On a Conjecture of Dénes, Mullen and Suchower

Alan C.H. Ling
Mathematics and Statistics
University of Vermont
Burlington, VT 05405
U.S.A.

ABSTRACT. In this note, we solve a conjecture of Dénes, Mullen and Suchower [2] on power sets of latin squares.

1 Introduction

A latin square of side n is an $n \times n$ array in which each cell contains a single element for $\{1, 2, \ldots, n\}$, such that each element occurs exactly once in each row and exactly once in each column. Given two permutations α and β on $\{1,2,\ldots,n\}$, we define the composition permutation $\alpha\beta$ by $\alpha\beta(i)=\alpha(\beta(i))$ for $1 \le i \le n$. A square matrix is called a row latin square if each of its rows contains each of the elements 1, 2, ..., n exactly once. Hence a row latin square R may be viewed as an n-tuple $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ of permutations where the *i*th row of R may be viewed as the image of $1, 2, \ldots, n$ under the permutation α_i . Thus if $S = (\beta_1, \beta_2, \dots, \beta_n)$ is another row latin square of order n, then the product square $R \times S$ is given by $(\alpha_1 \beta_1, \alpha_2 \beta_2, \dots, \alpha_n \beta_n)$. In [4] Norton observed that all row latin squares of size $n \times n$ form a group Q_n under the group operatrion \times . Given a row latin square L, we define $L^1 = L$ and $L^p = L^{p-1} \times L$ where p is a positive integer. Two latin squares L and M of the same order are orthogonal if L(a, b) = L(c, d)and M(a, b) = M(c, d), implies a = c and b = d. A set of latin squares $\{L_1, L_2, \ldots, L_m\}$ is mutually ornogonal, or a set of MOLS, if $1 \le i < j \le m$, L_i and L_j are orthogonal.

Suppose L is a latin square of order n and that the order of L in Q_n If L, L^2, \ldots, L^{m-1} , $m \leq p$ are latin squares, then the set $\{L, L^2, \ldots, L^{m-1}\}$ is called a *latin power set* of *order* n. Our interest in looking for latin power sets is motivated by the fact that the squares L, L^2, \ldots, L^{m-1} are mutually orthogonal [4].

2 The Result

The following is conjectured in [2].

Conjecture 2.1 If $n \neq 2, 6$, then there exists a latin power set containing at least two latin squares of order n.

The validity of the conjecture is established in [2] for all n except when $n \equiv 2 \pmod{6}$. The purpose of this note is to prove the conjecture. We need a definition. A latin square is *idempotent* if $L_{ii} = i$ for all i. It is obvious that if L is an idempotent latin square, then any power of L is also an idempotent latin square if it is a latin square.

When n = 4, 7, the construction in [2] gives an idempotent latin square, L, of order n such that L and L^2 are orthogonal.

Consider the following 5×5 latin square.

It is easy to check that the above latin square is idempotent and is orthogonal to its square.

Theorem 2.2 Suppose there exists a PBD(v, K). For each $k \in K$, suppose there exists a latin power set of order k having t idempotent MOLS. Then there exists a latin power set or order v having t idempotent MOLS.

Proof: Apply the well known PBD construction for MOLS [1], we obtain an idempotent latin square of order v, say L. We claim that $\{L, L^2, \ldots, L^t\}$ is a set of t MOLS. Each row permutation of L consisting of disjoint cycles arising from the latin sub-squares in the PBD construction. Hence, $\{L, L^2, \ldots, L^t\}$ is a latin power set having t idempotent MOLS. We note that it is a construction for idempotent MOLS.

Corollary 2.3 If $n \equiv 2 \pmod{6}$, then there exists a latin power set of order n containing at least two squares of order n.

Proof: The result for $n \le 50$ is established in [2]. If $n \ge 51$ and $n \equiv 2 \pmod{6}$, then there exists a PBD $(n, \{4, 5, 7\})$ [3]. We know that there exists a latin power set on 4,5 and 7 points having 2 idempotent MOLS. We obtain the result by applying Theorem 2.2.

Acknowledgments

The research of the author is supported by an NSERC Postdoctoral fellowship.

References

- [1] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, 1986.
- [2] J.Dénes, G.L. Mullen and S.J. Suchower, A note on power sets of Latin squares, Journal of Mathematics and Combinatorial Computing 16 (1994), 27-31.
- [3] R.C. Mullin, A.C.H. Ling, R.J.R. Abel and F.E. Bennett, On the closure of all subsets of {4,5,...,9} containing {4}, preprint.
- [4] D.A. Norton, Groups of orthogonal row-latin squares, *Pacific J. Math.* 2 (1952), 335-341.