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ABSTRACT. In this article we construct a large set of idempo-
tent quasigroups of order 62. The spectrum for large sets of
idempotent quasigroups of order = (briefly, LIQ(n)) is the set
all integers n > 3 with the exception n = 6 and the possible
exception n = 14.

1 Introduction

An n? x 3 array (defined on a set of size n) A is orthogonal if we run our
fingers down any two columns of A we get each ordered pair belonging to
Q x Q exactly once. Let (Q,0) be a quasigroup of order » and define an
n? x 8 array A by: (z,y,2) is a row of A if and only if zoy = 2. Then
A is an n? x 3 orthogonal array. Conversely, if A is any n? x 3 orthogonal
array (defined on a set Q) and we define a binary operation ‘o’ on Q by
z oy = z if and only if (z,y, z) is a row of A, then (Q, o) is a quasigroup.
Hence we can think of a quasigroup of order n as an n2 x 3 orthogonal array
and conversely. The quasigroup (Q, o) is said to be idempotent provided it
satisfies the identity a® = a for all a € Q. The corresponding orthogonal
array A is called idempotent orthogonal array, which has the property that
(a,a,a) € A for every a € Q. Hence the n(n — 1) non-idempotent rows of
A each consist of 3 distinct elements.

Two n? x 3 idempotent orthogonal arrays defined on the same set are
called disjoint if they have only the idempotent rows in common. n — 2
pairwise disjoint n2 x 3 idempotent orthogonal arrays are called a large set
of idempotent orthogonal arrays. The corresponding quasigroups are called
a large set of idempotent quasigroups, denoted by LIQ(n). Teirlinck and
Lindner [2] proved that there exists an LIQ(n) for any n > 3, n # 6, 14, 62,
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and no LIQ(6) exists. In this article we will give a construction of an

LIQ(62).

2 Symmetric LMTS(22)

Let z,y,z be distinct elements of a set X. The cyclic triple {z,y, 2) is
defined to be the set of three ordered pairs (z,¥), (¥, 2) and (2,z). The
cyclic triples (z,y, 2), (y,2,z) and (z,z,y) will be regarded as identical. A
Mendelsohn triple system of order v (MTS(v)) is a pair (X, B), where X is
a set containing v elements and B is a collection of cyclic triples of X such
that every ordered pair of distinct elements of X appears in exactly one
cyclic triple of B. Mendelsohn [1] proved that the spectrum for MT'S(v)’s
is the set of all positive integers » = 0,1 (mod 3) and v # 6.

A large set of disjoint Mendelsohn triple systems of order v or LMT'S(v)
is a collection of v — 2 pairwise disjoint MTS(v)s. Let LMTS(v) =
{(X,B):i=1,2,...,v—2}. An LMTS(v) is called symmetric if there
exist a,b € X (a # b) such that

(1) (a,b,z) € B < (b,a,z) € B;

(2) (a,z,y) € B <= (b,y,z) € B where z,y € X \ {a,b}.
Lemma 2.1. [3] There exists a symmetric LMTS(n 4 2) for any positive
integer n = +£1 (mod 6).

Theorem 2.2. There exists a symmetric LMTS(4n + 2) for any positive
integer n = %1 (mod 6).

Construction: Let {(Z,U{oc01,002},Cx): k € Z,} be a symmetric LMTS
(n +2) which exists by Lemma 2.1. Now, we construct symmetric LMTS
(4n+2)

{(X,BL): k € Z,,t € Z4}

on the set X = (Z4 x Z,) U {o01,002}. Each B (k € Z,,t € Z;) consists
of the following cyclic triples (where z and y run over Z,)

I) ((0, ), (0,v), (0, w)) with (u,v,w) € Ck, except that oo, or coy ap-
pears as u, v or w, omit the first coordinate 0;

I ((1,z—y),(2,z+2y+ k), B,z +y+k)) withy #k, k+1;
I (B,z+y+k),(2,z+2y+k),(1,z~y)) withy £k +1;

V) {1, 2), (1,), (0, Z3L +K)), {(2,2), (2,9), (0, Z5% — 3k)), ((3,2), (3, ),
(0, 252 — 2k)) with z # y;
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(V) {(0,z), (1,z—k), (2,z+3k)), ((0, z), (2, z+3k), (3, z+2k)), {(0, ), (3,
z +2k), (1,z — k));

(VI) (o01,(1,z—k—-1),(2,z+3k+2)), {001, (2, z+3k+2),(3,z+2k+1)),
<°°1’ (3,$+2k+1), (l,x—k— 1))1 (°°2i (31$+2k+1)i (21z+3k+2)):
(002, (2,$+3k+2), (lyz_k—l))v (°°21 (1)2— k —'1): (3,$+2k+1)).

Bl (k € Zy):

M {(1,%),(1,v), (1, w)) with {u,v,w) € Cy, except that co; or ooy ap-
pears as u, v or w, omit the first coordinate 1;

D {(0,z),(3,z+y+k),(2,x+2y+k)) withys#k, k+1;
1) {(2,z+ 2y +k),(3,z+y+ k), (0,z)) with y # k;

(IV) «2) z)) (2) y)s (11 %2_4’:_3)): ((3’1 Z), (3’ y)s (11 %ﬂ _4k_3))’ ((03 33),
(0,9), (1, 5% — k — 1)) with z # y;

(V) ((1,z—k-1),(0,z), (3,z+2k+1)), (1, z—k-1), (3, z+2k+1), (2, z+
3k+2)), (1,z—k—1),(2,z+ 3k +2),(0,z));

(VI) (°°1: (0,2), (3,:’: + 2k»’ (001,(3,3: -+ 2k)’ (2!x + 3k»s (001, (2:“: +
3k), (0, z)), (o002, (2, z+ 3k), (3, z+2k)), (002, (3,z+2k), (0, z)), (co2,
(0,z), (2, + 3k)).

B2 (k € Za):

M ((2,u), (2,v), (2, w)) with (u,v,w) € Ck, except that co; or ooz ap-
pears as u, v or w, omit the first coordinate 2;

am {(1,z-v),(0,z),(38,z+y+k)) withy £k, k+1;
(IIT) ((3,z+y+k),(0,z),(1,z —y)) withy # k+1;

(IV) ((3,2), (3,9), (2, =X + k)), ((0,2), (0,3), (2, ZH¥ + 3k)), ((1,2),(1,9),
(2, ”'—?‘ + 4k)) with = # y;

(V) {2,z +3K), (1,2 — k), (0, z)), {(2,2+ 3),(0,2), (3,z +2k)), (2, =+
3k)’ (3s z+ 2k)a (11 z - k)):

(V]) (001, (3:z+2k+ 1): (0: :L‘)), (001, (0) 22), (1,:!: -k— 1»: (0011 (1: z—k-—
1): (3, m+2k+1)): (002’ (11 :L‘—k—l), (0: m) ) (°°21 (Oa z)i (3: $+2k+1)),
(002, (3,2 + 2k +1),(1,z — k — 1)).
@ {(3,u), (8,v), (3, w)) with (u,v,w) € Ck, except that co; or ooy ap-
pears as u, v or w, omit the first coordinate 3;
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(H) ((0’ :B), (1,.’1: - y)» (2’:5 +2y+ k)) with y # k, k+ 1;
() ((2,z+ 2y +k),(1,z — ), (0,z)) with y # k;

(IV) ((0,2),(0,3), (3, 55 +2k+1)), {(1,2), (1,9), (3, FF +3k+2)), (2, ),
(2,:1/), (3s z_z'tl -k- 1)) with z 7é Y

(V) ((3’ $+2k+1), (0’ .’D), (la x_k_l))a ((37 z+2k+1)’ (11 a:—k—l), (2$ z+
3k +2)), {3,z + 2k +1),(2,z + 3k + 2), (0, 7));

(VI) (°°1’ (2a z+ 3k): (laz - k))’ (0011 (l:z_ k)) (0: z))’ (°°17 (01 :I:), (2,2:-[-
3k))’( (00)2)’ (0,2), (1,3 - k))r <°°27 (lvx - k)a (2:3 + 3k)): (°°2: (2,.‘1: +
3k), (0, z)).

Proof: From Theorem 1in [4], {Bi: i € Zs,k € Z,} form an LMTS(4n +

2). Note that {(Z U {001,002}, Ck): k € Z,} is a symmetric LMT'S(n +

2). By the construction of (I) and (VI) , {Bi:i € Z4,k € Z,} is also

symmetric. 0
In Theorem 2.2, take n = 5 we obtain

Corollary 2.3. There exists a symmetric LM TS(22).

3 Construction

Theorem 3.1. If there exists a symmetric LMTS(n+2) and LIQ(m+2),
m > 3, then there exists an LIQ(nm + 2).

Construction: Let {(Z, U {a,b}, Ai): i € Z,} with (a,b,%) € A; be a
symmetric LMTS(n +2) and {(QU {a,b},B;): j € Q} be an LIQ(m + 2),
where Q = {0,1,...,m — 1} is an idempotent quasigroup of order m (its
binary operation is denoted by ‘o’), Z, = {0,1,...,n -1}, a,b ¢ Z, U Q.
Let & = (0,1,...,m — 1) be a cycle of order m. Now we.can construct
nm idempotent orthogonal arrays T;; (i € Z,,5 € Q) on the set X =
(Zn x Q) U {a,b}. Each T;; consists of the following rows:

(1) ((=,u), (3,9), (2, (wov)ed)), (3, u), (2,9), (z, (uov)a?)), ((2,u), (z,v),
(v, (uov)ad)) with (z,y,2) € A;, 7,4,2 € Zn, u,v € Q. This gives
m2(n — 1)(n — 2) rows;

(2) ((=,v), (z,v), (3, (u 0 v)a)), ((z,2), (¥, (u 0 v)o?), (z,u)), ((3:(uo
v)a?), (z,u), (z,v)) with {a,z,y) € A;, z,y € Z,,, u # v € Q. This
gives 3(m2 — m)(n — 1) rows;

3) (a, (z,v), (3, ua?)), ((z,u), q, (v, u0)), (2, %), (v, u0?), @), (b, (3, uc?),
(z,4)), ((y,u0?), b, (z,4)), (3, ue?), (z,u),b) with (a,z,y) € A;, z,y €
Zn, u € Q. This gives 6m(n — 1) rows;
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4) ((3,u), (3,v), (i,w)) with (u,v,w) € Bj, whenever a or b appears for
u, v, w, omit the first coordinate i. This gives (m + 2)(m + 1) rows;

(5) (s,s,5) for s € (Zn x Q)U {a,b}. This gives nm + 2 rows.

Proof: It is not difficult to see that each 7;; is an idempotent orthogonal
array of order nm + 2. We only need to show that every ordered triple T’
of distinct elements of X is contained in some 7;;. All the possibilities are
exhausted as follows:

() T = (a,b,(i,w)), i € Z,, w € Q. There exists j € Q such that
(a,b,w) € Bj, then T appears in (4) of 7;; (and similarly for T =
(b, a, (i, w)), (a, (3, w),b), (b, (i, w), 8), ((i,w), a,d) and ((¢,w),b, a)).

(i) T = (a, (4,v), (3, w)), i € Zpn, v # w € Q. There exists j € @ such
that (a,v,w) € Bj, then T appears in (4) of T;; (and similarly for
T= (b1 (i,’v), (iv w)), ((3, v), a, (":1 w)), ((i,v)a a, (i,w)), ((iv v), (4, w)’a)
and (5, ), i, w), b).

(iii) T = (a,(z,u),(3,v)), T# Y € Zn, v,v € Q. There exists i € Zn, j €
Q such that (e, z,y) € A, v =ua?, then T appears in (3) of 7;; (and
similarly for T = (b, (z,v), (3,9)), ((z,v),q,(y,v)), ((z, ), b, (3, v))s
((z,u), (y,v), ¢) and ((z, u), (3, v), b)).

iv) T = ((3,u), (i,v), (i, w)), ¢ € Zn, u,v,w € Q are pairwise distinct.
There exists j € Q such that {u,v,w) € B;, then T appears in (4) of
Ti;.

) T = ((z,u), (z,v), (v, w)), £ # ¥ € Zn, u,v,w € Q, u # v. There
exists i € Z, and § € Q such that {a,z,y) € A;, (uov)al =w, then
T appears in (2) of T;; (and similarly for T = ((z,v), (¥, w), (z,v)),
((ya ’UJ), (I,'u,), (El 'U))).

(vi) T = ((z,u), (3,v),(z,w)), z,9,2 € Z, are pairwise distinct. There
exists i € Z, and j € Q such that (z,y,2) € A;, (uov)a?d = w, then
T is appears in (1) of T;.

This completes the proof. O
Corollary 3.2. There exists an LIQ(62).

Proof: By Corollary 2.3 there exists a symmetric LMTS(22). Take n = 20
and m = 3 in Theorem 3.1, an LIQ(62) exists. o

Theorem 3.3. There exists an LIQ(n) for any n > 3 with the exception
n = 6 and the possible exception n = 14.

Proof: Teirlinck and Lindner [2] proved that there exists an LIQ(n) for any
n > 3, n # 6,14,62, and no LIQ(6) exists. By Corollary 3.2 an LIQ(62)
exists. The conclusion follows. g
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