The codomatic number of a cubic graph
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ABSTRACT. The maximum cardinality of a partition of the ver-
tex set of a graph G into dominating sets is the domatic number
of G, denoted d(G). The codomatic number of G is the domatic
number of its complement, written d(G). We show that the
codomatic number for any cubic graph G of order n is n/2,
unless G € {K4,G1} where G, is obtained from K>3 U K3 by
adding the edges of a 1-factor between K3 and the larger partite
set of K. 2,3-

1 Imntroduction

In a graph G = (V, E) the open neighborhood of a vertex v € V is N(v) =
{x € V |vz € E}, the set of vertices adjacent to v. The closed neighborhood
is N[v] = N(v) U {v}. A set S C V is a dominating set if every vertex in
V is either in S or is adjacent to a vertex in S, that is, V = | J; ¢ g N|[s].
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The domination number v(G) is the minimum cardinality of & dominating
set. A domatic partition is a partition of V into dominating sets and the
domatic number d(G) is the largest number of sets in a domatic partition
[3]. The codomatic number of G is the domatic number of its complement,
written d(G). It follows from the definition that y(G)-d(G) < n. For every
graph G, it is evident that d(G) < §(G) + 1 as first observed by Cockayne
and Hedetniemi [3]). The domatic number of a graph has been extensively
studied, see for example [2, 3, 5, 10, 12].

Results on domination in cubic graphs have been presented in [1, 4, 7,
8, 9, 13, 14], and elsewhere. In this paper, we show that the codomatic
number for any cubic graph G of order n is either n/2 — 1 or n/2. We then
characterize those cubic graphs for which d(G) = n/2 - 1.

2 Possible values for d(G)

In this section, we prove that the only possible values for d(G), where G
is a cubic graph of order n, are n/2 — 1 or n/2. A graph G is F-free if G
contains no induced subgraph isomorphic to a graph F. We begin with the
following observation from [5].

Observation 1 If G is a cubic graph, then either G = K4 or 4(G) = 2.

Theorem 2 If G is a cubic graph of order n, then d(G) = n/2 or d(G) =
nf2-1.

Proof: Let G be a cubic graph of order n. Then n is even. If G 2 K|,
then its codomatic number is 1 = n/2 — 1, so we may assume n > 6. We
know that d(G) < n/v(G) = n/2. We need only show that d(G) > n/2—1.
Let £ be the maximum number of disjoint 2-element dominating sets of G.
By Observation 1, we know that £ > 1. Let D = {Dy,..., D;} be a set of
£ disjoint 2-element dominating sets of G. We will show that £ > n/2 — 1.
Assume, to the contrary, that £ < n/2 — 2. We now partition V into
two sets S and T, such that S = U_,D; and T =V — S. We will refer to
two vertices of S as partners if they belong to the same set D; for some 3,
1 < ¢ < £. Furthermore, for each vertex v in S, we will denote the partner
of v by 7. Since |S| = 2¢ < n —4, |T| > 4. Before proceeding further, we
prove a series of claims. Unless otherwise stated, all adjacencies refer to
adjacencies in G. Let (S) denote the subgraph induced by the set S.

Claim 1 PBuvery two vertices of T have a common neighbor in G.

Proof: If two vertices z and y of T have no common neighbor, then {z, y}
is a dominating set of G and can therefore be added to D to produce £+ 1
disjoint 2-element dominating sets of G, a contradiction. Hence every two
vertices of T have a common neighbor in G. m]
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Claim 2 For any v € S and z,y € T, {u,z} and {T,y} do not both
dominate G.

Proof: If both {u,z} and {%,y} dominate G, then (D — {v,7}) U {{z,z},
{®,y}) is a set of £+1 disjoint 2-element dominating sets of G, contradicting
our choice of £. a

Claim 3 (T) is (K4 — €)-free.

Proof: Assume, to the contrary, that T contains four vertices z,y, w, 2
tha.t induce a K4 — e. We may assume that z and w are nonadjacent. Let

= {u,@}. If neither » nor % has a neighbor in {z, w}, then both {x,y}
and {m, 2} dominate G, contradicting Claim 2. Hence we may assume that
u and x are adjacent. But then u and z have no common neighbor in G,
so {u,z} is a dominating set in G. If % and w are not adjacent, then {g, y}
is a dominating set in G. On the other hand, if 7 and w are adjacent, then
{%@,w} is a dominating set in G. In both cases we contradict Claim 2. We
deduce, therefore, that (T') is (K4 — e)-free. O

Claim 4 (T) is Ka-free.

Proof: Assume, to the contrary, that T contains three pairwise adjacent
vertices z, y and z. Let w € T — {z,y,2}. Suppose that zw is an edge.
By Claim 3, w cannot be adjacent to y or z. But then z and w have no
common neighbor in G, contradicting Claim 1. Hence each of z, y and z
must be adjacent to a vertex of S.

We show next that every vertex of S is adjacent in G to at most one of z,
y and 2. If this is not the case, then we may assume uz and uy are edges of
G, for a vertex u € S. By Claim 1, z and w have a common neighbor which
can only be u. Thus u is adjacent to only z, y and w, and hence, {u,w} is
a dominating set of G. We now consider the partner % of w. Elther z and
z are not adjacent, in which case {%, z} is a dominating set of G, or @ and
z are adjacent, in which case {%, z} is a dominating set of G. In any event,
we contradict Claim 2. Hence every vertex of S is adjacent to at most one
of z, y and 2.

By Claim 1, w has a common neighbor in S with each of z, y and 2.
Furthermore, we have shown that these common neighbors are distinct. Let
z1, 1 and 2; be the common neighbors of w with z, ¥ and z, , respectively.
Thus N(w) = {z1,y1,21}. Since each set D; € D dominates G, z; cannot
be a partner with y; or z;, and y; and z; cannot be partners.

Since G is a cubic graph, the subgraph induced by z;,y,, 2; contains at
most one edge. We may assume that z, is not adjacent to , or z;. Thus
z1 and w have no common neighbor, so {z;,w} dominates G. If Z7 is not
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adjacent to z;, then Z1 and z have no common neighbor, whence {z,z7}
dominates G. If Z7 is not adjacent to y; (2;), then Z7 and y (respectively, z)
have no common neighbor, whence {y, Z7} (respectively, {z,Z7}) dominates
G. Hence if Z7 is not adjacent to one of zy,%;, 21, then we contradict
Claim 2. Hence we may assume that Z7 is adjacent to each of z1,¥, 2;.

But then y; and w have no common neighbor, so {y;, w} dominates G, while
the partner 77 of ; and y have no common neighbor, so {y, 77} dominates
G, contradicting Claim 2. We deduce, therefore, that (T) is Ka-free. o

Claim 5 (T) is K 2-free.

Proof: Assume, to the contrary, that T contains three vertices z, y, z that
induce a K 2. We may assume that = and y are nonadjacent. By Claim 1,
z and z have a common neighbor u, say. By Claim 4, we know that
belongs to S. Thus z is adjacent to only z,y, u. Furthermore, y and z have
a common neighbor which must necessarily be u. Thus, u is adjacent only
to z,9,2. Let w € T — {z,y,2}. By Claim 1, w and z have a common
neighbor which must be either z or y. We may assume that wz is an edge.
But then w and z have no common neighbor which contradicts Claim 1.
Hence (T) is K o-free. o

Claim 6 T is independent.

Proof: Assume, to the contrary, that T contains adjacent vertices = and y.
By Claims 4 and 5, we know that (T') has maximum degree 1. By Claim 1,
z and y have a common neighbor a, say, which we know belongs to 5.
Again let w,z € T — {z,y}. Since G is cubic, we may assume that aw is
not an edge. By Claim 1, x and w have a common neighbor b, say, which
must belong to S. Thus N(z) = {a, b,y}.

We show that by cannot be an edge. Suppose to the contrary that by €
E(G). Then N(b) = {z,y,w} and N(y) = {a,b,z}. By Claim 1, z and
z have a common neighbor which can only be a. Hence N(a) = {z,, z}.
Since a and b have a common neighbor, they cannot be partners. But
now both {b,w} and {b,z} dominate G, contradicting Claim 2. Hence
by ¢ E(G).

By Claim 1, w and y have a common neighbor c, say, which we know
belongs to S and is distinct from a and b. Thus N(y) = {a,x,c}. We now
consider the vertex z.

We show that az ¢ E(G). If this is not the case, then az is an edge and
N(a) = {z,y, 2}. Thus, {a,z} dominates G. If @ is not adjacent to b, then
{@,z} dominates G, while if @ is not adjacent to ¢, then {@,y} dominates
G. Hence if @ is not adjacent to b or c, then we contradict Claim 2. Thus,
a is adjacent to both b and c¢. Hence b is adjacent only to z,w,@ and ¢
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is adjacent only to y,w,@. But now both {c,y} and {¢,z} dominate G,
contradicting Claim 2. Thus az ¢ E(G).

By Claim 1, z and z have a common neighbor which can only be b, and y
and z have a common neighbor which can only be ¢. Thus, N(b) = {z,w, z}
and N(c) = {y,w,2}. In particular, we note that {b,z} dominates G. If
a and b are not adjacent, then {5,y} dominates G, contradicting Claim 2.
Hence ab must be an edge. Thus a is adjacent to only z,y, 5. But now both
{c,y} and {z, 2} dominate G, contradicting Claim 2. Hence the vertices of
T must be pairwise nonadjacent. 0

By Claim 6, we know that T is an independent set. Let {w,z,y,2z} C T.
Claim 7 N(t) is independent for everyt € T.

Proof: For z € T, let N(z) = {a,b,c} and assume to the contrary that
ab € E(G). Now z must have a common neighbor with each ¢ € T. Since G
is cubic, c is adjacent to at most two additional vertices from T'. Hence at
least one of y, w, and z must be adjacent to a or b and at least one must be
adjacent to c. Without loss of generality, we may assume that y is adjacent
to a and z is adjacent to c. Furthermore, b is adjacent to at most one of
w and 2. Thus, either {a,w} or {a,z} dominates G. If @ and z have no
common neighbor, then {@,z} also dominates G, a contradiction. Hence
@ is adjacent to b or c. But ab ¢ E(G) since a and @ have no common
neighbors. Hence @c € E(G) and since w and = must have a common
neighbor we have wb € E(G). But now {b,z} and {b,z} dominate G,
contradicting Claim 2. Hence N(t) is independent for each ¢t € T'. o

Claim 8 At least one vertex of S is adjacent to three vertices of T.

Proof: Assume, to the contrary, that every vertex of S is adjacent to at
most two vertices of 7. By Claim 1, every two vertices of T' have a common
neighbor. Hence there must exist six distinct vertices a, b, ¢, d, e, f of S such
that a is the common neighbor of z and y, b the common neighbor of z and
w, ¢ the common neighbor of = and z, d the common neighbor of y and w,
e the common neighbor of y and z, and f the common neighbor of w and
Z.

From Claim 7, N(t) is independent for each ¢ € T. We show next that
N(T) is independent. If this is not the case, then we may assume that of is
an edge. Thus, a is adjacent to only z,y, f and f is adjacent to only w, z,a
If @ and z have no common neighbor, then both {a,y} and {g, =} domlnate
G, contradicting Claim 2. Hence @ must be adjacent to b or ¢ (implying
that @ # f). Similarly, f must be adjacent to b or ¢ (otherwise both {f, 2}
and {f, z} dominate G, a contradiction). Suppose @ is adjacent to b. Then
f must be adjacent to c. But then both {b,w} and {b,z} dominate G,
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again contradicting Claim 2. On the other hand, if @ is adjacent to ¢, then
f must be adjacent to b, and once again both {b,w} and {b,z} dominate
G, a contradiction. Hence N(T) is independent.

Since T and N(T') are both independent, {¢,s} dominates G for each
t € T and s € N(T). Thus if @ and = have no common neighbor, then
{a,x} and {a,2} dominate G. Note that this implies that @ ¢ N(T).
Similarly, =z and each of b, G, d, €, and f must share a common neighbor.
But at most three of these vertices can share a common neighbor with
z, a contradiction. We deduce, therefore, that at least one vertex of S is
adjacent to three vertices of T'. @]

By Claim 8, at least one vertex of S is adjacent to three vertices of T'.
Let a € S have all its neighbors in T, say N(a) = {z,y,w}. Using Claim 6
we see that {a,t} dominates G for all ¢t € T. Thus @ and ¢ must have a
common neighbor for all ¢ € T', for otherwise we contradict Claim 2.

By Claim 1, z has a common neighbor with each of =, ¥y and w. Let b,c,d
be a common neighbor of z with z, ¥y and w, respectively.

Claim 9 The vertices b, c,d are distinct.

Proof: Consider first the vertex b. We show that b cannot be adjacent to
y or w. If this is not the case, then we may assume that by is an edge. So
N(b) = {z,y,2}. If @ and x do not have a common neighbor, then {g, z}
and {a,y} both dominate G, contradicting Claim 2. Hence @ and = must
have a common neighbor, u say. Similarly, b and z must have a common
neighbor which must be u. Thus u is adjacent to only @,b, z. Furthermore,
@ and y must have a common neighbor, v say, which must also be adjacent
to b. Hence N(v) = {@,b,y}. But now both {u,z} and {%,y} dominate G,
contradicting Claim 2. Hence b is not adjacent to y or w. Similarly, we may
show that c cannot be adjacent to z or w and that d cannot be adjacent to
z or y. Hence b, ¢, d are distinct vertices. m]

By Claim 9, we know that b, ¢, d are all distinct vertices. Thus, N(z) =
{b,c, d}. By Claim 7, the set {b, ¢, d} is independent. Note that a & {b, ¢, d}.

We observed earlier that @ and ¢ must have a common neighbor for all
t € T. In particular, @ and z must have a common neighbor. We may
assume that @b is an edge. Thus, N(b) = {z, z,a}. We now consider the
vertex b. Since b has no common neighbor with b, b ¢ {a, ¢, d}. If b and z do
not have a common neighbor, say e, then both {b z} and {b,z} dominate
G, contradicting Claim 2. Similarly, since both {c, z} and {d, z} dominate
G, each of ¢ and d must share a common neighbor with z implying that
{ce, de} C E(G), contradicting the fact that G is cubic.

We deduce, therefore, that our initial assumption that £ < n/2 — 2 must
be false. Hence £=n/2—1 or £=n/2. If £ =n/2, then d(G) = n/2, while
if ¢=n/2 -1, then d(G) =n/2 - 1. o
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The lower bound is sharp as can be seen in Figure 1.

P

Figure 1: A graph G, satisfying d(G;) =n/2 — 1.

3 Characterization

In this section, we characterize those cubic graphs of order n with codomatic
number n/2 — 1. We show firstly that the order n of such a cubic graph
cannot be too large.

Lemma 8 If G = (V,E) is a cubic graph of order n satisfying d(G) =
nf2—1, then n <10.

Proof: Let G be a cubic graph with d(G) = n/2—1. We follow the notation
introduced in the proof of Theorem 2. By Theorem 2, we know that there
exists aset D = {D,..., D¢} of £ =n/2—1 disjoint 2-element dominating
sets of G. We can therefore partition V into the two sets S and T where
S=UL,D;and T=V — S (so |T| =2). Let T = {z,y}.

Let v € S. If v has a common neighbor with z but not y (respectively,
with y but not z), then we call v a type-I vertex (respectively, type-II
vertex). We call v a type-III vertex if v has a common neighbor with both
z and y. We now consider the set {v,7} € D. If, without loss of generality,
v has no common neighbor with z and 7 has no common neighbor with
y, then D’ = (D ~ {v,%}) U {z,v} U {y,7} is a domatic partition of G of
cardinality n/2. Hence each set {v,7} € D must be exactly one of the
following types:

Type 1. Both v and 7 are type-I vertices.
Type 2. Both v and 7 are type-1II vertices.
Type 3. At least one of v and 7 is a type-III vertex.

Let ¢4, t2, and t3 be the number of Type 1, Type 2, and Type 3 sets,
respectively, in D, so |D| = t; + t2 + t3. We show that ¢; +¢2 +t3 < 5.
Since T does not dominate G, z and y share a common neighbor in G.
Therefore, since G is a cubic graph, t1 <2, &2 <2, and t3 < 5. If t; = 2,
then £, < 2 and ¢3 < 1 implying that [D| < 5. Similarly, if ¢t = 2, the
count is the same. Hence assume ¢t; <1and ¢3 <1. If{; =1, thent; <1
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and t3 < 3 whence |D| < 5. Similarly, if ¢, = 1, then |D| < 5. Next assume
ty =t2 = 0. Then t3 < 5 and so |D| < 5. Hence, ID|=t1+t3+1t3<5
always. Thus, n = |S| + |T| = 2|D| + 2 < 12. If n = 12, then one of the
following is true: (1) t1 =22 =2,t3=1; (2) t; =t = 1, t3 = 3; or (3)
i1 =t2 =0, t3 = 5. A lengthy argument similar to the one in the proof to
Theorem 2 yields a contradiction for each case. It follows that » < 10. O

We are finally in a position to characterize those cubic graphs G of order n
for which d(G) =n/2 - 1.

Theorem 4 If G is a cubic graph of order n, then d(G) = n/2, unless
Ge {K4, Gl}

Proof: The sufficiency is straightforward to check. To prove the necessity,
let G be a cubic graph of order n satisfying d(G) = n/2 — 1. Then G has
even order and, by Lemma 3, n < 10. If n = 4, then G & K, whence
dG)=dK) =1=n/2-1. Suppose, then, that n > 6. If n = 6, then
G is a 2-regular graph, so G = Cg or G & K3 U K3. However, in both
cases d(G) = 3 = n/2, a contradiction. Hence either n = 8 or n = 10. By
inspection of the 27 (nonisomorphic) cubic graphs of order » for 8 < n < 10
(which can be found in [11]), we find that each of these graphs except for
the graph G, in Figure 1 has codomatic number equal to n/2. Hence if
n > 6, then G = G}. ]
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