D_t^1 = \{|c_{\alpha - t} - j| \mid j = 0, 1, \dots, h - 1\}, \ \text{and} \ D_t^2 = \{|c_{\alpha - t} - a_j^{\alpha - t}| \mid j = 0, 1, \dots, h - 2\}, \ \text{for} \ t = 1, 2, \dots, \alpha - 1. \end{array}$$

At first we prove that

$$c_{\alpha-t} = \begin{cases} [(2h-1)t+1]/2 & \text{if } t \text{ is odd} \\ [(2h-1)(2\alpha+t)-2]/2 & \text{if } t \text{ is even} \end{cases}$$
 (2)

Suppose t odd. The (2) is true for t=1. Suppose that (2) is true for $t=2\mu-1$. Then, for $t=2\mu+1$, it is

$$c_{\alpha-t+2} = c_{\alpha-2\mu-1} = a_0^{\alpha-2\mu} - c_{\alpha-2\mu} + h = a_0^{\alpha-2\mu} - a_0^{\alpha-2\mu+1} + c_{\alpha-2\mu+1} = (2\mu+1)h - \mu = [(t+2)(2h-1)+1]/2$$
. Hence (2) holds for each odd $t \le \alpha - 1$.

Let t be even. The (2) is true for t=2. Suppose that (2) is true for $t=2\mu$. Then, for $t=2\mu+2$, it is

$$c_{\alpha-t+2} = c_{\alpha-2\mu-2} = a_0^{\alpha-2\mu-1} - c_{\alpha-2\mu-1} + h = a_0^{\alpha-2\mu-1} - a_0^{\alpha-2\mu} + c_{\alpha-2\mu} = a_0^{\alpha-2\mu-1} - a_0^{\alpha-2\mu} + (2h-1)(\alpha+\mu+1) - 1 =$$

= $[(2h-1)(2\alpha+t+2)-2]/2$. So (2) is completely proved for each $t \le \alpha-1$.

By a simple calculation we obtain that:

$$D^1_{2\mu-1} = \{|2(\mu-1)h - \mu + 2 + j| \mid j = 0, 1, \dots, h-1\},\$$

$$D_{2\mu-1}^2 = \{ |h(2\alpha - 2\mu + 1) + \mu - \alpha + j| \mid j = 0, 1, \dots, h-2 \},\$$

$$D_{2\mu}^1 = \{ |(2h-1)(\alpha-\mu)+j| \mid j=0,1,\ldots,h-1 \},\$$

$$D_{2\mu}^2 = \{ |(2h-1)\mu - j| \mid j = 0, 1, \dots, h-2 \},$$

$$D_0^1 = \{|[(2h-1)\alpha + 2j + 2]/2| \mid j = 0, 1, \dots, h-2\} \text{ if } \alpha \text{ is even,}$$

$$D_0^1 = \{ |[(2h-1)\alpha - 2j-1]/2| \mid j = 0, 1, \dots, h-2 \} \text{ if } \alpha \text{ is odd,}$$

$$D_0^2 = \{|[(2h-1)\alpha - 2j]/2| \mid j = 0, 1, \dots, h-2\} \text{ if } \alpha \text{ is even, and }$$

$$D_0^2 = \{ ||(2h-1)\alpha + 2j + 1|/2| \mid j = 0, 1, \dots, h-2 \} \text{ if } \alpha \text{ is odd.}$$

It follows that:

$$\begin{split} D^1_{2\mu-1} \cup D^2_{2\mu} &= \{|2(\mu-1)h - \mu + 2 + i| \mid i = 0, 1, \dots, 2h - 2\}, \\ D^1_{2\mu} \cup D^2_{2\mu-1} &= \{|(2h-1)(\alpha - \mu) + i| \mid i = 0, 1, \dots, 2h - 2\}. \end{split}$$

Suppose that α is odd. Then

$$\cup_{\mu=1}^{(\alpha-1)/2} \left(D_{2\mu-1}^1 \cup D_{2\mu}^2 \right) = \left\{ 1, 2, \dots, (\alpha-1)(2h-1)/2 \right\},\,$$

$$\bigcup_{\mu=1}^{(\alpha-1)/2} \left(D_{2\mu}^1 \cup D_{2\mu-1}^2 \right) = \\
= \left\{ (\alpha+1)(2h-1)/2, (\alpha+1)(2h-1)/2 + 1, \dots, (\alpha-1)(2h-1) + 2h-2 \right\},$$

and

$$D_0^1 \cup D_0^2 = \{ [\alpha(2h-1) - 2h + 3 + 2i]/2, \mid i = 0, 1, \dots, 2h - 3 \}.$$

Let α be even. Then

$$\cup_{\mu=1}^{(\alpha-2)/2} \left(D_{2\mu-1}^1 \cup D_{2\mu}^2 \right) = \left\{ 1, 2, \dots, (\alpha-2)(2h-1)/2 \right\},\,$$

$$\bigcup_{\mu=1}^{(\alpha-2)/2} \left(D_{2\mu}^1 \cup D_{2\mu-1}^2 \right) = \left\{ (\alpha+2)(2h-1)/2 + i \mid i = 0, 1, \dots, 2h-2 \right\},$$

$$D_0^1 \cup D_{\alpha-1}^2 = \left\{ [\alpha(2h-1)+2]/2 + i \mid i = 0, 1, \dots, 2h-3 \right\},$$

and

$$D_0^2 \cup D_{\alpha-1}^1 = \{ [2h(\alpha-2) - \alpha + 4]/2 + i \mid i = 0, 1, \dots, 2h-2 \}.$$

Therefore for any $\alpha \geq 2$ it is

$$\bigcup_{\sigma=0}^{\alpha-1} \left(D_{\sigma}^{1} \cup D_{\sigma}^{2} \right) = \{1, 2, \dots, \alpha(2h-1) - 1\}$$

and the proof is completed.

Theorem 8 For every $v \equiv 0 \pmod{3}$, $v \geq 6$, there is a nested path design P(v, 4, 1) except possibly if v = 39.

Proof: If $v \equiv 0 \pmod{6}$ the result follows from Theorem 7. Let $v \equiv 3 \pmod{6}$, $v \ge 9$.

Case v = 9. Let $V(K_9) = Z_3 \times Z_3$. The base blocks, $\pmod{(3, -)}$, are:

$$<(1,0),(0,0),(2,1),\widehat{(1,2)};(0,2)>,<(0,1),(1,1),(1,0),\widehat{(0,2)};(0,0)>,$$

$$<(1,1),(0,0),(0,2),\widehat{(2,2)};(1,2)>,<(2,0),(0,2),(0,1),\widehat{(1,2)};(1,1)>.$$

Case v=15. Let $V(K_{15})=Z_7\times Z_2\cup\{\infty\}$. The base blocks, (mod (7,-)), are:

$$<(1,1),(0,1),(1,0),\widehat{(0,0)};(4,0)>,<(2,1),(0,1),(0,0),\widehat{(5,0)};(2,0)>,$$

$$<(3,1),(0,1),(3,0),\widehat{(0,0)};(2,1)>,<\infty,(2,0),(0,1),\widehat{(6,0)};(3,1)>,$$

$$<\infty,(3,1),(0,0),(2,1);(1,0)>.$$

Case v = 21. We give a decomposition $2K_{7,7,7} \to \widehat{G}_5$. Let $V(K_{7,7,7}) = \bigcup_{i=0}^2 Z_7 \times \{i\}$. The base blocks $\pmod{(7,-)}$ are:

$$<(3,0),(3,1),(6,0),(6,2);(0,2)>,<(0,1),(0,2),(6,1),(3,0);(5,0)>,$$

$$<(0,2),(6,0),(1,2),\widehat{(6,1)};(5,1)>,<(0,1),(3,2),(6,1),\widehat{(0,0)};(3,0)>,$$

$$<(4,2),(0,0),(5,2),(6,0);(5,1)>,<(5,2),(0,1),(6,2),(3,0);(0,0)>,$$

$$<(6,1),(1,0),(3,1),\widehat{(2,0)};(4,0)>.$$

Since there exists a nested P(7,4,1) (see Theorem 5), then there is a nested P(21,4,1).

Case v = 33. A decomposition of $2K_{2,2,2,2} \to \widehat{G}_5$ is given in the proof of Case v = 40 of Theorem 6. By Lemma 4 (with w = 1) and the existence of a $GD(4, \{4\}; 16)$, it follows the existence of a nested P(33, 4, 1).

Now, proceeding as in Theorem 6, the proof follows from Lemma 4 (with w=0) and the existence of the following GDDs ([2]): $GD(3, \{3,5\}; 23)$, $GD(3, \{3\}; 3+6\alpha)$ for any $\alpha \geq 1$, $GD(3, \{3,7\}; 7+6\alpha)$ for any $\alpha \geq 2$ and $GD(3, \{3,7\}; 7+6\alpha)$ for any $\alpha \geq 2$.

References

- [1] J.C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, *Ars Combinatoria* 10 (1980), 211–254.
- [2] C.J. Colbourn, D.G. Hoffman and R. Rees, A new class of group divisible designs with block size three, J. Combin. Theory Ser. A 59 (1992), 73-89.
- [3] M. Hall Jr, Combinatorial Theory, Cambridge University Press, Cambridge (1986).
- [4] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners, and balanced P-designs, Discrete Math. 2 (1972), 229-252.
- [5] S.H.Y. Hung and N.S. Mendelsohn, Handcuffed designs, Discrete Math. 18 (1974), 23–33.
- [6] J.F. Lawless, On the Construction of Handcuffed Designs, J. Combin. Theory Ser. A 16 (1974), 76-86.
- [7] C.C. Lindner and C.A. Rodger, Decomposition into cycles II: Cycle systems, Contemporary Design Theory: A collection of surveys (eds J.H. Dinitz and D.R.Stinson), John Wiley and Son, New York (1992), 325-369.
- [8] M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser. A, 34 (1983), 60-70.
- [9] L. Zhu, Some recent developments on BIBDs and related designs, Discrete Math. 123 (1993), 189-214.