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Abstract

Some extremal set problems can be phrased as follows. Given an
mxn (0,1)-matrix A with no repeated columns and with no submatrix
of a certain type, what is a bound on n in terms of m? We examine a
conjecture of Frankl, Fiiredi, and Pach and the author that when we
forbid a k x { submatrix F then n is O(m*). Two proof techniques are
presented, one is amortized complexity and the other uses a result of
Alon to show that n is O(m?*~1~¢) for e = (k—1)/(13 log, {), improving
on the previous bound of O(m2*-').

Key words: (0,1)-matrices , forbidden configurations, forbidden
submatrices.

1 Introduction

This paper considers a conjecture on forbidden submatrices. Define a matrix
to be simple if it is a (0,1)-matrix and has no repeated columns. We remind
the reader that a submatrix has the row and column order specified.
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Conjecture 1.1 (Anstee, Frankl, Fiiredi, and Pach [2],[5]) Let A be
an m x n simple matriz and let F be a k x 1 (0,1)-matriz . Assume A has
no submatriz I'. Then there exists a constant cp so that

n < cpm® a (1)

In 3] it was shown that n is bounded by a polynomial in m which was
improved as follows, using a pigeonhole argument.

Theorem 1.2 (Frankl, Fiiredi, and Pach [5]) Let A be an mxn simple
matriz and let F be a k x| (0,1)-matriz . Assume A has no submatriz F.
Then there exists a constant ¢ so that

n < epm?*-l ] (2)

Note that (2) verifies the conjecture for £ = 1. Section 2 considers an
alternate proof technique (amortized complexity) that also handles the case
k=1

The ordering of rows and columns implicit in using submatrices is what
distinguishes the conjecture from the following.

Theorem 1.3 Let A be an m x n simple matriz and let F be a k x | (0,1)-
matriz . Assume A has no submatriz which is a column permutation of F.
Then there ezists a constant cr so that (1) holds.

Proof: Simply use the O(m*) bound (Fiiredi [5],[4]) obtained if you forbid
the k x (I - 2F) submatrix of ! copies of each column on k rows (an alternate
proof is given at the end of Section 2). [ |

Additional evidence supporting the conjecture can be found but until
now (2) was the best bound. Section 3 uses a result of Alon [1] to obtain
the bound

n < epm*-l-e 3)

with € = (k —1)/(13logy!) an improvement on (2) although still far from
(1). If we somehow knew the bound was cpm? for some integer p then we
would have the conjecture for k = 2.

The conjecture is a useful benchmark on which to judge some of the
more detailed conclusions possible when forbidding a submatrix.
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2 Amortized Complexity

This section provides an elementary application of the amortized complexity
idea popularized by Tarjan [9].

Theorem 2.1 Let A be an m x n (0,1)-malriz with no conseculive pair of
identical columns. Assume A has no 1 x 2 submairiz (1010 - 10]. Then

n<(2-1)m+1. (4)

Proof: Consider submatrices {10] taken from a pair of consecutive columns.
If A has (I — 1)m + 1 such [10)’s then by the pigeonhole principle there are
[ [10)’s in some row, one after the other, contradicting the forbidden 1 x 21
submatrix.

To see how many [10]’s A must have, consider the potential function & :
columns — R defined as follows. Let ¢; denote the ith column of A and

®(¢;) = number of 1’s in ¢;. (5)
Now define
RISE = {(i,i+1) | 2(c;) < ®(ci+1)}, LEVEL = {(i,i+ 1) | ®(c;) = ®(ci1)},

FALL = {(i,é + 1) | ®(c:) > ®cirn)}, (6)

where r = |RISE|,e = |LEVEL|, f = |FALL|. Note that a level forces one
[10] since consecutive columns are not identical and a fall (i,i + 1) forces
(®(ci) — ®(ci41)) [10)’s. Now ®(c;) > 0 and ®(c,) < m, thus

> (@e)-%(en)) 2z Y (Bg) - () -mSr—m.

(1,i+1)eFALL 7.i+1)eRISE
()
Substituting v + e+ f =n — 1, we get
Z (®(¢;) = P(ci1))+e+ fon—m-1. (8)

(i,i+1)eFALL

Now the left hand side is at most twice the number of [10]’s (in the case
e =0 and ®(¢;) — ®(ci4y) =1 for (3,7 + 1) € FALL) and so A has at least
(n—=m—1)/2 [10]’s. Thus if n > (20 - 1)m + 2, then A has (I — D)m + 1
[10]'s, a contradiction. Thus (4) holds. ]
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chmrkabl\ there exist simple matrices A achieving the bound (4) for
m > (1 + 3) as shown in [2] where the bound (4) is shown for simple
ma.trlu“s The result extends to arbitrary 1 x [ forbidden submatrices. The
task remains to generalize the proof idea to obtain Conjecture 1.1.

Here is one consequence which will appeal to Proposition 2.3 below in
its proof.

Theorem 2.2 Let 3 be a (k- 1) x 1 (0,1)-column and let & be a 1 x |
(0,1)-row. Define the k x | mairiz F as

F=

} . ©)

Then if A is an m x n simple matriz with no submatriz F, then there is a
constant ¢y so thal

n < cpm®, (10)

Proof: Note that forbidding the submatrix a results in a bound of (2! -
1)m + 1 (or less) by Theorem 2.1 since the 1 x 2{ row [1010--- 10] has «
as a submatrix. Now apply Proposition 2.3 repeatedly to get (9) where
if 8 = (bg,bk—1,...,b1) then at the ith step apply Proposition 2.3 with 0
replaced by b;. [ ]

Proposition 2.3 (Prop. 5.4 (2]) Let F be a k x | matriz. Assume that
there are constants cp,r so that if A is an p x q simple mairiz with no
submatriz F, then

q < crp'. (11)

Then there is a constant cy so thal if B is a m x n simple matriz with no
(k+1) x| submatriz

00---0
=120, (12)
then
n<cym . [ | (13)

Our proof of Theorem 1.3 follows the proof idea of Theorem 2.1 and shows
that, apart from a few columns, each column makes a ‘contribution’ to
producing F. We state the following classic result. Let K denote any
particular k x 2¥ (0,1)-matrix consisting of all possible columns on k rows.
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Theorem 2.4 (Sauer|7],Perles, Shelah[8], Vapnik, Chervonenkis[10])
Let A be an m x n simple matriz with no submatriz which is a row and col-
umn permutation of K. Then

m m m
<
n_(k_l)+<k_2)+ +(0) (14)
and (14) is best possible. u

Proof of Theorem 1.3: We don’t care about column order and so we
process the columns in an appropriate order. Form () ‘buckets’, one for
each k subset of the rows. Each bucket S (where S C {1,2,...,m},|S| = k)
will keep track of contributions to F© (where we view the columns of F' as a
multiset) in rows S from columns of A. When a bucket S has { contributions
it will be considered full since then A will have a column permutation of F
in rows S.

We show how to order the columns of A so that each of the first ¢ columns
contributes to a bucket for

t<n—((le)+(le>+m+(13>+1>. (15)

Thus before ¢ > (I — 1)(7) + 1, some bucket will be full by the pigeonhole
principle and so A will have a column permutation of F' as a submatrix, a
contradiction. The bound now follows using (15).

Given that we have ordered the columns so that the first ¢ columns each
in turn contribute to a bucket, then consider the next

m m m
()o@

columns in A (which exist by (15)). But then we get a I{; in rows S for
some k-set S (using Theorem 2.4) and so we get a contribution to bucket
S from some column «. Reorder the remaining columns so that « is the
(t + 1)st column. By induction the result is true. n

3 An application of a result of Alon

Alon [1] provided a far reaching generalization of Theorem 2.4. Let § C
{1,2,...,m} and let A|s denote the submatrix of A consisting of the rows
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of A indexed by S. Let S denote a family of subsets of {1,2,...,m} and let
f(m,S) denote the number of (0,1)-colmnns a on m rows which have the
property that, for each § € S, the column a,when restricted to the rows
indexed by S, is not all 1%s.

Theorem 3.1 (Alon(1]) Let A be an m x n simple matriz so that for each

S € S, Als does not have a column permutation of Kis| as a submatriz.
Then

n < f(m,S). [ ] (17)

This is the (0,1)-version of Alon’s result. We also need the following
result.

Lemma 3.2 ([3]) Let F be a k x1 (0,1)-matriz . Then for any ¢ satisfying
t > 13klog, 1, (18)

we have that any column permutation of K, has F as a submatriz.
Note that the proof in [3] does not justify the claim we could take ¢ > k-l

Theorem 3.3 Let F be a kx ! matriz (1 > 2) and let A be anmxn simple
malriz. Assume A has no submatriz F. Then

n is O(m?-1-¢) (19)
where € = (k —1)/(13log, 1).

Proof: In A we say two copies of K are disjoint if either they occupy
different k-subsets of rows or, when they occupy the same set of rows, the
rightmost column of one Ky is to the left of the lefumost column of the other
K. There is a function f(t) so that if we look at

m m m
(k_1>+(k_2>+---+(0)+f(t)+1 (20)

columns of A, then we either can find a submatrix F or ¢ copies of Kj all
on different k-subsets of rows. If

1—1= (Z) (21)
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for some s € R, not necessarily integral, then we can show

s S N
f(t)s(k)+(k-i—l)+"'+((13k10g2[)—1)' (22)

We do this by finding the ¢ copies of Kx one at a time using Theorem 3.1.
Assume t — 1 copies of K have already been found on k-subsets of rows
S$1,89,...,5:-1. Let

S = {all subsets of {1,2,...,m} of size k or [13k log, 1}-{S1,S2,...,St-1}-

(23)
Now by Theorem 3.1, f(m,S) + 1 columns of A will either have a Ky on a
k-subset of rows different from S}, Sa,...,S:—) or there will be a Kiakiog,1

and so will have a submatrix F. So we need an estimate for f(m,S). Note
that for p > k a column of p 1’s contributing to f(m,S) must have all (}) -
subsets of rows with 1’s in {S), Sy, ..., Si-1}. Now by the Lovész version of
the Kruskal-Katona Theorem, therc are at most (,.},) (k+1)-subsets whose
k-subsets are all in {S;,S2,...,S:-1}. Similarly there are at most (ki2)
(k + 2)-subsets whose k-subsets are all in {51, S, ... ,St—1}. Repeating we
obtain

S S S m m m
f(m,S) < (k)+<k+ 1)+"'+((13k10g21)- 1>+(k— 1)+<k—2)+“'+(0)
(

24)

and hence we obtain (22). Now if we take s = m(k=1)/(13k1o621) then we
obtain that f(t) < m*~!. So we may take

{ = %m(k-l)/(wlogz ) (25)
and obtain (21) with ‘<’. Hence by (20), after

(k’fl) + (k'f2> +- 4 (’g) +m* 1 =0kl (26)

columns, we cither get the submatrix F or ¢ disjoint copies of K. After
(- 1)(’}’:) + 1)/t (27)

sets of O(m*~1) columns, one after the other, we will either have F as a
submatrix or, by the pigeonhole principle, get / mutually disjoint copies of
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K in the same set of rows. But then we get F as a submatrix, finding the

7th column of F in the ith copy of Ki. Combining (25),(26),(27) yields (19).
n

Note that for & large, ¢ can be large yielding significant drops in the
bound of Theorem 1.2. We cannot hope to directly improve the result of
Theorem 3.3 since the bound (24) is real but note that we have neglected
to obtain pairs of disjoint K in the same k-subset of rows. Lemma 3.2 can
be improved. For example with & = 2,1 = 3 we have any row and column
permutation of K3 has every 2 x 3 (0,1)-matrix as a submatrix. Then the
bound when forbidding a specific 2 x 3 submatrix F drops to O(m?75).
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