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ABSTRACT. Let h > 1. For each admissible v, we exhibit a
nested balanced path design H (v, 2h+1,1). For each admissible
odd v, we exhibit a nested balanced path design H (v, 2h,1). For
every v =4 (mod 6), v > 10, we exhibit a nested balanced path
design H(v,4,1) except possibly if v € {16, 52, 70}.

For each v = 0 (mod 4h), v > 4h, we exhibit a nested path
design P(v,2h+1,1). For each v =0 (mod 4h—2),v > 4h -2,
we exhibit a nested path design P(v,2h,1). For every v = 3

(mod 6), v > 9, we exhibit a nested path design P(v,4,1)
except possibly if v = 39.

1 Introduction

Let H = (V(H),E(H)) be a graph. Denote by AH the graph H in
which every edge has multiplicity A. The multigraph AH is said to be G-
decomposable if it is a union of edge disjoint subgraphs of K, each of them
isomorphic to a fixed graph G. This situation is denoted by AH — G; AH
is also said to admit a G-decomposition. A G-design is a G-decomposition
of AK,. A G-design is denoted by a pair (V,B), where V is the vertex set
of K, and B is the edge-disjoint decomposition of AK, into copies of G.
Usually B is called the block-set of the G-design and any B € B is said to be
a block. A G-design (W, A) is called to be a subdesign of (V,B) if W C V
and A C B.

A path design P(v,k,1) of order v and block size k, is a Pi-design of
K., where Py is the simple path with k¥ — 1 edges (k vertices), P, =
(a1, @2, ... ,ak] = {{a1, a2}, {az,a3},... ,{ak-1,ax}}.
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M. Tarsi (8] proved that the necessary conditions for the existence of a
P(v,k,1), v > k (if v > 1) and v(v — 1) = 0 (mod 2(k — 1)), are also
sufficient.

We denote by S(v, m+ 1,1) a decomposition of K, into m-stars S,, =
[a;a1,a2,...,am] = {{a,a1},{a,a2},...,{a,an}}. The vertex a of degree
m in Sy, is called the centre of the star and the vertices a; of degree 1
are called the terminal vertices of the star. It is well-known [8] that the
necessary conditions for the existence of a S(v,m+1,1), v > 2m (ifv > 1)
and v(v — 1) =0 (mod 2m), are also sufficient.

A balanced G-design is a G-design such that each vertex belongs to ex-
actly r copies of G. Obviously not every G-design is balanced. A (balanced)
G-design of AK,, is also called a (balanced) G-design of order v, block size
|V(G)| and indez A.

We denote by H(v,k,1) a balanced path design P(v,k,1). Clearly a
H(v,2,1) (V,B) exists for every v > 2. S.H.Y. Hung and N.S. Mendelsohn
[5] proved that a H(v,2h + 1,1), (h > 1), exists if and only if v = 1

(mod 4h), and a H(v,2h,1), (h > 2), exists if and only if v =1 (mod 2h—
1).

An m-cycle system of order v (mCS) is a Cy,-design of K,,, where Cp, is
an m-cycle (cycle of length m), (a1, as,... ,am) = {{a1, 02, },{a2,a3},...,
{am-1,am}, {a1,am}}. The obvious necessary conditions for the existence
of an mCS of order v are: v > m (ifv > 1), visodd and v(v — 1) = 0

(mod 2m). The sufficiency of these conditions has been proved in several
classes, namely when 2m divides either » or v—1, and for all v when m < 50,
but not in general, though no counter example has been found so far. For
the history of the problem and detailed references, see [7].

A nesting of an m-cycle system (V,C) of order v is a function f:C - V
such that {{z, f(C)}|z € V(C),C € C} is a partition of the edges of K,.
Notice that any nesting of (V, C) maps each cycle C € C to any m-star: The
graph S(C) with vertex set V(C)U{f(C)} and edge set {{z, f(C)}|x € C}
is an m-star centered on f(C). Therefore, any nesting of an mCS of order
v produces an edge-disjoint decomposition of K, into m-stars. Also, notice
that the graph C U S(C) is obviously a wheel W,,,. It is clear then that a
nesting of an mC'S of order v is equivalent to an edge-disjoint decomposition
of 2K, into wheels W,, having the additional property that for each pair
of vertices a; and as, one of the edges joining a; to az is on the rim of a
wheel and the other is the spoke of a wheel.

Example 1. (Zy, {C* = (3,1 41,7+ 1,2+ i)|i € Zg}) is a 4-cycle system
of order 9 that has a nesting defined by f(C*) = 3 + 4, reducing all sums
modulo 9.

The spectrum problem for mC'S of order v that have a nesting was stud-

ied in many papers, see [7] for more details and references.
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Theorem 1 For all m > 3, there exists a nested mCS of order v for all
v=2mz+1 except possibly if = € {2, 3,4, 6,22,23,24,26,27,28, 30,34, 38}
when m is not a power of 2, and except possibly if = € {2,3,4,7,8,12,14, 18,
19,23,24, 33,34} when m is a power of 2.

The list of possible exceptions can be reduced when m is odd (see [7]).

It is natural to define a nesting of a G-design of K, in a similar way as
a nesting of an mCS of order v:

A nesting of a G-design of K, (V, B) is a pair {(V, S), F} where (V,8) is
a S(v,m+1,1)and F: B — Sis a 1 — 1 mapping such that:
(n,) for every B € B the centre of the m-star S,, = F(B) is not in V(B)
and any terminal vertex of S, is in V(B);
(n2) For every pair By, B € B the graphs By U F(B;) and By U F(B3) are
isomorphic.

It is |B| = |S] and |V(Sm)| < |[V(G)| + 1. Then, for v > 1, a necessary
condition for the existence of a nested G-design of K, is

IE(G)|=m < |V(G)| 1)

In this paper we study the case where G is a path Py and eitherv=0or 1

(mod 2(k—1))ifkisoddorv =0 or 1 (mod k—1) if k is even. Let (V, P)
be a nested P(v, k,1). The necessary condition (1) implies m = k£ — 1, then
every path P € P contains exactly one vertex, say x, missing on the vertex
set of F(P). So, to satisfy the (n) it is necessary to decide the position of
z into the path P.
Example 2. (Zy, {P* = [i, 144,841,241, 7+i]|i € Zg}) is a P(9,5,1) that
has a nesting defined by the S(9,5,1) (Zo, {S* = [6+%; ¢, 8+1, 2414, 7T+i]|i €
Zy}), reducing all sums modulo 9, and by the 1 — 1 mapping F defined by
St = F(PY).
Example 3. (Zy, {[i, 141, 7+4], [4, 2+, 7+i]|i € Zg}) is a P(9, 3, 1) that has
a nesting defined by the S(9, 3, 1) (Zo, {[3-+¢; 14, 141), [3+4%; 7+3, 2+1]|i € Zo})
and by the 1 — 1 mapping F defined by F([¢,1+ 4,7+ 1)) = [3+4;4,1 + 4]
and F([i,2+1,7 +1]) = [3 + ;7 + 1, 2 + 4], reducing all sums modulo 9.

Theorem 2 The existence of a nested 2m-cycle system of order v implies
the eristence of a nested path design P(v,m+1,1).

Proof: Let (V,C) be a 2m-cycle system of order v that has a nesting defined
by f(C*) =¥ for i =1,2,...,9(v — 1)/4m. For every i split the 2m-cycle
C* = (aj,a}, ... ,d},,) into the two following paths: P* = [a},d}, ... ,ai, 4]
and P = [af 11, 6b010,. -+ 1 Gy, 0], Define St = F(P') = [b;ai,0},... ,al)]
and S = F(P') = [b%;ain 1, @lnss - - - » Gom)- It is easy to see that (V,P) =
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{P",-PJih' =1,2,...,9(v — 1)/4m}) is a P(v,m + 1,1) that has a nesting
defined by (V,8) = {8}, 5 i=1,2,... ,u(v — 1)/4m}) and F. O

Applying Theorem 2 to the nested 4CS of Example 1, we obtain the
nested P(9,3, 1) of Example 3.

Corollary 1 For all 2m > 4, there exists a nested P(v,m + 1,1) for all
v =4mz + 1 except possibly if = is defined as in Theorem 1.

Let H be a subgraph of K, and let Gr =< ay,a,...,05-1,85,6> =
({a,a1,az,... ,ak}, [a1,02,... ,ax]U[a; a1, a2, ... ,ak—1]). From now on we
shell suppose that any edge disjoint decomposition 2H — é:, (V, B) satis-
fies the following properties:

(p1) (V(H), {Px(B)|B € B}) (where Pi(B) is the subgraph of B isomor-
phic to the path [a1, az. ..., ax]) is a decomposition H — [a1, a2, ... ,ax];

(p2) (V(H), {Sk-1(B)|B € B}) (where Six_1(B) is the subgraph of B
isomorphic to the (k —1)-star [a; a1, az, ... ,ak—1]) is a decomposition H —
[a; G1,Q2;y..., ak——l]-

When H = K, we say that a 2K, — Grisa é\k-desz'gn N(v,k+1,2).

Let (V, P) be a nested P(v,m+1,1) constructed as in Theorem 2 starting
from a nested 2m-cycle system. Let P € P, then it is easy to see that the
vertex of P that is not a vertex of S = F(P) has degree one in P. In
this paper we ask that any nested path design satisfies this property. ILe.
we look for a nesting of a (balanced) path design P(v,k,1), (V,P), that
is equivalent to a N(v,k + 1,2), (V,B), such that P = {Px(B)|B € B},
S = {Sk-1(B)|B € B} and F : P — S is defined by F(Px(B)) = Sk-1(B)
for every B € B.

In this paper we exhibit a é;-decomposition N(v,k +1,2) for the fol-
lowing values of v and k: each v =0 or 1 (mod 4k), v > 4h if k = 2h +1;
each odd v =1 (mod 2h — 1), v > 2h if k = 2h; each v = 0 (mod 4h — 2),
v > 4h — 2 if k = 2h; each v = 3 or 4 (mod 6), v > 9, except possibly if
v € {16,39,52,70} if k = 4. Moreover if either v = 1 (mod 4h) orv =1

(mod 2h — 1) or v =4 (mod 6), the nested path design is balanced.

Generally, two well-known methods are used in construction: the differ-
ence method (see f.e. [3]) and the composition method (see fe. {9] and
[1))-

Usually, using the difference method, we will give only the base blocks of
the decomposition since the rest of the blocks can be obtained by applying
an automorphism of the group Z, on the vertices of the base blocks, as
illustrated in the following example.

Example 4. (4.1) The base blocks of the N(9,4,2) given in Example 3
are < 0,1,7;3>and < 7, 2,0;3> (mod 9).
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(4.2) Let V(K10) = Zs x Z,. For a 2Kyo — Gs take the base blocks
(mod (5, -)):

<(2,1),4,1),(4,0),{1,0);(1,1) >, < (2,1),(1,1),(2,0), (1,0 (3,0) >,

< (3,1),(0,0),(2,1),(1,0);(2,0) > (mod (5, —)). Hence the blocks of the

decomposition are o

<(2+141),4+11),44+14,0),(14+%0);(1+41) >,

< (2+4,1), (1+4,1), (2 +1,0), (1+40); (3 +1,0) >,

< (3+14,1),(,0),(2+14,1), (1+1,0); (2+4,0) >, for i € Zs.

(4.3) For a N(16,6,2) we have V(K1) = Z15 U {oo} and the base blocks

are:

< 0,0,14,1,13;4 > and < 10,1,11,0,7;2 > (mod 15). Hence the blocks

of the decomposition are

< 00,5, 14414,144, 18+ 5;4 43 > and < 1044,1 44,11 44,4, 7 + 5241 >,

for i € Zys.

(4.4) For a 2K, — Gs put:

V(Ky) = Z, and base blocks < 0,p;v —p > (modv),p=1,2,...,(v—
1)/2, if v > 3 is odd;

V(Ky) = Zy—1 U {oo} and base blocks < 0,01 >, < 0,pv—1-p>

(modwv—1),p=1,2,...,(v—2)/2, if v >4 is even.

Let Y be a finite set of points, C a family of distinct subsets of Y called
groups which partition Y, and A a collection of subsets of Y called blocks.
Let » be a positive integer and K and M sets of positive integers. The
triple (Y,C, A) is called a group divisible design (GDD) GD[K, M;v] if:

(e1) [Y]=1;

(c2) {IClIC eC}C M;

(cs) {IBIIB € A} C K;

(ca) |ICN B| <1 for every C € C and every B € A;

(cs) every pairset {z,y} C Y such that z and y belong to distinct groups
is contained in exactly one block of A.

If C contains ¢; groups of size m;, fori =1,2,... , s, we call mi’ mf.f. ..mls
the group type of the GDD. When K = {k} we will write GD[k, M;v]
instead of GD[{k}, M;v].

Let 2Ky, n,,.. n, be the complete multipartite multigraph on vertices
UL, X;: where | X;| = n; with two edges joining each pair of vertices from
different sets X;, Xj;, ¢ # j. The composition method is based on the
following four lemmas.

Lemma 1 If 2K,, — G for i = 1,2,...,h and 2Ky, n,... nn — G,
then 2K, — G, where n=mn,+na2+ ...+ ny.
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Lemma 2 If 2K,, — G for i = 1,2,... ,h and 2Kn, ny.... nn — Gk,
then 2K, — Gy where n=14+n1+ns+ ...+ np.

Lemma 3 ([1]) If 2Knnnn — Gr then 2Kpn pnpnpn — Gy for every
posilive integer p # 2, 6.

Lemma 4 Suppose there exists a GD[t, M;v], a 2Kp, n,,... .n. — Gx (with
n=npg=...=my=n)and forany me M a C’v':-desz'gn N(mn+w,k+
1,2) conlaining a subdesign N(w,k+1,2) (or w=0,1). Then there exists
a ac-design N(w+w,k+1,2).

Example 5. Let X; = Z3 x {i} i € Z3 and V(K333) = U%X;. For a
2K333 — G5 take the base blocks:

<(2,1),(1,0),(0,1),(0,0);(0,2) >, < (1,0), (2,2), (0,0),(0,2); (0,1) >,

< (0’ 2)’ (1’ 1)1 (l, 2)’ (Ol 1); (0’ 0) > (mOd (3’ _))’

Put w =1 in Lemma 4. Since there exists a GD[3, {3};9] (or a Kirkman
triple system of order 9) and a N(10, 5, 2) (see Example (4.2)), then Lemma
4 implies the existence of a N (28, 5, 2).

At last we give the following notation that we will use in the next two
sections. Let z € Z,. Define

z if0<z < x(v)
|lz| = :
v—z ifx(v)+1<z<v-1

where
v—1)/2 ifvisodd
x(v) = w-1)/2 ifvi
v/2 if v is even

2 Nesting of path designs of order v and block size odd

In this section we construct a nested path design P(v,2k+1,1), h > 1, for
any v = 0 or 1 (mod 4h). Moreover for v = 1 (mod 4k), the nested path
design is balanced.

Theorem 3 Let h > 1. For every v=1 (mod 4h), v > 4h + 1, there is a
nested balanced path design H(v,2h +1,1).

Proof: Let v=1+44ah,a>1. Forp=1,2,... ,a¢and j=0,1,... ,h—1,
put
af =14+35+2h(p—1), bj=4ah—j,and ¢, = (@a+p—1)h +1.

Let V(K,) = Z,. For a 2K,, — Gapy1, N(v,2h + 2,2), take the base
blocks g
< 0,a8,bo,af,b1,...,ah_,,bn-1;¢c, > (mod v).
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Let P be the path set constructed by the base paths
[0,a8,b0,0%,b1,... a5 _1,bh—1] (mod v).

It is well-known [6] that (Z,, P) is a balanced path design H(v,2h +1,1).
Reducing all the sums (mod v), it is easy to see that

leo =0l =h(a+p—-1)+1,

lcp —af| =h(a+1-p)—jfor j=0,1,. h—l,and,i[h22,

|c,,—b,|—(p+a Dh+35+2 l'orJ—Ol h =2 ‘

Let
Di={lc,| | p=1,2,...,a},
D2={ICP— pl I p=12,...,0,3=12, 1h—1}:
D3—{|cp"b.1| I P=1 2"' )y @, .7=1’27 1h_2a h>2}
ItisD;UD3 =

= {(a+p-1)h+1,(a+p—1)h+2,... ,(a+p—1)h+h | p=1,2,...,a} =
= {ha+1,ha+2,...,2ha},
Dy={(a-plh+1,(a—ph+2,... ,(a=ph+h | p=1,2,...,a} =
={1,2,... ,ha}.

Since U3, D; = {1,2,... ,2ha}, then

[cp; 0,08, b0,a8,b1,. .. ,ah_5,bn—2,af_;] (modv)

are the base blocks of the S(v,2h + 1,1). ]

Theorem 4 Let h > 1. For each v = 0 (mod 4h), v > 4h, there is a
nested path design P(v,2h +1,1).

Proof: Let v = 4ha, a > 1. Put:

l=2h—1;

—4ha —j—2,forj=0,1,... ,h-1;

a." (4a —-2p)h —3 —1, forp—l2 ..,a—1landj=0,1,...,h-1;
=(a—-p)h,for p=0,1,...,a-1.

Let V(Ky) = Zy—1 U {oo}. For a 2K, — Gzh.,.l, take the base blocks
(mod 4ha — 1):

hb.

< 00,0,a3,1,a3,... vh—1,6)_1ic0 >,
and, if a > 2, the followings ones
<0,af,1,af,... ,h—l,aﬁ_l,ﬁ;cp >, forp=1,2,...,a—2,
<aﬁ'},h—1,ag:21,h—2,... ,a$ -4, ao‘l 0,a%7 Licac1 >
It is easy to verify that the base paths (mod 4ha —1):

[oo, O,ag, l,a,?, veeh— 1,a?,_1],
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[0,a8,1,a5,... ,h—1,af_,,h],
[0 h—1,a873,h—2,...,a771,1,0571,0,027),
give a P(4ha,2h +1,1).

Reducing all the sums (mod 4ha — 1), it is:
Dy={lc,—jl=(e=p)h—3 | p=0,1,...,a=-1,5=0,1,... ,h—1} =
={1,2,... ,ha}; Do={co—ad|=ha+j+1 | 5=0,1,... ,h—2}=
={ha+1,ha+2,... ,h(a+1) -1}, and,ifa>2
Ds={lc,—a?| =h(a+p)+j | p=1,2,...,@=1, §=0,1,... ,h—1} =
—{h(a+1),Ma+1)+1,...,2ha —1}.

Since U3_,D; = {1,2,...,2ha — 1}, then

[c0;00,0,03,1,a2,... ,h —2,a)_o,h —1],
[cs;0,a8,1,08,... ,h—1,af_], p=1,2,... ,0 =2,
[coa—1jad= A —1,0273, h —2,... ,af"},1,a§71,0)],

are, (mod 4ha — 1), the base blocks of the S(4ha,2h +1,1). O

3 Nesting of path designs of order v and block size even

In this section we deal with the problem of constructing a nested path
design P(v,2h,1), h > 1, when v = 0 or 1 (mod 2h —1). For h = 1 the
problem is solved in Example (4.4). For h = 2 we solve the problem for any
v=0or1 (mod 3), v > 6, except possibly if v € {16,39,52,70}. When
h > 2, we construct a nested balanced path design of order v for each odd
v =1 (mod 2h — 1), v > 4h + 1, and for each even v = 0 (mod 2k — 1),
v>4h - 2.

Theorem 5 Let h > 2. For every odd v =1 (mod 2h - 1), v 2 4h -1,
there 13 a nested balanced path design H(v,2h,1).

Proof: Let v = 1+ 2a(2h —1), « 2 1. For p = 0,1,...,a —1 and
j=0,l,...,h-lputa§=(2a—p)(2h—1)—j,andc,,:(a—p)h.

Let V(K,) = Z,. For a 2K, — Gan, N(v,2h+1,2), take the base blocks
<0,af,1,af,... ,h— 1,«1/£:;cp > (mod v).
Let P be the path set constructed by the base paths
[0,08,1,a5,... ,h—1,a}_;] (modv).

It is well-known [6] that (Z,,P) is a H(v,2h,1).
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Reducing all the sums (mod v), it is easy to see that
{lec=dl=fa=p)h-34] | p=0,1,...,a-1, 5=0,1,... ,h=1}U
{lco—af| = lah+j+p(h-1)+1| | p=0,1,...,a-1, §=0,1,... ,h-2} =
{1,2,...,a(2h - 1)}. Then

[¢p;0,a8,1,0%,... \h—2,af_o,h—1] (mod v)
are the base blocks of the S(v,2h,1). O

Theorem 6 For every v =1 (mod 3), v > 7, there is a nested balanced
path design H(v,4,1) except possibly if v € {16,52,70}.

Proof: If » = 1 (mod 6) the result follows from Theorem 5. Let v = 4
(mod 6), v > 10. The case v = 10 is proved in Example 4.2.

Case v = 22. Let V(K22) = Z1; x Z2. The base blocks, (mod (22, -)),

are:

<(6,1),(1,1),(1,0),(2,0);(7,1) >, < (3,1),(2,1), (1,0),(3,0);(6,1) >,
< (7,1),(3,1),(1,0),(5,0); (4,0) >, < (7,1),(4,1),(1,0),{4,0); (6,0) >,
< (7,1),(5,1),(1,0), 8,0); (5,0) >, < (8,0),(7,1),(1,0),(6,1); (5,1) >,
< (0,0),(9,1),(1,0), (&, 1); (2,0) >.

Case v = 34. Let V(K34) = Z17 X Z3. The base blocks, (mod (34, -)),
are:
< (3,1),(1,1),(0,0), {1,0); 5,0) >, < (10,1), (2, 1), (0,0), (2,1); &,0) >,
< (7,1),(3,1),(0,0), 3, 1); (6,0) >, < (13,1),(6,1),(0,0), (6,0); (7,0) >,
< (8,1),(7,1),(0,0),(8,0); 0, 1) >, < (5,1, (0,1),(0,0), (4,0 (3,1) >,
< (16,1),(10,1),(0,0), (5,0); (4,1) >, < (8,1),(5,1),(0,0), (7, 0); (,1) >,
< (8,1),(0,0),(11,1), (14,0); (3,0) >, < (9,1), (0,0), (12,1), (14, 0); (2, 0) >,
< (14,0), (13, 1), (0,0), (3, 1; (1, 0) >.

Case v = 40. We give a decomposition 2K53 22 — 5\5 Let V(K2,2,2,2) =
U3 02> x {i}. The base blocks (mod (2, -)) are:
< (0,3),(0,2),(0,1), (1,0); (0,0) >, < (0,1), (0,3), (6,0), (0,2); (1,2) >,
< (0,0),(0,1),(1,2),(0,3);(1,3) >, < (1,2), 0,0),(1,3), (0, I); (1, 1) >.
By Lemma 3 (with p = 5) and the existence of a N(10,5,2), it follows the
existence of a N(40,5,2).

Now we proceed as in Example 5. For o > 1, the existence of a GD(3, {3};
3 + 6c) (or Kirkman triple system) is well-known. The existence of a
GD(3,{3,7}; 7+60) of type 327! for any a > 2 and of a GD(3, {3,11}; 11+
6a) of type 32¢11! for any « > 3 is proved by Colbourn, Hoffman and Rees
[2]. Then Lemma 4 (where we put w = 1), implies the existence of a
N(10+ 182,5,2) a > 1, a N(22+ 18, 5,2) a > 2 and a N(34 + 18, 5,2)
a > 3. At last note that all nested path designs constructed in this theorem
are balanced. a
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Theorem 7 Let h > 2. For each v =0 (mod 4h — 2), v > 4h — 2, there
is a nested path design P(v,2h,1).

Proof: Let v = a(4h —2), @ > 1. Define o = 2a(2h — 1) — j — 2, for
3=01,...,h—2,and, ifa 22, af = (da—2p)h—2a+p—j—1, for
§=01,...,h—=1, p=1,2,...,a~1.
Ifa=1,let g =3(h—1).
Ifa>2let
Ca—1=h,
Cp-1=0a5—cp+h,for p=2,3,... ,a-2,a-1,and
co=a}—c1+h-1.

Let V(K,) = Zy—1 U {oo}. Let B be the block set constructed from the
following base blocks (mod a(4h —2) — 1):

< 0,0,a3,1,a3,... ,h—2,a2_2,h—1;co >,
and, if o > 2,
<0,a8,1,af,... ,h=1,ab_,;¢c,>,forp=1,2,... ,a—-1.

To prove that (V(K,),B) is a N(a(4h — 2),2h + 1,2) suppose at first
« = 1. In this case it is easy to see that
{lo=34l | 5=0,1,... ,h=2}U{leo—ad| | 5=0,1,... ,h-2}=
={1,2,...,2h — 2}, and
{Ia'q—jlz |a2_j—1| I j=0:1’-~-ah_2}=
={1,2,...,2h—2}.
Hence V(K4h_2,3) isa N(4h —2,2h+1, 2).

Now suppose a > 2. It is
Ao={lad =3}, 13 -5 -1| | =0,1,..., A -2} =
{1,2,...,2h -2},
A,,={|a§—j| | j=0,1,...,h—1}U{|a§’—j—ll | 5=0,1,... ,h—2}=
={(2h-1)p+i | i=0,1,...,2h—2}.
Since

(UZiA) U Ao ={1,2,...,(2h = Da — 1},

then
[0,0,a3,1,02,... ,R =2, ad_,,h—1],

and, for p=1,2,... ,a—1,
[0,a8,1,af,... ,h—1,a}_,]

are (mod a(4h — 2) — 1) the base blocks of a P(a(4h — 2),2h,1). To
prove that this path design is nested by (V(K,), B) we value the following
difference sets:
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D&={|Co—j| |j=0’1"" ’h-z}’ D2={|Co_a2| I j=071:'--)h—2}7
D} ={lca~e =3l | 5=0,1,...,h =1}, and D} = {lca—¢ —a§~*| | j=
0,1,...,h-2},fort=1,2,...,a-1.

At first we prove that

)

_J@r-1)t+ 1]/2 _if t is odd
ot = [(2h —1)(2a +t) —2]/2 iftis even

Suppose ¢ odd. The (2) is true for ¢ = 1. Suppose that (2) is true for
t=2p—1. Then, fort =2 +1, it is .
Ca—t42 = Ca—2u—1 = 08_2" — Ca—2u + h= 03_2“ - ag_z"“ + ca—2ut+1 =
= (2u+1)h — p = [(t + 2)(2h — 1) + 1)/2. Hence (2) holds for each odd
t<a-1.

Let £ be even. The (2) is true for ¢ = 2. Suppose that (2) is true for ¢ = 2u.

Then, for t =2p 42, it is
Ca—t42 = Ca—2u—2 = ag—z,‘—l = Ca—2u-1 +h= ay

=ag # —af ™ + (Zh—1)(atp+1)~1=
= [(2h—1)(2a:+1+2) —2]/2. So (2) is completely proved for each ¢t < a—1.

By a simple calculation we obtain that:
Dy ={2(u—Dh-p+2+j] | §=0,1,... ,h -1},

D%,_,_1={[h(2a—2p.+l)+1z—a+j| | 7=0,1,...,h-2},
Dj, ={lh-1)(@—pw)+i4| | §=0,1,...,R -1},

D3, ={lGh—1p-j| | §=0,1,... ,h -2},
Di={l[(h-1)a+25+2)/2| | §=0,1,... ,h —2}if ais even,
Di={l[(2h-1)a—2j-1])/2| | §=0,1,...,h —2} if a is 0dd,
D ={|[(2h—1)a—25)/2| | §=0,1,... ,h—2}if @ is even, and
D= {|[(2h-1)a+25+1]/2| | §=0,1,... ,h —2}if a is odd.
It follows that:

D}, yUD}, ={2(p—-1h—p+2+i| | i=0,1,...,2h -2},
D3, uD}, ;={|(2k—1)(a—p)+1i| | i=0,1,...,2h—2}.

a—2u—1 a—2,
o0~ L) # +Ca—2u =

Suppose that « is odd. Then

vV (D), uDE) ={1,2,...,(a - 1)(2h — 1)/2},

eV (Dy,uDs, ) =
={(a+1)(2h-1)/2,(a+1)(2h —1)/2+1,...,(a = 1)(2h — 1) + 2h — 2},
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and
DyUD? = {[(2h —1)—2h+3+2i)/2, | i=0,1,...,2h—3}.
Let o be even. Then
Ul P2 (DY, yuDd) ={1,2,...,(a - 2)(2h - 1)/2},

v (DY, uDE, ) ={(@+2)(@2h-1)/2+i | i=0,1,...,2h 2},
DluD?_ | ={[e(2h—-1)+2]/2+i | i=0,1,...,2h -3},

and
DiuDl_ | ={2h(a—-2)—a+4]/2+i | i=0,1,...,2h —2}.
Therefore for any a > 2 it is
ueZd (DLuD?)={1,2,... ,a(2h — 1) — 1}
and the proof is completed. (m]

Theorem 8 For every v =0 (mod 3), v > 6, there is a nested path design
P(v,4,1) except possibly if v = 39.

Proof: If v = 0 (mod 6) the result follows from Theorem 7. Let v = 3
(mod 6), v > 9.

Case v = 9. Let V(Kg) = Z3 x Z3. The base blocks, (mod (3, -)), are:
< (1,0),(0,0),(2,1),(1,2);(0,2) >, < (0,1), (1,1), (1,0), (0,2); (0,0) >,
< (1,1),(0,0),(0,2), (2, 2); (1,2) >, < (2,0),(0,2), 0, 1), {1, 2); (1,1) >.
Case v = 15. Let V(Ki5) = Z7 x Z2 U {o0}. The base blocks,
(mod (7, -)), are:
< (11 1)’ (0, 1)’ (1’ 0)’ m; (4’0) >’ < (21 1)’ (0’ 1)7 (0’ 0)’ (gi-\o); (2, O) >’
< (3,1),(0,1),(3,0),(0,0);(2,1) >, < o0,(2,0),(0,1),(6,0);(3,1) >,
< 00,(3,1),(0,0), (2, 1); (1,0) >.
Case v = 21. We give a decomposition 2K7 77 — Gs. Let V(Kz727) =
U2_yZ7 x {i}. The base blocks (mod (7, —)) are:
< (3,0),(3,1),(6,0), (6,2);(0,2) >, < (0,1), (0,2), (6,1), (3,0); (5,0) >,
< (0,2),(6,0),(1,2), (6,5 (5,1) >, < (0,1),(3,2),(6,1), (0,0);(3,0) >,
< (4,2),(0,0,(5,2), (6,0);(5,1) >, < (5,2),(0,1),(6,2), (3,0); (0,0) >,
< (6,1), (1,0),(3,1), {2, 0); (4,0) >.
Since there exists a nested P(7,4,1) (see Theorem 5), then there is a nested
P(21,4,1).
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Case v = 33. A decomposition of 2K3 299 — C’v‘; is given in the proof of
Case v = 40 of Theorem 6. By Lemma 4 (with w = 1) and the existence of
a GD(4,{4};16), it follows the existence of a nested P(33,4,1).

Now, proceeding as in Theorem 6, the proof follows from Lemma 4 (with
w = 0) and the existence of the following GDDs ([2]): GD(3, {3,5};23),
GD(3,{3};3 + 6a) for any o > 1, GD(3,{3,7};7 + 6a) for any a > 2 and
GD(3,{3,7}; 7+ 6a) for any a > 2. O
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