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ABSTRACT. A graph H is G-decomposable if H can be decom-
posed into subgraphs, each of which is isomorphic to G. A
graph G is a greatest common divisor of two graphs G, and
G2 if G is a graph of maximum size such that both G; and
G2 are G-decomposable. The greatest common divisor index of
a graph G of size g is the greatest positive integer n for which
there exist graphs G1 and G2, both of size at least ng, such that
G is the unique greatest common divisor of G; and G2. The
corresponding concepts are defined for digraphs. Relationships
between greatest common divisor index for a digraph and for
its underlying graph are studied. Several digraphs are shown to
have infinite index, including matchings, short paths, union of
stars, transitive tournaments, the oriented 4-cycle. It is shown
that for 5 < p < 10, if a graph F of sufficiently large size is Cp-
decomposable, then F is also (Pp—1 U Ps3)-decomposable. From
this it follows that the even cycles Cg, Cs and Cjo have finite
greatest common divisor index.
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1 Introduction

A nonempty graph H is decomposable into the subgraphs G,,Ga,...,Gn
of H if no graph G;, 1 < i < n, has isolated vertices and E(H) can be
partitioned into E(G,), E(G3),..., E(Gn). In such case we write H &
Gi10G8...0G,. If G; 2 G for each integer 7, 1 < ¢ < n, then H is G-
decomposable, in which case we say G divides H and write G|H. Similarly
we define decomposition for digraphs. In general, we follow [4] for graph
theory notation and terminology.

Let G, and G2 be two nonempty graphs (digraphs). In [2] a graph
(digraph) G without isolated vertices is defined to be a greatest common
divisor of G; and G, if G is a graph (digraph) of maximum size such that
G|G; and G|G,. Since K, (1?2) divides every nonempty graph (digraph),
it is evident that every two nonempty graphs (digraphs) have a greatest
common divisor. For the digraphs D; and D, of Figure 1, their unique
greatest common divisor D is shown.
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Figure 1.
Digraphs D; and D5 and their greatest common divisor D

Although the two digraphs D and D5 of Figure 1 have a unique great-
est common divisor, this is not always the case for graphs as well as for
digraphs. Indeed it was shown in [3] that for every positive integer n, there
exist graphs G; and G5 having exactly n greatest common divisors. Ac-
cording to [2] we denote the set of greatest common divisors of G; and
G2 by GCD(G,, G») and write GCD(G1,G2) = G if the greatest common
divisor is uniquely G. Greatest common divisors of graphs and digraphs
were investigated in detail in [5)].

We say that F 2 GiUGU---UG,, T > 2, is a shatter of G if G =
G19G20...0G,. For example, the graph F = P;U P3 U K> is a shatter
of G = C (see Figure 2).
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Figure 2. Graph G and a shatter F

In [1], for a given graph G of size q, the greatest common divisor index
i(G) was defined as the greatest integer n for which there exist graphs G
and G3, both of size at least ng, such that GCD(G1,G2) = G. If one can
find arbitrarily large n of such property, then the index was defined to be
00. For a given graph G, we define indez ¢'(G) as the greatest integer n for
which there exists a graph H which is decomposable into n copies of G but
is not decomposable into n copies of any shatter of G.

Let us make the following observation.
Proposition 1. For every graph G, we have i'(G) < i(G).

Proof: It is enough to show that, for every positive integer n, if i'(G) > n
then #(G) = n. Suppose i'(G) > n is established by presenting a graph
H which is decomposable into n copies of G but is not decomposable into
n copies of any shatter of G. Let us construct two graphs G; = H and
G2 = pG, where p is a prime number, p > n. Then GCD(G1,G2) = G,
because the only divisors of G2 of size ¢(G) are shatters of G and G itself,
but shatters of G do not divide G;. Therefore, i(G) > n. O

Corollary 2. i(G) < oo implies i'(G) < oo.
Corollary 3. i'(G) = co implies i(G) = oo.
We do not know any example of a graph G with i(G) = oo and #/(G) < oo.

2 Greatest Common Divisor Index for Digraphs

The concepts of a shatter, the greatest common divisor index i(D), and
the index /(D) can be defined for a digraph D. The result analogous to
Proposition 1 holds for digraphs.

Proposition 4. For every digraph D, we have /(D) < (D).
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We will established the relationship between the index of a digraph and
the index of its underlying graph.

Propositio_p 5. Let G be an arbitrary graph. If Gis any orientation of
G, then (G) > (G).

Proof: It is enough to show that #/(G) > n whenever i/(G) > n. Suppose
i’(G) 2 n is established by presenting a graph H which is decomposable
into n copies of G but is not decomposable into n copies of any shatter of
G. Orient edges of H, yielding H, such that His G-decomposable. We
need to show that H is not decomposable into n copies of any shatter of
G. In fact, if H were decomposable into n copies of some shatter, say F,
of G, then F, a shatter of G, would divide H; a contradiction. (]

Corollary 6. For a digraph G which is an orientation of a graph G, we
have .
i'(G) = oo implies i'(G) = oo.

Proposition 7. All digraphs D whose underlying graphs are kKs, P, Py,
Ps, C4, K4 — ¢, K5 — ¢, and union of stars have infinite index (D) and,
therefore, infinite index i(D).

Proof: Constructions in [1] show that the index #'(G) = oo for all graphs
listed above. Therefore, from Corollary 6, #’(D) = co for all digraphs D
whose underlying graphs are graphs from this list. O

To underline some differences between greatest common divisors and in-
dex for graphs and digraphs, let us note first that it is easy to have F |I?
and G|H, such that F 52 G but F = G. Indeed, it is even possible to have
GCD(H,y, Hy) = {F, 5}, where F 22 G is the unique greatest common di-
visor of Hy and Hs. Let us consider the following digraphs H 1 and ﬁg (see
Figure 3) both of size 8.

Hy: O\ e H,:

o— 00— O O O
Figure 3

o
(213

176



It is easy to verify that GCD(I-Tl, 172) = {I:"', 6}, but GCD(H,, Hy) = Ps

It was shown in [1] that ¢{(K,) = 1 for every complete graph Ky, n > 3.
However, for tournaments the similar result is not true. We show that if
T is the transitive tournament of order n, then '(T") = co and, therefore,
i(T) = oo.

Theorem 8. For the transitive tournament T of order n,n > 3, #'(T') = co.

Proof: Let V(T) = {v1,v2,...,vn}, Where v; — v; for ¢ < j. Let us con-
struct a digraph H as follows. For n even, take n2/2 copies Sy, S, ..., 552 /2
of T', together with n—1 copies T}, T, ..., Tn—1 of T and identify them ata
vertex z such that z corresponds to the vertex v, from S;, i =1,2,...,n%/2,
and to the vertex v; from T;, i = 1,2,...,n — 1 (see Figure 4).

Figure 4

Of course, H is decomposable into k = n2/2+n — 1 copies of T. We will
show that H is not decomposable into k copies of any shatter of T'. Let F
be a shatter of T and F|H Its underlying graph F has maximum degree
at most n — 1. Hence the vertex z must have degree exactly » — 1 in every
copy of F. Now, the outdegree of z divided by k is less than 1, so z is a
sink in some copy of F. _But outdegree | of z in H is positive, so z is not
a smk in some copy of F. Therefore, F has another vertex of outdegree

— 1, which implies that F has another vertex of degree n — 1. Now, if
a copy of F has a vertex v of degree n — 1 and v is distinct from z, then
this copy of F uses the edge between the vertices v and 2. Hence, all the
vertices of degree n — 1 lie in the same component F* of F; in particular
this component is 2-connected. Since z is a cut-vertex, this component F*
must lie completely inside a copy of S; or T;. Therefore, the copy F* of
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F has vertices of outdegree 0,1, 2,...,n — 1 which implies that Fro T; a
contradiction.

For n odd, the analogous construction with (n — 1)2/2 copies Sy, Ss, .. .,
S(n—1)2/2 of T works. a

3 Digraphs of Finite Index

We say that a digraph D is arc-transitive if for every pair of arcs uv and
zy of D there is an automorphism ®: V(D) — V(D) such that ®u = z
and ®v = y. The independence number of a digraph is the independence
number of its underlying graph. A similar proof as those for graphs (see
[1]) shows the existence of digraphs of finite index.

Theorem 9. If D is an arc-transitive digraph of order p with the in-
dependence number B(D) < p/2 and H is a D-decomposable digraph of
sufficiently large size,! then H is (D — &) U Ka-decomposable as well.

Corollary 10. The cyclic orientation 62k+1 of the odd cycle Cogy1, k > 2,
has finite index i(Cory1) <4k(2k+1) -4k -1 =8 k2 - 1.

Corollary 11. The tournament T with

V(T) = {v1,v2,...,v2k41}
and
E(T) = {viv; | 1 <j —i (mod 2k +1) < k}

is arc-transitive with the independence number 1 and, therefore, i(T) <
(2k+1)2k +1.

Corollary 12. For the complete digraph K., i(l-(‘,.) =1.

Corollary 10 does not hold for non-cyclic orientations of odd cycles. In
particular, the following result is true.

Theorem 13. If D is the digraph obtained by reversing two consecutive
arcs in the cyclic orientation of Cs, then (D) = oo.

Proof: Let us construct a digraph H as follows. Take n — 1 copies of D,
identify the vertices of outdegree 2 (at the vertex z of H), and identify the
vertices of outdegree 0 (at the vertex y of H). The last nth copy of D with
the vertex set V(D) = {a,b,c, z,y} has outdegree 1 at the vertices z, y, b,
outdegree 2 at the vertex a, and outdegree 0 at the vertex c (see Figure 5).

Of course, H is decomposable into n copies of D. We will show that
H is not decomposable into n copies of any shatter of D. Let F be a
digraph which is a shatter of D and suppose that F|H. From the fact that

lugufficiently large” means its size is at least 2q [plp-1)—g+1).
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ody(z) = 2n — 1 > n, we conclude that F must have a vertex of outdegree
2. Similarly, because idg(y) = 2n — 1 > n, the digraph F must have a
vertex of indegree 2. Therefore, F must be one of the four digraphs F;
listed in Figure 6.

~ QO a

H:

In the decomposition of H into copies of Fj, the arcs zc and yc must
be used by a component of F; containing the vertex of indegree 2 (the
“bottom” copy in the figure). However, H ~z ~-y—c=n K and does
not contain the other (“top”) copy of Fi. Identical arguments show that
F can be neither F; nor F3. To eliminate the last possibility, namely F
being Fy, let us notice that the arc ax cannot occur as K, component of
Fy4, because H — a — x does not contain the other component of Fy as a
subdigraph. Therefore, the arc ax must occur together with the arc ab
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in the large component of Fy, and, moreover, this component uses both
vertices z and y. These two vertices must be used by the large component
of every copy of F;. The last two observations imply that not n but only
n — 1 copies of R can be packed into H; a contradiction. o

4 Decomposition Results and Index for Even Cycles

In [1], it was shown that i(C3) = 1 and i(C4) = oco. For the longer odd
cycles we have i(Cax+1) < co. The last result follows from the graph version
of Corollary 10 via the decomposition theorem stating that if a graph of
sufficiently large size is Cax41-decomposable, then it is also (Par4+1 U K2)-
decomposable. Whether the even cycles of length at least 6 have finite
index as well has not been known. In the remaining part of this paper
we prove that the even cycles Cg, Cg, and Cjg also have a finite greatest
common divisor index. This result will follow from another decomposition
theorem stating that, for 5 < p < 10, if a graph F of sufficiently large size
is Cp-decomposable, then F' is (P,_1 U Ps)-decomposable as well.

Let G and G2 be two copies of a graph G in the decomposition of some
graph F. We say that G, intrudes on G, if the overlap © = V(G,)NV(G,)
is dependent in G;.

Lemma 14. Let G be a graph of order p and size q. If a graph F is
decomposable into k copies of G with k even and k > 2[(8) — q], then
there is a numbering of the copies such that G;_, does not intrude on Go;
for1 <i<k/f2.

Proof: Suppose that G; intrudes on G;. This means that the overlap
© = V(G;)NV(G;) is dependent in Gj; that is, there is an edge of G; that
joins two vertices of G;. Therefore, at most (5) — g copies can intrude on
Gj, or, equivalently, at least k — ((§) — ) copies do not intrude on G; and
k — (() — q) = k/2. If we form a graph I whose vertices are copies of G
with two vertices G; and G; adjacent if and only if G; does not intrude on
G, then the minimum degree of T is at least half of its order, so I" has a
perfect matching. This perfect matching establishes the required pairing
and numbering of the copies of G. 0

To handle an odd number of copies of G in F, we will find a suitable triple
of copies together with a pairing described in Lemma 14. For three copies
G1, G2, G3 of G, we say that a trio {G}, G2, G3} forms a good triple if either
the three copies are vertex disjoint, or they are mutually non-intrusive and
there is a vertex x common to all three.

Lemma 15. Let G be a graph of order p and size q. If a graph F is
decomposable into k copies of G with k odd and sufficiently large, then
there is a numbering of the copies such that G,,G2,G3 form a good triple
and G?2; does not intrude on Gaiyq for 2< i1 < (k—1)/2.
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Proof: Let B be the collection of those copies which intersect at least
(k — 1)/2 other copies. If |B| < k/2, then we can find three copies that
are pairwise vertex disjoint; namely, take vertex disjoint G;,G2 ¢ B, then
there exists G3 intersecting neither G nor Ga.

So assume |B| > k/2. If we denote A = (}) — q, then there are at
most kA intrusions in total. So there is a copy G; in B that intrudes
on at most 2A copies. Thus, G; intersects, but does not intrude on at
least (k — 1)/2 — 2A copies. At most A copies can intrude on G;. If
k is chosen such that k > 4pA + 2p 4+ 6A 4 3, then there are at least
(k- 1)/2—-3A > p(2A + 1) + 1 copies which intersect G; but which do
not intrude on G; and are not intruded on by G;. Among them we can
find at least 24 + 2 copies that intersect G in some vertex, say z. Finally,
from this collection we can find a pair G2 and G3 of non-intrusive copies.
The reason is that among those 2A + 2 copies there are at most (24 +2)A
intrusions in total and (24 + 2)A < (?4+%). After selecting {G1, G2,Gs}
as a good triple, pairing of the remaining copies is guaranteed by Lemma
14. o

The next result takes care of copies which form a good triple.

Lemma 16. Let G be a vertex transitive graph of degree of regularity r
and let H = (G —v)U K(1,7). If {G1,G2,G3} forms a good triple, then
the graph F induced by the edges of the three copies G,,G>,G3 of G is
H-decomposable.

Proof: If G1,G3,G3 are vertex disjoint, then the result is obvious. Oth-
erwise, we remove the vertex z of degree 3r from F. The remaining graph
F — z is decomposable into three copies of G — v. It is clear that we can
partition the edges incident with z into three stars K(1,r) to complete the
H-decomposition. o

Notice that Lemma 16 holds in particular for G = Cp and H = P,_,UP;.

Lemma 17. Let G= Cpand H = P,  UP3, 5 < p < 10. If G, and
Gy are two copies of G and G, does not intrude on G2, then the graph
induced by the edges of G, and G, is H-decomposable.

Proof: We must examine all ways to put together two copies G; and G2
of Cp such that their overlap © is an independent set when measured in
G,. Of course |8 < | 2|. Note that:

(1) If any vertex z of © has no neighbor in ©, then we are done. For we
make z the center of two Ps’s.

(2) If both G; and G have three consecutive private vertices (not in ©),
then we are done. For we make the edges joining the three private
vertices into Pj’s.
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These observations allow simplification. Using the first observation and
a counting argument, it follows that there must be a sequence of three
consecutive vertices private to G2 (except possibly when p is a multiple of
4 and |G| = p/2). By the second observation, one can restrict the placement
of the overlapping vertices in G1. In particular, there must be at least [£]
vertices in © and the segments in G; between consecutive vertices of the
overlap © must have length 2 or 3.

Using the simplification, we have one case for Cs and two cases for Cg
and C,. These are illustrated in Figures 7, 8, and 9, where the outer cycle
is always G;. One copy of H in the H-decomposition is represented by bold
edges and the other copy by thin edges.

Figure 7. (P4 U P;)-decomposition for two copies of Cy

Figure 8.
Two cases with (Ps U P3)-decomposition of two copies of Cg

For cycles Cg, Cy and Cjg, there are many more non-isomorphic cases
to consider, namely 11, 25, and 81, respectively. We fed all these cases
into a computer and checked that the resultant graphs had the required
decomposition. m]
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Figure 9.
Two cases with (Ps U Ps)-decomposition of two copies of C7

Theorem 18. For 5 < p < 10, if a graph F is decomposable into k copies
of Cp for k sufficiently large, then F is also (P,—1 U P3)-decomposable.

Proof: If k is even, then Lemma 14 gives a numbering of the copies
G1,Ga, ..., Gk of Cp such that Gz;—; and G»; are non-intrusive. For every
such pair Go;_; and Go;, 1 < i < k/2, the graph induced by the edges
of Gg;—) and Gy; is (Pp—1 U P3)-decomposable by Lemma 17. Combining
these decompositions for each pair produces a (Pp—; U P3)-decomposition
of F.

If k is odd, then Lemma 15 guarantees an existence of a good triple
{G1,G2,G3} and pairing Ga;—1, Ga2; of the remaining copies of C, such
that Gp;_; and Gy; are non-intrusive. The (P,_; U P;)-decomposition of
the graph F follows from application of Lemma 14 and Lemma 17. 0

We conjecture that the above result is true always, not only for cycles of
length between 5 and 10.

Conjecture 19. For p > 5, if a graph F is decomposable into k copies of
C, for k sufficiently large, then F is also (Pp—; U P3)-decomposable.

Summarizing, we have the following results for the greatest common di-
visor index for cycles:

(1) i(Cs) =1.
(2) #(Cs) = 0.

(8) For k > 2, i(Cak41) < oo; also the even cycles Cg, Cs, and Cyo have
finite index.

(4) The index of long even cycles C;, for p > 12 is unknown; however, we
conjecture that it is also finite.
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