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ABSTRACT. Various connections have been established between
the permanent and the determinant of the adjacency matrix
of a graph. Connections are also made between these scalars
and the number of perfect matchings in a graph. We establish
conditions for graphs to have determinant 0 or +1. Necessary
conditions and sufficient conditions are obtained for graphs to
have permanent equal to 0 or to 1.

1 Connections and Interconnections

We denote the permanent and determinant of the adjacency matrix of a

graph G by per(G) and det(G), respectively.

A cycle cover C of a graph G is a cover (spanning subgraph) of G each
component of which is isomorphic to a cycle graph Cjoforder j=1,2,....
It is convenient to treat a K; component of C as a cycle component of order 1
and we call C a trivial component. Also we regard a K, component of C as
a cycle component of order 2 and we sometimes call C; an edge component.
Cycle components C; for j > 3 are called proper cycle components. The
cycle polynomial (sometimes called the circuit polynomial, see [1]) of G is

denoted by C(G;w),

CGiw) =D [[wf
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where w= (w;,w, ...) is the cycle weight vector in which w; is the weight

associated with each cycle of length § = 1,2,3... in G. The sum is over
all cycle covers C of G and Cj is the number of cycle components of order
J in the cycle cover C.

The following result was established in [2]. It gives the basic connections
between the cycle polynomial, the permanent and the determinant of a
graph.

Lemma 1. For any graph G with adjacency matrix A(G),

1) per(G) = per(A(G)) = C(G; (0,1,2,2,2, ...))
2) det(G) = det(A(G)) = C(G; (0,-1,2,-2,2,...))
3) det(—G) = det(~A(G)) = C(G; (0, ~1, -2, -2, -2,...)) o

These scalars associated with matrices have been widely studied (see, for
example, [3]). Here we restrict our discussion to matrices that are adjacency
matrices of graphs. The permanent and determinant of graph adjacency
matrices are of importance in graph theory, in particular in the study of
graph spectra (see [4]).

A cycle cover of a graph is called non-trivial if the cover contains no trivial
component (isolated vertex). The following theorem gives a necessary and
sufficient condition for the permanent and determinant scalars to be equal
or to differ only in sign.

Theorem 1. Let G be a graph. Then

(1) per(G) = det(QG), if and only if G has no non-trivial cycle cover with
an odd number of even cycles.

(2) per(G) = —det(G), if and only if G has no non-trivial cycle cover

with an even number of even cycles.

Proof: (1) Let H; be a non-trivial cycle cover of G with a; edge compo-
nents, b; even proper cycles and ¢ odd proper cycles. Then, by Lemma 1,
the contribution of H; to per(G) is 2%+ = w(H;), while the contribution
of H; to det(G) is (—1)@i+bigbtes = (_1)8s+bigy( H;). Therefore

per(G) = ) " w(H,) and det(G) =Y _(—1)*+%w(H,).

Clearly per(G) = det(G) if and only if, for each i, a; + b; is even. Since
a; + b; is the number of even cycles in H;, the result follows.
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(2) In this case a; 4 b; is odd for each i so that

det(G) = Z —w(H;) = - Zw(H,-) = —per(G).

(3

The converse is easily seen. That is, if

Y (—1) S w(H) =Y —w(H)

then a; + b; is odd for each <. O

A cycle cover C of a graph G is said to be odd (respectively, even) if
the number of components in C is odd (respectively, even). The following
theorem gives the connections between per(G) and det(G) based on the
parities of the cycle covers of G.

Theorem 2. Let G be a graph of order n.
1) If G has no odd non-trivial cycle cover, then per(G) = (—1)™ det(G).
2) If G has no even non-trivial cycle cover, then per(G) = (—1)"*! det(G).

Proof: (1) Since G has no odd non-trivial cycle cover, then either (i)
G has no non-trivial cycle cover, or (ii) all the non-trivial cycle covers of
G are even. In case (i), every cycle cover will contain an isolated vertex
component and hence per(G) = det(G) = 0.

In case (ii), per(G) = Y, 2%, where s; is the number of proper cycle
components in the ith non-trivial cycle cover and the summation is over
all non-trivial cycle covers of G. Thus, from Lemma 1(3), det(-G) =
2:(—2)%(-1)%, where t; is the number of edge components in the ith
non-trivial cycle cover. However, for all 4, s; 4+ {; is even since it is the
number of components in the ith non-trivial cycle cover. Thus,

det(—G) = Z 2% = per(G).

Since det(—G) = (—1)" det(G), the result follows.
Part (2) is proved similarly. 0

2 Permanents, Determinants, and Perfect Matchings

A perfect matching of a graph G is a cover of G each component of which is
an edge component. In this section we examine relations between perfect
matchings and the scalars per(G) and det(G).
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Let G be a graph with n = 2k vertices. If G has a perfect matching H,
then the contribution of H to det(G) is

w(H) = (~1)F.

Since every perfect matching in G contains the same number of edge com-
ponents (k), it follows that w(H) is the same for every perfect matching in
G. Therefore, if 7y is the number of perfect matchings in G, the contribution
of all the perfect matchings to det(G) is y(—1)%. The contribution of the
perfect matchings to per(G) is «y. Hence the following result.

Theorem 3. Let G be a graph with n = 2k vertices. If the only non-
trivial cycle covers in G are perfect matchings, then det(G) = v(—1)* and
per(G) = v, where is the number of perfect matchings in G. O

Corollary 3.1. If G is a forest with n = 2k vertices and a perfect matching,
then
det(G) = (—1)*per(G) = (-1)*.

a
Corollary 3.2. If G is a forest, then det(G) = per(G) = 0 if and only if
G has no perfect matching. m]

The following result shows the effect of the absence of perfect matchings.

Theorem 4. If a graph G has no perfect matching, then per(G) and det(G)
are both even.

Proof: If G has no perfect matching, then either (i) every cover of G is
trivial, or (ii) G has non-trivial covers. In case (i), det(G) = per(G) = 0.
In case (ii), the contribution of every non-trivial cover to per(G) is a non-
zero power of 2, and the contribution to det(G) is plus or minus & non-zero
power of 2, so that per(G) and det(G) are sums of powers of 2. Hence they
are both even. m]

Remark: If G has no perfect matching but has non-trivial covers, then
per(G) # 0. However, det(G) may be equal to zero. For example,

per(G)=2+2=4
for G:
or 6 det(C) =2+ (~1)2 =0

3 Graphs With Zero Permanent or Zero Determinant

We now investigate graphs G for which det(G) = 0 or per(G) = 0. The
following theorem characterizes graphs which have zero permanent.
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Theorem 5. Let G be a graph. Then per(G) = 0 if and only if G has no
non-trivial cycle cover.

Proof: This is an immediate consequence of Lernma 1(1). o

This theorem shows that graphs with permanent zero are easily charac-
terized. This is certainly not true for graphs with zero determinant. Such
graphs are called singular. It is not difficult to deduce the following result.

Lemma 2. If G has no non-trivial cover, then G is singular. O

Our interest in singular graphs stems from the fact that if a graph is
singular, then 0 is an eigenvalue of G.

It is not difficult to see that if a graph is a cycle C,, with n > 3 vertices,
then its only non-trivial covers are (i) two perfect matchings (if and only if
n is even), and (ii) C, itself. The contribution of each perfect matching to
det(Cy) is (—1)™/2, while the contribution of the cover consisting of C,, is
2(—1)"*1. Therefore,

2(-1)*2 -2 if niseven

det(C,) = 2(-1)"2 + 2(-1)**! = )
et(Cn) = 2(-1)""+2(-1) {2 if n is odd

Hence we obtain the following result.
Lemma 3. C,, is singular iff n=0 (mod 4). &}

The following theorem gives a sufficient condition for a graph to be sin-
gular.

Theorem 6. If a graph G contains a singular subgraph S, with no isolated
vertex, such that every non-trivial cover of G contains a cover of S, then
G is singular.

Proof: Every cover H of G can be partitioned into a cover U of G\ S and
a cover V of S. Furthermore, the union of any cover U of G\ S with any
cover V of S is a cover of G. The contribution of a cover H =U UV to
det(G) is w(H) = w(U)w(V). Thus,
det(G) =>_w(H) =Y _w(l)w(V)
H H

=Y w)- ) wlV)=)Y wl)-det(S) =0
U v U

since S is singular. m]

From Lemma 1, we have that for any graph G

det(G) = Zw(H,-) = Z(—l)"’Z“,
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where H; is a non-trivial cover of G containing =; even cycles and s; is
the number of proper cycles in H;. Thus, s; > 0. Suppose that G is

singular. Then }_,(—1)™2% = 0, so that some terms are positive and some
are negative and this can be written:

2% 4292 ... 4 2%m = obt L Oba Ly Obn (1)

where a; (i =1,2,...,m) and b; ( = 1,2,...,n) are non-negative integers.

Suppose that G has perfect matchings. Then some of the a; or b; are
zero. Hence some of the 2% or some of the 2% are unity. Furthermore,
all perfect matchings must have the same number of edge components and
thus they will each contribute —1 or +1. Their contributions must appear
on one side of Equation (1). However, 2 divides one side of Equation (1).
Hence there must be an even number of terms equal to unity; that is, G
has an even number of perfect matchings.

Suppose that G has no perfect matchings but has other non-trivial covers.
Then G has a cover in which the number of proper cycles is minimal (we
call these minimal covers). Let the number of proper cycles in a minimal
cover be c. Then c is equal to some a; or b; in Equation (1). Also 2°
must divide each term in Equation (1). On dividing by 2¢, some terms will
be equal to unity. The number of these terms is equal to the number of
minimal covers.

If all of the unit terms appear on one side of the equation, then there
must be an even number of unit terms. It they appear on both sides, then
the numbers on each side must have the same parity in order for Equation
(1) to hold.

Our discussion yields the following result.
Theorem 7. If G is a singular graph, then

(1) G has an even number (greater than zero) of perfect matchings, or
(2) G has no perfect matching and

(i) The number of minimal covers is even and they each have an
even number of even cycles or they each have an odd number of
even cycles, or

(if) The number of minimal covers with an even number of even
cycles has the same parity as the number of minimal covers with
an odd number of even cycles. o
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4 Graphs with Permanent Equal to 1

We have shown (Corollary 3.1) that for any forest G with n = 2k vertices
and a perfect matching,

per(G) =1 and det(G) = (-1)*.

‘We have also shown (Corollary 3.2) that if a forest'G has no perfect match-
ing, then per(G) = det(G) = 0.

Suppose that for some graph G, per(G) = 1. Then, the sum of the
weights of the non-trivial covers in G is unity. By Lemma 1, this implies
that G contains no cycle and also that G has only one non-trivial cover
which is a perfect matching. So G must be a forest with a perfect match-
ing. We therefore have the following result which characterizes graphs with
permanent equal to unity.

Theorem 8. Let G be a graph. Then per(G) = 1 ifand only if G is a
forest with a perfect matching. ]

Obviously, the permanent of a graph cannot be negative.

5 Unit Graphs

Definition 1. Let G be a graph. Then G is called positive (respectively,
negative) unit provided det(G) = 1 (respectively, det(G) = —1). o

We note that unit graphs are precisely those graphs with the property
that the product of their eigenvalues is +1..

Theorem 9. Let G be a unit graph, then G has an odd number of perfect
matchings.

Proof: In the case that G is a positive unit graph, then Equation (1)
becomes
2% 4207 4 ... 4 20m = 2bi pobe g Ly 0k 4 g 2

However, in this case, each a; is the number of proper cycles in 2 non-
trivial cover with an even number of even cycles, and each b; is the number
of proper cycles in a non-trivial cover with an odd number of even cycles.
We consider two cases for Equation (2); (i) all the unit terms occur on
one side of the equation, (ii) the unit terms occur on both sides of the
equation.
Case (i). In this case, all the unit terms must occur on the right hand side
of the equation. Since the left hand side is divisible by 2, then there must be
an even number of unit terms on the right hand side. This implies that for
an odd number of b;, 2% = 1. But only perfect matchings can contribute
1 to det(G), thus G must have an odd number of perfect matchings.
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Since G must have at least one perfect matching, then G must have an
even number n of vertices. It also follows that each perfect matching of
G contains an odd number of even cycles. In this case this means an odd
number of edges. Thus, n/2 is odd, that is, n =2 (mod 4).

Case (ii). In this case, the number of unit terms on each side of the
equation must have the same parity.

Now, only perfect matchings can contribute +1 to det(G). Also every
perfect matching has the same number of edges, that is n/2, where = is
the order of G. It follows that all the contributions from perfect match-
ings must have the same sign. Hence each perfect matching contributes 1
or each perfect matching contributes —1. We can therefore conclude that
there must be an odd number of unit terms resulting from perfect match-
ings and that these must be on the left hand side of Equation (2). Since
these perfect matchings are covers with an even number of even cycles, this
further implies that n/2 is even, or n =0 (mod 4).

In the case that G is a negative unit graph, Equation (2) is essentially
unchanged — we just reverse the interpretations of the a; and b;, and the
proof is analagous. a

If G is a graph with 2k vertices and with exactly one non-trivial cover,
which is a perfect matching, then det(G) = (—1)*. Hence we have the
following result.

Theorem 10. Let G be a graph with exactly one non-trivial cover which
is a perfect matching. Then G is a unit graph. 0

Let

D~ (G;z) = det(zI, — A(Q)) = z": ¢z I
=0

be the characteristic polynomial of a graph G of order n. We remark that
in [5] we defined a graph to be characteristic palindromic provided that the
coefficients c; of the characteristic polynomial satisfy |c;j| = |en—;| for each
7=0,1,...,n. It follows that every palindromic graph is unit.

Note that neither the converse of Theorem 9 nor the converse of Theorem
10 is true. For example, the complete graph K4 has 3 perfect matchings,
but since det(K,) = —3, K4 is not unit.

Similarly, the theta graph,

is a unit graph, but has 3 perfect matchings and a Cg cover. Thus, © is a
counterexample to the converse of Theorem 10. We remark that © is char-
acteristic palindromic. At this time we do not know of any counterexample
to the converse of Theorem 10 that is not characteristic palindromic.
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