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Abstract

Two vertices in a graph H are said to be pseudosimilar if H —
and H — v are isomorphic but no automorphism of H maps u into v.
Pseudosimilar edges are analogously defined. Graphs in which every
vertex is pseudosimilar to some other vertex have been known to exist
since 1981. Producing graphs in which every edge is pseudosimilar
to some other edge proved to be more difficult. We here look at
two constructions of such graphs, one from %-transitive graphs and
another from edge-transitive but not vertex-transitive graphs. Some
related questions on Cayley line-graphs are also discussed.

1 Introduction

Two vertices v and v in a graph H are said to be similar if H has an
automorphism that maps u into v; they are called removal-similarif H—u
and H — v are isomorphic, and pseudosimilar it they are removal-similar
but not similar. Analogous definitions hold for similar, removal-similar and
pseudosimilar edges. For a survey on pseudosimilarity the reader is referred
to [7]

A permutation group is said to act regularly on a finite set if its action
on the set is transitive and fixed-point free. If the automorphism group
Aut(G) of a graph G acts regularly on V(G) then we say that G is a
graphical regular representation (GRR) of Aut(G).

Let T be a group and let S C T be such that T = (S), 1 ¢ S and
S~1 = S, where S7! = {57! : s € S}. A graph G is a Cayley graph of
G with respect to S if V(G) =T and u, v are adjacent in G if and only if
v = us for some s € S. We denote this situation by writing Cay(T, S) for
G.
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It is known that G = Cay(T', S) for some I', S if and only if T is iso-
morphic to a subgroup of Aut(G) acting regularly on the vertex-set of G.
In particular, a graph G is a GRR of Aut(G) if and only if G is a Cayley
graph of its automorphism group Aut(T).

In [6], graphs H are constructed in which every vertex has a pseudosim-
ilar mate—that is, for every vertex v € V(H) there exists a v' € V(H) such
that v and v’ are pseudosimilar. The construction briefly runs as follows.
Let G be a GRR of its automorphism group Aut(G) and let the order of
Aut(G) be odd. (Such a group must be nonabelian. Moreover, such graphs
and groups do exist [4].) Let  be a vertex of G, and let H = G—r. Since G
is a GRR, H has the trivial automorphism group, therefore no two vertices
of H are similar. Also, for every vertex v of H there is an & € Aut(G) and a
vertex v’ of H such that a(v) = r and a(r) = v/, Therefore H —v ~ H —v'.
Moreover, v # v’ since otherwise () = r and this is impossible because
|Aut(G)| is odd. Hence the vertices of H are paired by pseudosimilarity,
as required. We shall call this the Kimble-Schwenk-Stockmeyer (KSS) con-
struction.

Kimble, Schwenk and Stockmeyer also asked if graphs can be found in
which all edges are paired by pseudosimilarity. This question was answered
in the affirmative in [8] where the following result was proved.

Theorem 1 There are infinitely many graphs H such that, for every
edge e of H, there is an edge € which is pseudosimilar to e.

We shall here look more closely at the smallest graph given by the above
theorem, and we shall also construct another example of a graph all of
whose edges are pseudosimilar which is not amongst those given by this
theorem. We shall also discuss relationships with Cayley line-graphs.

2 Construction from %-transitive graphs

In [8] the KSS construction was adapted as follows in order to obtain pseu-
dosimilar edges. Let G be a graph with an odd number of edges and whose
automorphism group acts regularly on its edges—then the graph H = G—e,
for any edge e, would have all of its edges paired by pseudosimilarity.

The graphs G with these properties which were used in [8] had been
constructed in [1]. A special case of this family of graphs can be described
as Cayley graphs in the following way.

Let p be a prime and p =1 (mod 3) and p =1 (mod 5). Let I" be the
group defined by

T={bcp*=c"=1, =b"tcb=c")
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where 7 is such that 7® = 1 (mod 3). Let ¢ be such that t° = 1(mod p),
and let a be the automorphism of I" defined by 4* = b and ¢* = ¢*. Let

2 3 4 5
T={c"c",c",c" ,c" =c}

and
S=bTUT W 1=bTUT W =5,US,.

If G is the Cayley graph Cay(T, S), then it is shown in [1] that the automor-
phism group of G is acts regularly on its edges (in fact, the automorphism
group is equal to the relative holomorph Hol(T',a)). Since G has order 3p
and degree 10, it has an odd number, 15p, of edges, and so we obtain a
graph with our required properties. All these graphs are %-transitive, that
is, the automorphism group is transitive on the vertices and the edges, but
not on the directed edges.

The smallest value of p for which the above construction works is p = 31,
giving a graph H with 464 edges, all of them paired by pseudosimilarity.
We shall here give a direct proof that the corresponding graph G with 465
edges has the property that its automorphism group acts regularly on its
edges—that is, the group acts transitively on the edges and the stabiliser
of any edge is trivial.

Edge transitivity is easy: The left regular translation by (bc®)~! maps
the edge {1,bc"} into the edge {1,(bc*)~'} while the automorphism a’
(which fixes the set S and is therefore also a graph automorphism) maps
the edge {1, bc} into the edge {1,bc® }. We now need to show that only the
trivial automorphism of G fixes an edge.

We note that any edge {z,zs}, s € S, is on one and only one triangle:
{z (= zs%),zs,2s%}. This is because each element of S has order 3 and
because no three elements of S are such that s;s953 = 1 unless s; = s = 3.
This means that any automorphism which fixes the edge {z,zs} (that is,
either fixes or transposes the vertices  and zs) must also fix the vertex
zs?.

From now on let p = 31. We shall take » = 25 and ¢ = 2. Then, modulo
31,72 =5, r* =1, and {¢,¢%,...,t°} = {2,4,8,16,1}. Also, S; is the set
of all elements bct' and S is the set of all elements b2c=""t .

Consider, without loss of generality, the edge {1,bc}. On how many 4-
cycles does it lie? This edge lies on a 4-cycle if there are elements s;, 53,53 €
S such that 1 = bes;s253, and such that no two (cyclically) consecutive
elements in the product are inverses. It can be checked that this can happen
only if 51,82 € S2 and s3 € S;. Therefore we have

—n2 -
1=bc- b2t . B2 L pcts

151



and, comparing powers of ¢, this gives that
r2(t; —1) =tz —t; (mod 31).
Checking all possibilities shows that there are only two solutions,
t1) =8, ta=4, t3=8
and
t) =4, ta=1, t3 =16.

These considerations enable us to draw the subgraph of G induced by
the vertex 1, its neighbours, and all the 4-cycles containing edges incident
to 1. Let this subgraph be denoted by G;. In other words, G; is made up
of all 3-cycles and 4-cycles containing the vertex 1. This graph is shown in
Figure 1, with the names of some of the vertices showing.

Figure 1: The subgraph G,

Note that, for any vertex v, the corresponding subgraph G, is obtained
from Figure 1 by pre-multiplying every label by v.

Now suppose that the edge {bc, (bc)~!} is fixed by some automorphism
o of G. Therefore the vertex 1 is fixed, and so is the subgraph G;. The
automorphism « therefore either fixes all the vertices of G; or else it induces
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an involution on V(G;) which transposes bc and (bc)~?, bet' and (bet)~?,
etc, and it fixes ¢®® and c* (cf. Figure 1). Suppose, for contradiction, that
the latter holds, that is, o does not fix all vertices of Gj.

Now, consider Figure 2, which depicts G.1 with the names of a few of
the vertices showing. Since ¢? and 1 are fixed by «, then either ¢** is fixed
or it is interchanged with c2. But, from Figure 1, ¢?7 is interchanged with
c!%, giving us the required contradiction. Therefore all the vertices of G
are fixed by . Repeating this argument starting from G, for € G| finally
gives, since G is connected, that « fixes all vertices of G.

Figure 2: The subgraph G,

3 Construction from
non-vertex-transitive graphs

One question which arises following the previous construction is whether
or not it is possible to have a graph G whose automorphism group acts
regularly on its edges but not transitively on the vertices. Such graphs
would, of course, have to be bipartite. We shall construct an example using
the same group of order 3.5.31 as in the previous section. But first we give
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some general results. The motivating idea behind these is the well-known
characterisation, due to Sabidussi [9], of vertex transitive graphs in terms
of coset graphs.

Let T be a group and H,K two subgroups of I'. Let S be a subset
of I'. Define the graph Cos(I',H, X, S) as follows: Its vertices are the left
cosets of H and of K; two cosets zH and yH are adjacent if and only if
y~lz € KSH. If, moreover, S C K'H, that is, KSH = KH, then we denote
Cos(T', H, K, S) simply by Cos(T', H, K).

If HN K = {1}, then any two cosets H, yK are either disjoint or have
exactly one element in common. In this case, £H and yX are adjacent
in Cos(I',H,K) if and only if they are not disjoint, that is, all edges of
Cos(I', H, K) are of the form {tH,tK}, where ¢ is the element common to
both cosets. Another useful way to look at adjacencies in Cos(T',H, K)
when HNK is trivial is as follows: The coset M is adjacent to all the cosets
zhK, for all h € H (all these cosets are distinct); similarly, the coset yK
is adjacent to all the cosets ykX for all k € K. Clearly, the degrees of the
cosets zH and yK as vertices in Cos(T', H, K) are |H| and |K]|, respectively.

The following two results are not difficult to prove.

Theorem 2 Let G be a graph whose vertex-set is partitioned into two
orbits Vi, Vo under the action of the automorphism group T'. Let H
be the stabiliser of the vertex u € V) and K the stabiliser of the vertex
v € Va. Let S be the set of all those permutations o € T' such that
a(u) is adjacent to v. Then G is isomorphic to Cos(I',’H,K,S). More-
over, if G is edge-transitive then S C K'H, that is, G is isomorphic to
Cos(I',H, K).

Theorem 3 Let G = Cos(I',H,K). Fort €T, let \; denote the action
of left translation by t on the left cosets of H and K. Then ), is
an automorphism of G; this action is transitive on the edges of G.
Suppose ¢ is an automorphism of I' which fizes setwise both H and
K. Let ¢ denote the induced action on the cosets of H and K. Then
<2) is an automorphism of the graph G.

From these two theorems it is clear that to obtain a graph whose au-
tomorphism group acts regularly on the edges but non-transitively on the
vertices we need to find a coset graph Cos(T’, H, K) such that no automor-
phism of the group fixes M and K. Of course we also require the graph to
be connected, therefore H U K must generate all of T'.

We shall see that the group of order 3 -5 - 31 which we encountered in
the previous section will also work for us here. This group = will be the
relative holomorph with the automorphism a of the group I' of order 3 - 31
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of Section 3. That is
Z=(a,bcla® =b*=c" =1,ba=ab,ca = ac’®,cb = bc®).

In the following it will sometimes be convenient to let w = bc and to present
E as

3 25).

— ”
E = (a,w,cla® = w® = = 1,wa = awc,ca = ac?, cw = we

Now let H be the cyclic subgroup generated by a and let K be the
cyclic subgroup generated by w. Let G = Cos(Z,H,K). This graph is
edge-transitive but not vertex-transitive since the cosets of  have degree
5 whereas the cosets of K have degree 3. Moreover, it is not difficult to
check that no nontrivial automorphism of the group = fixes HUK, therefore
there is reason to hope that, in fact, the full automorphism of G is Z, that
is, the automorphism group of G acts regularly on the edges. This we now
proceed to prove.

Our first step is to determine the girth of G. Let e be the edge {H, K}.
The vertices of any cycle of length 2! passing through the edge e form a
sequence

H, K, w'H, w'a K, ..., vt .t teltwtH =H

where the powers of w and a are not equal to zero modulo 3 and modulo
5, respectively. It is not difficult to check by hand that, for I < 3, there is
no solution of the equation

what . witel Tt H = H
for nonzero powers of the w and a. For | = 4 this equation becomes
wi el w? e waBPwH = H. (1)
Since (bc)? = b%c?°,
wilad wizglwidgfdwit = gt Hitispiitiztiatia b
where the power k of ¢ is equal to
si1211+.7'2+jaz5i2+i3+‘i4 + si2212+.1325i3+i4 + 81.32.7'3251'4 + 85,

where s; is defined by s; = 1 and s3 = 26.
Therefore Equation 1 implies that

11 +i2+i3+i4=0(mod 3) (2)
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and

si‘2j1+jz+1'3251'2+i3+i4 + si2212+1325i3+i4 + si325325i4 + s,
=0 (mod 31). (3)

A computer search revealed that the only solutions of Equations 2 and
3 for (illjlv iZ) j21 i3aj3) 7’4) are

(1,3,2,2,2,1,1), (1,3,1,2,2,1,2), (1,4,1,3,2,2,2), (1,2,2,1,2,4,1)

(2,1,2,4,1,3,1), (2,1,1,4,1,3,2), (2,4,1,3,1,2,2), (2,2,2,1,1,4,1).

This means that the girth of G is 8 (which is the largest possible given its
order and the degrees of its vertices) and that through the edge {#, K}
(and hence through any edge) there are exactly eight cycles of length 8.
A consideration of the above eight solutions, and the fact that G is edge-
transitive, leads to Figure 3, which shows all the 8-cycles passing through
any of the three edges incident to K. In this figure, the names of some of
the vertices is given, and these indicate some of the solutions given above.
We note, in particular, the vertices aK and a3K. The vertex aK is equal
to both wa*w?e?w?eK and waedwa?w?eK since walw?a?w?a = aw? and
walwa®w?a = aw (cf. the first two solutions given above). The vertex a3X
is similarly worked out since w?aw?awa® = a3w? and w2awatwa® = adw
(cf. the first two solutions in the second row above). (The Mathematica
package was extensively used to carry out all the above calculations.)

Figure 3 therefore gives all the 8-cycles passing through the three edges
{K, H},{K,wH}, {K,w?H}. We note that the corresponding figure for the
three edges {tK,tH}, {tK,twH}, {tK, tw?H} incident to the vertex tK can
be obtained from Figure 3 by pre-multiplying every label by t. There-
fore, from Figure 3, if an automorphism of G maps the edge {tH,tK} into
the edge {rH,rK}, then this automorphism must map the pair of edges
{tH,taK}, {tH,ta3K} into the pair {rH,raK}, {rH,ra?K}.

Now suppose that o is an automorphism of G which fixes the edge
{H,K}. Suppose also, for contradiction, that o transposes the vertices wH
and w?H. Therefore it must transpose the vertices akC and a3K, that is,
it transposes the edges {H,aK} and {H, a3K}. Therefore, by the previous
observation, o must transposes the two sets of edges {{H, a2K}, {H, a’K}}
and {{H,a*K},{H,ak}}. But this is impossible since the edge {H,aK} is
transposed with the edge {H, a®K}.

Therefore the vertices wH and w?H must be fixed by a. Hence we have
that, if o fixes the edge {#,K} then it must also fix the edges {K,wH},
{K,w*H}, {wH,waK} and {w?H,w?a®K} (cf. Figure 3).
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wawa w2 Pt

walwiaw2#f
Figure 3: All the 8-cycles passing through the edges incident to A

Repeating this argument starting from the edge {wH,waK} leads to
the conclusion that a fixes all the edges of G, that is, it is the trivial
automorphism.

4 Cayley line-graphs

The problem of finding a graph whose automorphism group acts regularly
on its edges can be seen as the problem of finding a GRR. which is also a
line-graph. We are therefore looking for a line-graph G with an odd number
of vertices and which is a GRR of its automorphism group.

Such a graph G must be a Cayley graph Cay(T", S). Also, G is a line-
graph if and only if its edge-set can be partitioned into complete subgraphs
such that no vertex lies in more than two of the subgraphs [3]. We therefore
require, apart from the condition § = S~!, that S can be partitioned as
S; U Sy such that s~'¢ € S if and only if both s and ¢ are in the same ;.
One way, therefore, to ensure that the Cayley graph G = Cay(T', S) is a
line graph would be to let S be HUK — {1} such that H, K are subgroups
of 'and HNK = {1}.

Now, for the Cayley graph G to be a GRR it is necessary that there
be no nontrivial automorphism ¢ of I" such that ¢(S) = S. This necessary
condition is not, in general, sufficient. The following result of Godsil [2],
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however, affirms that for a special class of p-groups this simple condition
is, in fact, sufficient to guarantee that the Cayley graph is a GRR.

Theorem 4 (2] Let G be a finite p-group which admits no homomor-
phism onto the wreath product of Z, by Z,. Let SC G,5=S"},G =
(S) such that no nontrivial automorphism of G fizes S setwise. Then
the Cayley graph of G with respect to S is a GRR of G.

Godsil’s theorem and the above discussion led Lauri and Scapellato (8]
to pose the following question:

Problem Does there exist a p-group I' (p an odd prime) having
two subgroups H, K with the following properties: (i) HNK = {1}, (%)
I' = (HUK), and (i) no nontrivial automorphism of I fires H UK
setwise?

(We have, in fact, been unable to find any nilpotent group which has
two subgraphs H, K with the above three properties. Nilpotent groups
might be the right class of group to look at if one is trying to show that
the answer to the above question is negative.)

We finally note that the above is not the only way for a Cayley graph
Cay(T, S) to be a line-graph. For, if H < T, g € T such that g~ 'HgNH =
{1}, and if S; = H* UHg and S2 = g~ 'H*gU g~ 'H, then Cay(I',S; U S>)
is a line graph (here, H* denotes H — {1}).

In fact, the line-graph of the Cayley graph in Section 2 is the Cayley
graph Cay(Z, S) (where Z is the group of Section 3) with § = H* U Hgu
g 'H*gU g~ 'H where H = {(a) and g = w = bc.

5 Concluding remarks

Apart from the above problem on p-groups, the constructions discussed here
also lead to the following question. All known graphs having all vertices
(edges) paired by pseudosimilarity have been obtained by means of the
KSS construction, that is, by deleting a vertex (edge) from a graph whose
automorphism group acts regularly on its vertices (edges). In other words, a
graph obtained by these methods all of whose vertices (edges) are paired by
pseudosimilarity can be changed into a vertex-transitive (edge-transitive)
graph by the addition of a single vertex (edge).

Is this always the case, or do there exist graphs all of whose vertices
(edges) are pseudosimilar but which cannot be obtained by means of the
KSS construction?
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