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Abstract

Recently Raines and Rodger have proved that for all A > 1, any
partial extended triple system of order n and index A can be embed-
ded in a (complete) extended triple system of order v and index A
for any even v > 4n + 6. In this note it is shown that if A is even
then this bound on v can be improved to all v > 3n + 5, and under
some conditions to all v > 2n + 1.

1 Introduction

Let AK} be the complete graph on n vertices with A edges joining each
pair of vertices and with A loops incident with each vertex. Define an
extended triple to be a loop, a loop with an edge attached (known as a
lollipop), or a copy of K3 (known as a triple). We denote a loop incident
with vertex a by {a, a,a}, a lollipop by {a, a, b}, a # b, when the loop of the
lollipop is incident with vertex a, and a triple by {a, b, c}, where a, b, and
¢ are distinct. A (partial) extended triple system of order n and index A,
(P)ETS(n, A), also known as a (partial) totally symmetric quasigroup when
A =1, is an ordered pair (V, B), where B is a set of extended triples defined
on the vertex set V which partitions (a subset of) the edges of AK}. A
PETS(n, A)(V, B) is said to be embedded in an ETS(v, \)(V/, B') if V C V'
and B C B'.

Recently Raines and Rodger have proved that for all A > 1, any par-
tial extended triple system of order n and index A can be embedded in
a (complete) extended triple system of order v and index A for any even
v > 4n+ 6 [8, 9, 10]. This follows earlier work by Lindner and Cruse (3],
and a complete solution to the embedding problem for complete ETS(n,
1)s by Hoffman and Rodger [5] (both results are in the guise of (partial)
totally symmetric quasigroups, which are equivalent to (P)ETS(n,1)s). In
this note it is shown that if A is even then this bound on v can be improved
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to all v > 3n 4 5 (see Theorem 2.4). For terms and notation not defined
here, we refer the reader to [2].

These embeddings follow upon several well-known results in this area
where partial triple systems of all indices were considered. Treash [12]
obtained a finite embedding for partial Steiner triple systems. Lindner [7]
reduced the size of the containing triple system to v = 6n + 3. Andersen,
Hilton, and Mendelsohn [1] provided an embedding for admissible v >
4n + 1, and this is the best result to date. Rodger and Stubbs [11] found
that a partial triple system of order n and index A (PTS(n,))) can be
embedded in a triple system of any odd A-admissible order greater than
4n. Subsequently, Hilton and Rodger [4] showed that if 4 divides ), then
any PTS(n,)) can be embedded in a T'S(v,\) for any A-admissible v >
2n + 1; this is the best possible lower bound on v. Recently, Johansson
[6] showed that any PT'S(n,)) can be embedded in a TS(v,A) where X is
even, whenever v is A-admissible and v > 2n + 1.

2 The Small Embedding

Let A be the multiplicity of some graph G. Define the A-sum, G+, H, of the
graphs G and H to be the multigraph obtained by joining every vertex of
H to every vertex of G with A edges. A (partial) triangle decomposition of
a graph G is a decomposition of (a subset of) the edge set of G into triples.
The following powerful theorem is the crucial ingredient in the proof of
Theorem 2.4.

Theorem 2.1 ([6]) Let G be an Eulerian multigraph on n vertices, A = 2¢,
and K = AKy.. Then G+, K admits a triangle decomposition, no triangle
of which is entirely contained in G, if and only if

(i) A(G) < Ak,
(i) €(G+xr K) =0 (mod 3),
(14i) 2¢(G) + Ak(k — 1) > Akn, with equality if k < 2, and
(iv) for each connected component W of G,
Lkv(W) — (W) # 1 and is not odd if k = 2.

For any PETS(n, A), (V, B), define the deficiency graph, G(B), of (V, B)
to be the graph on n vertices whose edge set consists of all edges not found
in any extended triple of B, and define p(G(B)) < n to be the number of
vertices of odd degree in G(B).

The embedding process takes two steps. Let u < n + (n/2) + 2. We

first use Proposition 2.2 to embed any maximal PETS(n, }) in a PETS(u,
A) satisfying certain conditions. We then use Proposition 2.3 to embed this
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PETS(u, A) in an ETS(v, A), for all v > 2u+1 and, thus, for all v > 3n+35.
We start with the following proposition.

Proposition 2.2 Let A be even, let (V, B) be any mazimal PETS(n, ),
let p = p(G(B)), let u=n+ (p/2) + 2, and let k > 0. Then (V,B) can
be embedded in a PETS(u, A) (V*, B‘) such that G(B*) is an Bulerian
multigraph with ¢(G(B*)) + Aku + /\( ) =0 (mod 3).

Proof. Let X = {z1,z2,...,%p} be the set of odd degree vertices
in G(B). Let V! = VU{v1,...,9/2}. For1l < i < p/2 and for every
pair {:cz, 122} C X, let {vi,vi,zai-1}, {vi,vi,2z2:} € B’. Clearly every
vertex in G(B') has even degree. Let V* = V'’ U {00;,002}, and suppose
e(G(B")) + Mku+ A(5) = i (mod 3). If i = 1, then add to B* two copies
of the lollipop {001,001, a}, for some o € V’, and if ¢ = 2, then add to B*
two copies of the lollipops {001,001, a} and {co2, 002, a}, for some o € V'.
Now ¢(G(B*)) + Mku+A(5) = 0 (mod 3), and G(B") is clearly an Eulerian
multigraph. u]

Proposition 2.3 Let A be even, and let (V*,B*) be a PETS(u, ) such
that G(B*) is an Eulerian multigraph with ¢(G(B*))+ u(v—u)+A("3") =0
(mod 8). Then (V*,B*) can be embedded in an ETS(v, A) (V, B) for all
v2>2u+4l.

Proof. Let K = AK,_, on the vertex set V \ V*. Since v(K) >
v(G(B*)) and since G(B*) is Eulerian, conditions (i), (iii), and (iv) of
Theorem 2.1 are satisfied by G(B*) and K. Furthermore, since ¢(G(B*))+
Mu(v —u) + A(*3¥) = 0 (mod 3), condition (ii) of Theorem 2.1 is satisfied.
Therefore, G(B*) 4+ K admlts a triangle decomposition. Add all triangles
(triples) from this triangle decomposition to B. In addition, add to B any
remaining loops incident with vertices in V. Clearly, (V, B) is an ETS(v,
A). O

Theorem 2.4 Let A be even. Any partial extended triple system of order
n and index X can be embedded in an extended triple system of order v and
indezx A for allv>3n+5.

Proof. Let (V,B) be a PETS(n, A). We can assume that (V, B) is
maximal (by adding triples and loops, if necessary, but not lollipops). Let
u < n+ (n/2) + 2. By Proposition 2.2 (V, B) can be embedded in a
PETS(u, A) (V*, B*), satisfying the conditions of Proposition 2.3. Applying
Proposition 2.3 to (V*, B*) embeds it in an ETS(v, A), for any v > 2u +1
and, thus, for all v > 3n + 5. m}

205



3 Acknowledgement

The author wishes to extend thanks to the referee for some helpful sugges-
tions.

References

(1] L. D. Andersen, A. J. W. Hilton, and E. Mendelsohn, Embedding
partial Steiner triple systems, Proc. London Math. Soc. 41 (1980), 557-
576.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,
(North-Holland, New York, 1976).

[3] A. B. Cruse and C. C. Lindner, Small embeddings for partial semi-
symmetric and totally symmetric quasigroups, J. London Math. Soc.
12 (1976) 479-484.

(4] A. J. W. Hilton and C. A. Rodger, The embedding of partial triple
systems when 4 divides A, J. Combin. Theory (A) 56 (1991), 109-137.

(5] D. G. Hoffman and C. A. Rodger, Embedding Totally Symmetric
Quasigroups, Annals of Discrete Mathematics 34 (1987) 249-258.

[6] A. Johansson, A note on extending partial triple systems, submitted.

[7} C. C. Lindner, A partial Steiner triple system of order n can be em-
bedded in a Steiner triple system of order 6n + 3, J. Combin. Theory
(A) 18 (1975), 349-351.

(8] M. E. Raines, More on embedding partial totally symmetric quasi-
groups, Australas. J. of Combin. 14 (1996) 297-309.

[9] M. E. Raines and C. A. Rodger, Embedding partial extended triple
systems and totally symmetric quasigroups, Discrete Mathematics, to
appear.

[10] M. E. Raines and C. A. Rodger, Embedding Partial Extended Triple
Systems When A > 2, Ars Combinatoria, to appear.

[11] C. A. Rodger and S. J. Stubbs, Embedding Partial Triple Systems, J.
Combin. Theory (A) 44 (1987), 241-252.

[12] C. Treash, The completion of finite incomplete Steiner triple systems
with application to loop theory, J. Combin. Theory (A) 10 (1971),
259-265.

206



