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Abstract. A chess-like game board called a hive,
consisting of hexagonal cells, and a board piece called a
queen are defined. For queens on hexagonally shaped
hives, values are obtained for the lower and independent
domination numbers, the upper independence number
and the diagonal domination number, as well as a lower
bound for the upper domination number. The concept of
a double column placement is introduced.

1. Introduction

Domination problems associated with the placement of various chess pieces on
chessboards have been studied widely, on the one hand for their intrinsic
interest but on the other hand because they can be also be formulated as
domination problems in graph theory [1, 5]. In this paper a hexagonally
shaped board with hexagonal cells is introduced, together with a board piece
called a "queen" which can execute moves on lines through any of the six
sides of a cell on which she is placed. Because of the similarity with the
hexagonal structure of honeycombs, the board is called a hive. It could
however also be seen as a playing board used in war games [4], or, trivially, as
a variation of the board for Chinese checkers.

Various domination parameters of queens on hexagonally shaped hives are
derived, similar to those derived for square hives in [6].

2. Definitions relating to hexagonal hives

For any positive integer n, a hive of order n has n rows consisting of
hexagonal cells. A cell in row r and column c is denoted by (r,c).
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The center of a hexagonal hive is taken as the origin, in cell (0 ,0) , with all

rows in the upper (respectively lower) half of the hive having positive
(negative) row numbers, as illustrated in fig. 1. The column numbers are
taken as positive in the right hand side of the hive and negative in the left hand
side. For rows with » even (respectively odd), the column numbers of the cells
are even (odd).

A hexagonal hive of radius R or order n=2R+1, denoted by H, , is
defined as follows : Start with a cell at the origin <0 , O). Surround this cell

with the six neighbours, to form a circle with radius 1. Each additional circle
of radius q (1< g < R) contains 6q cells and creates a hive with n =24 +1

rows. In total, a hive of radius R contains 1+6(1+2+.4R) =

1+3R(R+1)= n’ —R(R+ 1) cells. A distinction is made between hives

with even radii, R = 24, and odd radii, R=2k+1, k>0. Fig. 1 illustrates
a hexagonal hive of order 11 (R =5).

Fig. 1. Rows and diagonals on H, .

Let p, denote row number r, r €/—R;R], which is defined by the cells
{(r,—(ZR—|r| )+2j) :0<j s(2R—|r| )}. Let s; denote the diagonal

consisting of all cells (r, c) of H, such that r + ¢ = i. Such a diagonal is

called a sum diagonal. Similarly, let d; denote the diagonal consisting of all
cells (r, c) of H, such that r - ¢ = j. Such a diagonal is called a difference

diagonal. Three lines intersect each cell, being the row and two diagonals
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through the cell. The three lines for cell (2 , 4) are shown by the dashed lines
in fig. 1. The complete set of diagonals for H, is given by D(H,)=
{s3:=R<i<R}Ufd,; : - R< j< R}, with cardinality [D(H, )| =2n.

The main diagonals are d, and s,. The outer diagonals are the four
diagonals s_yp, Sz, d_sz, d,p ; these outer diagonals plus row —R and row
+R form the border on the edge of the hive.

In the definition above, a circle consists of six adjacent lines of equal

length. We also define a ring as any set of six adjacent lines, not necesarily of
equal length, but all with length at least 2 cells.

3. Definitions relating to queens and domination parameters

When a queen is placed on a particular cell, she covers (or dominates ) that
cell and all the cells in each of the three lines associated with that cell. Also,
the queen occupies the three lines associated with her cell. A line is empty if
there is no queen on that particular line. An empty row is covered if each cell
in the row is covered by at least one diagonal from queens in other rows. Only
one queen may be placed on a cell.

A placement on a hive is the set of cells which contain queens. Two
queens atfack each other if they are on the same line. A placement is
independent (or the queens are non-attacking) if no queen in the set attacks
another. An example of an independent placement is shown in fig. 2.

A cell which is covered by only one queen is called a private neighbour of
that queen. A line from a queen is essential if it contains at least one private
neighbour of that queen. A queen is essential if she has at least one private
neighbour (which may be her own cell).

The lower (respectively independent) domination number y, (i,) is the

smallest number of (non-attacking) queens that can be placed on H, so that

each cell is covered. The upper domination (respectively independence)
number T, (f,) is the largest number of (non-attacking) queens that can be

placed on H, so that each cell is covered and all the queens are essential. It is
easy to see that

y" Si’l sﬂﬂsrn’ (1)

which is similar to an inequality that was first noted in [3] for chessboards.
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4. Double Column Placements

A placement of queens in a column will be termed a column placement if each
cell of the column contains a queen within a certain range of rows, and no
other cell in the column contains a queen. The number of queens in the
column is the size of the column placement. A column placement C is defined
by three parameters, namely the column c, the first row r; containing a queen

and the size o :
C(C‘.",,G')={(rl +2i,c) : OSiSa—l}.

For the sake of brevity some of the parameters will be suppressed occasionally
and C, will be used for C(c,r,0) .

A fundamental property of a column placement is that if it covers any two
parallel diagonals, then all possible diagonals between those two are also
covered. We say that this set of diagonals is associated with the column
placement; this set is denoted by D(C, ), or simply D,, where

D.=D(C,)= {s, jre-242i S1SHS a}U{d, me-242j 1S S a} .
Note that IDCI =20.

Let C, and C, denote column placements in different columns a and b
respectively, defined by C, =C(a,r,,o,) and C, = C(b,r,,0,), with the
associated diagonal sets D, and D,. Then a Double Column Placement
(henceforth called a DCP) is defined by C, UC, , with the associated diagonal
set D, U D,, where in general |D, UD,|< |D,|+|Dy|. The size of a DCP is
o= |C,,| + |Cb| =0, +0,, and its separation is defined as |a —b|. Without
loss of generality we take 7, as the lowest numbered row in the DCP, and call
the cell (rl ,a) the base of the DCP.

A DCP is said to be complete if it has the property that if any two parallel
lines (rows or diagonals) are occupied by two queens of the DCP, then all
possible parallel lines between those two are also occupied. In order to occupy
all the rows in a certain range it is necessary that r, =r +1; this implies that
one column has to be even and the other odd. There will be no gap between
the two sets of diagonals if the separation is small enough. A DCP C,UC, is

independent if D, D,=@ and all the queens are on different rows. A
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DCP C,UC, is said to be efficient if it is complete as well as independent.
Fig. 2 illustrates an efficient DCP of size 5.

Fig. 2. A double column placement of five queens on H,;.
Using these definitions, the following lemma for hives follows :

Lemma 1 : A double column placement with base (rl ,a) and size
0 =0, +0,, denoted by C(a,r,,0,)UC(b,r,+1,0,), is efficient if and
only if the following properties apply : (1) o is odd; (2) o, =|_0'/ 2],
o, =|_0'/2J; 3) |a—b|=0'.

Proof : First consider the case where b =a + .S, for a positive integer S. The
base has the associated difference diagonal d, , where the index J, =r, -a.

The top queen in column a is in cell (r, +2(o0,-1), a), and covers Sps
where I, =r, +a+20,-2. The lowest queen in column b is in cell
(rl +1, a+S) and covers s, , where [/, =r, +1+a+S, and the upper
queen in this column is in cell (r +1+2(c,-1),a+S) and covers

d,, where J, =r +20, -1-a-S§.

Assume that the DCP is efficient. Then /, =/, +2 and J, =J,-2,
from which it follows that S=20,-1 and o,=0,-1. With
o=0,+0,, the properties of the lemma follow. Conversely, if the
properties of the lemma hold, it is easy to show that the DCP is efficient.

Similar arguments hold for the case where b=a - § . O
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5. Lower and independent domination numbers

We prove a lower bound for y, and show that a DCP achieves this bound. In

this proof we use the concept of the largest empty ring (or LER), which
consists of the six empty lines closest to the border. For example, in fig. 2 the
border forms the LER. However, if a queen were to be placed in row —R , the
LER would consist of row —( R —1) with the other lines as before.

Lemma 2. For a hive with odd radius R=2k +1, y,.,22k+1, for
k=20.

Proof. We prove the theorem by showing that the LER cannot be dominated
by 2k queens. Firstly, consider any placement of 2k independent queens on
the board. If the LER is the border, the LER cannot be dominated because
there are 6(2k +1) cells on the border and each of the 2k queens can only

dominate 6 cells on the border.

If the LER is not the border, the LER can be constructed by starting with
the border and then moving the sides of the ring one by one until an empty
ring is obtained. For each move, the number of cells in the ring decreases by
one - provided the ring had six sides before each move. This is easy to check.

The queens at the corners cause two moves, and the other queens that end up
outside the ring cause one move.

The queens that caused the ring to decrease by one cell (one move)
dominate only four cells of the ring. Thus, in effect, one cell less is
dominated. The queens in the comners, that caused the ring to decrease by two
cells (two moves), dominate only two cells of the ring. Thus, in effect, two
cells less are dominated.

Thus we see that the smaller the LER is, the more cells of the LER are not
dominated. It is easy to see that if the 2k queens are not independent, even
more cells of the LER are not dominated.

Corollary 1. If a placement of R queens dominates H,y,,, R2>1, (R odd or
even) then the LER must be the border.

Proof. H,,,, has 6R border cells. Therefore, by the same argumant as

above, any LER which is smaller than the border cannot be dominated by the
R queens. O

Lemma 3. For a hive with even radius R=2k , y,4,,,22k+1,for k20.

Proof. We show that 2k queens cannot dominate H,,,,, k¥ =1. Suppose we
have a set of 2k queens dominating #,,,,; then from Corollary | the border
must be empty. Also each border cell is covered exactly once.
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The corner cells can only be dominated by a queen on a main diagonal.
Consider any main diagonal. There must be one queen on it, and the
remaining 2k —1 queens are on the two sides. Any queen on one side of the
diagonal covers four border cells on that side, and two border cells on the
other side. To dominate the same number of border cells on the two sides
therefore requires the same number of queens on either side of the diagonal.
This is impossible, because 2k ~1 is odd.

The case k =0 is trivially true, with a single queen covering H, . O
Lemmad. For n=4k+1 and n=4k+3, k20, i, <2k+1.

Proof. We first consider an odd hive, with R =2k +1, k=1, and show that
an efficient DCP with base (—k y— lc) and size 2k + 1, denoted by P , COvers

the hive. The associated set of diagonals is D* = {sz,- :=k<i Sk}U
{d2 ji-ksj< k} . Such a placement is illustrated in fig. 2 for the case
k=2.

All cells in the non-empty rows, { Pri—k<r< k} , are covered, with the
k +1 rows closest to each edge empty. The rightmost cell in row (k+1),
namely cell (k+1 , 3k+l), is covered by d_,,, the rightmost difference
diagonal in D*. The leftmost difference diagonal in D¥, d,; , covers cell
(R ;l) , with all the open cells on the diagonals between these two also covered
because of the completeness of the DCP. Similarly, the sum diagonals in D*

cover all the cells on the diagonals between (R 5= 1) and (k +1;—(3k +1 )).

All the cells in the top half of H,, are therefore covered. Due to the symmetry,
similar arguments hold for the bottom half of the hive. The hive is therefore

covered by P*. Furthermore, P* is per definition also independent, so that
an upper bound for the independent domination number has been obtained for
an odd hive.

This also applies for the case k=0, R=1, n=3, in which case the hive

is covered by a single queen in cell (0,0) .

In the case of an even hive, R=2k, n=4k+1, k>0, the above
placements can be used unchanged by simply removing one circle of cells
from the odd hive, still leaving the hive covered. O

167



Theorem 1. The lower and independent domination numbers of H,, where
n=4k+1 or n=4k+3, forany k 20,aregivenby y, =i, =2k+1.

Proof. From Lemmas 2 and 3 we have that 2k +1<y, . Using this with (1)
and Lemma 4, the theorem follows. O

Note that for very large hives, this value tends to n/2. It is also
noteworthy that the placement which was used in [6] to obtain similar results
for square hives was in effect an efficient double row placement.

Corollary (Rectangular hives). The placement P* specified for Lemma 4
also covers a rectangular hive with dimensions nxm, where n is the number
of rows and the number of cells per row alternate between m and m-1,
where the width m=3(k +1).

Proof. Consider the upper right hand quarter of any #,. The rightmost
difference diagonal in Dt , namely d_,,, covers cell (k +1,3k+ l) , the
rightmost cell in row & +1, as well as an additional cell (k +2, 3%k +2)
outside A, in the next row. The remaining difference diagonals in D* cover
all the cells above and to the left of d_,, .

_ Similarly, for the lower right quarter, the extreme sum diagonal s,, covers
cells (—( k+1),3k+ 1) and (—( k+2),3k+ 2). Therefore all cells
{(r;c) :—-R<r<R, 0SCS3k+2} are covered by P*. Similarly on the
left hand side, s_,, covers (k +2,—-(3k+2 )) and d,, covers <—( k+2),
~(3k+2)), with all the cells {{r;c):~R<r<R,-(3k+2)<c<0} also

covered. Therefore P* covers a rectangular hive of width m = [( 6k +5)/ 2-| .
O

6. Diagonal domination

The diagonal domination number diag( H,) [2] is the minimum number of

queens which can be placed on a main diagonal in such a way that they
completely cover H,.

Theorem 2. diag(H,)=n-2 for n23.
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Proof : Without loss of generality we select d,, as the main diagonal. In any
placement of queens on d, in which three or more cells on d,, are empty, it
will be possible to identify two different empty cells on d,, in rows r, and r,

such that either both rows are non-negative or both are non-positive. Consider
for example the cell at the intersection of row r; and the sum diagonal through

cell (r2 , rz). This cell can not be covered by any queen in the placement
mentioned above. It is therefore not possible to cover H, with a diagonal
placement with less than #» — 2 queens.

Consider a placement with a queen on each cell of d,, with the exception
of the top and bottom rows : P? ={{i,i): ~(R-1)<i<(R-1)}. The
empty top row is covered by the diagonals {s,; :0<i<(R-1)}Ufd,}, and

the empty bottom row by {s_,; :0<i<(R-1)}Ufd,}. Clearly P? covers

the empty rows, and clearly each sum diagonal is essential. Therefore this is a
minimal covering diagonal placement and theorem 2 holds. O

7. Upper independence number

Theorem 3. 8, =n for n21.

Proof : Any placement containing one queen in each row obviously
covers the hive; clearly therefore the maximum possible number of non-
attacking queens is n. For n>3 (R 21), this can be achieved with a DCP

C_rUCg,, where C_p =C(-R,-R,R+1) and Cp,, =
C(R+1,-R+1,R). Noting that the size is R+1+R=n and that the

separation is 2R +1=n and that all the other requirements of Lemma 1 are
met, it follows that this is in fact an efficient DCP and therefore also
independent, so that theorem 3 applies for n 23 . For the case n =1, the hive

is covered by a queen in cell (0, 0) , and theorem 3 holds. O

8. Upper domination number

To obtain a lower bound for I', we construct a placement in which as many

queens as possible have only one essential line. This is achieved with an outer
diagonal placement (henceforth, an ODP) which is defined as a placement
with queens only on the four outer diagonals.
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Odd radius : For hives with R=2k+1, (n=4k+3), for any k>1, the
ODP as illustrated in fig. 3 for the case k=2 is defined as

P°=0,UQ,UQ; UQ,, where the four diagonal placements and associated
sets of diagonals are specified as follows for the four quadrants :

O, ={{,(2R-i)):2<i<2k},on 5,5, with D, ={d_,p.,. :2<i<2k};
O, ={{i,—(2R-i)):2<i<2k},on dyp with D, ={s ,p,,; : 2<i<2k};

Oy ={(~(2i=1),—(2R-2i +1)):1<i < k+1},0n S_,p;
Dy ={dyp,r 4 :1<i<k+1};

O ={(~(2~1),(2R-2i +1)):1<i S k+1}, 0n d_yp ;

This ODP has the following properties :
e Thesizeis o=6k .

¢ The empty rows, namely rows 0, 1, +R, -2, -4, .. -(R-1) are all covered by
P?, as can easily be verified.

e Each queen has a private neighbour and is therefore essential. The queens
in @, and @, all have private neighbours in either row 0 or row 1, as

indicated in fig. 3 by the small dots and dashed connecting lines. The
queens in O, (respectively O, ) have their closest private neighbour on the

adjacent diagonal s_,p,, (d_5p. ), also as indicated in fig. 3.

It can therefore be concluded that the upper domination number is bounded
from below by

I,26k forn=4k+3, k21. 0))

Even radius : For hives with R=2k (n=4k+1), forany k >1, the ODP

is defined similarly to the above in terms of the following four diagonal
placements :

O ={G,(2R-1)) : 2<i<2k}; Q) ={(i, ~(2R—-i)) : 2<i<2k-1};
O3 ={(-(2i-1), —(2R-2i+1)) : 1<i<k};
O, ={(~(2i-1) , (2R-2i+1)) : 1<i<k}.

Note that this placement differs from the previous ODP in that cell (R,- R) is
empty because a queen in this cell does not have a private neighbour. Careful
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consideration shows that this ODP covers all the cells in H", and also that all
the queens are essential. In this case the size is o = 6k — 3, so that

T, 26k-3 for n=4k+1, k1. (5)

Fig. 3. An outer diagonal placement on H,,, also showing the private
neighbours.

Small hives : The ODP defined above does not give the best solution for
small hives, defined in this context as hives where & <2 . For hives defined
for k=0 and k=1, i.e. hives for n=1, 3, 5, 7, the independent DCP used

to obtain S, also gives the best value obtained here for I',. In these cases
therefore I, > n.

This result together with (4) and (5) can be combined in the following
theorem :

Theorem 4 : The upper domination number of H, , where n=4k+1 or
n=4k+3, is bounded from below by the following : a) for k<1,T, 2n;
b) for k 22 with even radius, n=4k+1, T, 26k -3

¢) for k 22 with odd radius, n=4k+3, I', 26k .

Note that for very large hives, this value tends to 3n/2.
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9. Conclusion

The main results of this paper can be summarised in the table below, which is
in agreement with the relationship (1). Unless otherwise specified, the values
apply for £20.

Table 1 : Values and bounds for the domination numbers for H, .

Lower bound
Yn=l, | diag(H,)| B, L
Even radius 4k+1, 0sk<l1
n=4k+1 2k +1 n-2 n 6k-3, k=2
Odd radius 4k+3, 0<k<1
n=4k +3 6k, k=2
n—»o n/2 3n/2
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