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ABSTRACT. A digraph D is called is semicomplete c-partite if
its vertex set V(D) can be partitioned into ¢ sets (partite sets)
such that for any two vertices = and y in different partite sets
at least one arc between z and y is in D and there are no
arcs between vertices in the same partite set. The path cover-
ing nurnber of D is the minumum number of paths in D that
are pairwise vertex disjoint and cover the vertices of D. Volk-
mann (1996) has proved two sufficient conditions on hamilto-
nian paths in semicomplete multipartite digraphs and conjec-
tured two related sufficient conditions. In this paper, we derive
sufficient conditions for a semicomplete multipartite digraph
to have path covering number at most k and show that Volk-
mann’s results and conjectures can be readily obtained from
our conditions.

1 Introduction and terminology

A digraph D is called is a semicomplete c-partite (or, multipartite) digraph
if its vertex set V(D) can be partitioned into c sets (partite sets) such that
for any two vertices = and y in different partite sets at least one arc between
z and g is in D and there are no arcs between vertices in the same partite
set, Clearly, the underlined graph of a semicomplete multipartite digraph
is a complete multipartite graph. The path covering number of a digraph
D (pc(D)) is the minimum number of paths in D that are pairwise vertex
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disjoint and cover the vertices of D (see [5, 7] for results and applications
of the path covering number of directed and undirected graphs.) Clearly,
pc(D) = 1 is equivalent to the existence of a hamiltonian path in D.

This note is motivated by two conjectures of L. Volkmann [11] on suf-
ficient conditions for hamiltonian paths in semicomplete multipartite di-
graphs. Although a characterization of semicomplete multipartite digraphs
containing hamiltonian paths is known (see Theorem 2.1), the condition
of the characterization is not always easy to verify, thus readily checkable
sufficient conditions for a semicomplete multipartite digraph to possess a
hamiltonian path are of interest (this situation is similar to the situation
with perfect matchings in graphs, where, in spite of the well-known Tutte’s
characterizations, numerous sufficient conditions were obtained, see e.g. [2,
3, 8, 10].) Volkmann [11] has proved two sufficient conditions on hamil-
tonian paths in semicomplete multipartite digraphs and conjectured two
related sufficient conditions. In this paper, we derive sufficient conditions
for a semicomplete multipartite digraph to have path covering number at
most k and show that Volkmann'’s results and conjectures can be readily ob-
tained from our conditions. We show that the conditions are best possible,
in some sense.

A factor is a spanning subgraph of a digraph. A factor is k-path-cycle if
it consists of a set of vertex disjoint paths and cycles, where k stands for
the number of paths in the set. A cycle factor is a O-path-cycle factor; a
k-path factor is a k-path-cycle factor with no cycles. Clearly, pc(D) is the
least integer k such that D has a k-path factor.

For a digraph D and disjoint sets X and Y of its vertices, a(X,Y)
(e(X,Y), respectively) is the number of arcs with first end-vertex in X
and second end-vertex in Y (with one end-vertex in X and another end-
vertex in Y, respectively); I(D) is the maximum value of |d* (z) — d~(z)|
over all vertices z in D; X = Y means that there is no arc from Y to X;
D(X) is the subgraph of D induced by X; X is an independent set if there
is no arc between the vertices in X.

2 Auxiliary Results
The following characterization was proved in [4] (see also [, 6]).

Theorem 2.1. A semicomplete multipartite digraph has a hamiltonian
path if and only if it contains a 1-path-cycle factor.

Corollary 2.2. For a semicomplete multipartite digraph M, pc(M) <k
(k > 1) if and only if M contains a k-path-cycle factor.

Proof: The result follows from the fact that, by Theorem 2.1, the vertices
of the cycles of a k-path-cycle factor F' in M and a path of F induce the
subgraph of M containing a hamiltonian path. (n}
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The next lemma was first proved in [13]. The original proof relies on a
theorem of A.J. Hoffmann on circulations in networks. We give a shorter
proof of this result based on Ore’s theorem on cycle factors in digraphs [9].

Lemma 2.3. A digraph D has no cycle factor if and only if its vertex set
V(D) can be partitioned into subsets Y, Z, Ry, Ry such that

R, =Y, (RiUY) = Ry,Y is an independent set (1)

and |Y] > |Z].

Proof: Let D = (V, A) be a digraph. By Ore’s theorem (see [9]), D has no
cycle factor if and only if there is a subset X of V such that |[N*(X)| < | X|,
where N1T(X) is the set of the heads of the arcs whose tails are in X. Let
Ry =V—(N*(X)uX), Ro= N*(X)NX,Y = X—Ry, Z = N*(X)-R,.
It is easy to verify that the sets Y, R; and R; satisfy (1) and [Y]| > |Z]. DO

Corollary 2.4. A digraph D has no k-path-cycle factor (k > 0) if and
only if its vertex set V(D) can be partitioned into subsets Y, Z, Ry, Ry
that satisfy (1) and |Y| > |Z| + k.

Proof: Assume that k > 1. Let [’ be an auxiliary digraph obtained from
D by adding k new vertices v, . . . , ux together with the arcs {u;w, wu;: w €
V(D),i=1,2,...,k}. Observe that D has no k-path-cycle factor iff D’ has
no cycle factor. By Lemma 2.3, the vertices of D’ can be partitioned into
sets Y, Z’/, Ry, Ry that satisfy (1) and |Y| > |Z’|. By (1), the vertices
uy,...,ux arein Z'. Let Z = Z’' — {uy, ..., ux}. Clearly, the subsets Y, Z,
Ry, Ry satisfy (1) and Y| > |Z| + k. u}

In the rest of the paper, M stands for a semicomplete multipartite di-
graph with vertex set V, arc set A, partite sets Vi, ..., V.. We also denote
v=|V|, v =Vl

The following two lemmas are obtained in [13].

Lemma 2.5. Let X CY CVandlety; = |[YNV;| forall i=1,2,...,c
Then

e(X, Y -X) eX,Y-X)

=Y - pti= N L
IX] V=X Y| -max{y:i=1,2,...,¢c}

Lemma 2.6. Let X C V. Then

{qxv-m&ﬁv—qu-

I(M) > max
dCXCV
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3 Main Results
Combining Corollaries 2.2 and 2.4, we obtain

Theorem 3.1. For a semicomplete multipartite digraph M, pc(M) > k
(k > 1) if and only if V can be partitioned into subsets Y, Z, R,, Ry that
satisfy (1) and |Y| > |Z| + k.

Now we are ready to prove the following sufficient conditions:

Theorem 3.2. Suppose that vy < va < -+ < .. If there exists a positive
integer k such that I(M) < min{v—3v.+2k+1, (v—ve—1—2v.+3k+2)/2},
then pc(M) < k..

Proof: Assume that pc(M) > k, then, by Theorem 3.1, V' can be parti-
tioned into sets Y, Z, Ry, Ry that satisfy (1) and |Y| > |Z|+k+1. By the
last inequality, Y is non-empty and since Y is independent there is a partite
set Vysuchthat Y CVi. Let Q=V -V, - Z, V1 =V,NR,, Yo =ViN Ry,
Q1 =QnNR; and Q2 = QN Ry. Note that [Z] < |Y|-1-k<v.—1-k,
Q1=2Y =0 (QiUY1)=(Q:UY2) and Y1UY2UY C V;. If i = c then
let j = c—1 and if i < ¢ then let j = c. We now consider the following
three cases.

Case 1. Q; = 0: This implies that a(Y,V =Y) —a(V -Y,Y) > |V|Q2| -
IY)|Z] 2 |Y|(v—v:=2|Z]) > |V |(v—vc—2(vc—1-k)) = Y |(v—3v.+2+2k),
which by Lemma 2.6 implies that I(M) > v — 3v, + 2 + 2k. However this
is a contradiction.

Case 2. Q, = {: We can arrive to a contradiction analogously to Case 1.

Case 3. Q; # 0 and Q # 0: Since v; + vj < vc-) + v, We obtain that
IQl—’UJ‘ S>v—v;— |Z| -5 2V —Ve—1—Vec— ('vc— 1 —k). By Lemma 2.5,

a(Qla Q2) + a‘(Ql: Q2)
|@1l |Q2|

>1Q|—v; 2 v —ve—1 — e+ 1+ k.

Thus,

R e

(ﬁ) a(?Ql;?z) > ”"Vc—l“220¢+1+k + |Y2| _ IYlI

Assume that (i) holds as the case when (i) holds can be treated similarly.
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By Lemma 2.6.
a'(le V- Ql) — G(V — le Ql)

I(M) >
(M) 2 N
= a’(QlaQ?) + a’(Ql'pYUn) —a(YUYéx Ql)
Q] Q1]
a’(Ql)ZUYI)_a(ZUYth)
+
1]
—vpy—2v.+14+k
> (Bt s et Lyt ) + Y+ %D - 121+ 4D
— gy — 2 1+k
= Pt e Y] - 12
>'v—'vc_1—2'uc+3+3k
- 2 I
which is impossible. |

The following result (in a slightly weaker form) was proved for ¢ > 7 and
conjectured for 5 < ¢ < 6 in [11].

Corollary 3.3. Suppose that 1 <7 <v; <wp <---Sve=7+1Ifc2>5
and I(M) < r+2 then M contains a hamiltonian path.

Proof: As I(M) < r+2,¢c > 5 v =r+1, and r > 1 we obtain

that M) < r+2 < (er+1)—-3r < v —-3v:+3 and IM) <r+
2 < (c—3)r+4 < ((r+1)+vc_1+(c—2)r)—v¢_ —2(r+1)+5 —vc_1—2v=+5 Now it
2

follows from Theorem 3.2 that M has a hamlltoma.n path. a
Using Theorem 3.2, one can easily verify the next result.

Corollary 3.4. Suppose that v; = r forall i =1,2,...,c. If ¢ > 3 and

I(M) < gc;szm, then M contains a hamiltonian path.

The first part of the next claim was proved and the second was conjec-
tured in [11). The claim readily follows from the previous corollary.

Corollary 3.5. Suppose that v; =r > 2 foralli=1,2,...,e. M has a
hamiltonian path if at least one of the following conditions holds:

1. ¢>5and I(M) < 4;
2. ¢>3and I(M) <2

4 Example

The following lemma is a reformulation of Exercise 2.4.12 in [12] and can
be easily proved using the famous Euler theorem (for undirected graphs).
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Lemma 4.1. Every graph G has an orientation D such that I(D) < 1.

The next result shows that the inequality for I(M) in the conditions in
Theorem 3.2 is best possible. A multipartite tournament is a semicomplete
multipartite digraph without cycles of length two.

Theorem 4.2. Let a, b, d and k be positive integers sueh that 2d(b—a) >
k+1. There exists a multipartite tournarnent M with c = 2b+-a partite sets
Vi, Va,..., V., wherev; = |V;| = 2d forall i=1,2,...,c—1 and v. = |V¢| =
2ad+k+1, such that I(M) = (v —vc—1 —2vc+3k+3)/2 < v—3v.+2k+2,
but pe(M) > k.

Proof: Let v; = 2d for all i = 1,2,...,c—1 and let v, = 2ad + 1 + k.
Let Z = Vop U Vapp1 U --- U Voo and Y = V.. Partition V; into V! and V
such that [V/| = |V/| = d for all i = 1,2,...,2b— 1. Let Ry = UZ]'V},
Ry =U2'V/ Ry=Z =R =Y = Ry, and Ry = Ro.

By Lemma 4.1, one can orient the rest of the arcs in M such that I(M (YU
2)) €1, I(M(Ry)) <1 and I(M(R,)) < 1. Since 2b—2 is even and |V/| =
V¥ =d (i = 1,2,...,2b — 1) we obtain that I(M(R,)) and I(M(R3))
must be even, which implies that I(M(R,}) = 0 and I(M(R3)) = 0.

By Theorem 3.1, pc(M) > k. Observe that v = (¢ — 1)v1 + v. = d(4b +
40-2)+k+1,v—3v.+ 2k +2=d(4b— 2a — 2) = d(2b — 2) + 2d(b — a)

and
V—Veo1 —20:+3k+3

2
As 2d(b — a) > k + 1 we obtain that

=d(2b—2)+k+1.

v —vVe—1 —20.+3k+3

v—3u.+2k+22> 5

If 2’ € Ry, then dt(z') = a(z’, V) + a(z’, Rp) + a(z’, Ry) = v+ (2b —
2)d+(2b—2)d/2 = d(3b+2a-3)+1+k, and d~(z) = a(Z,z')+a(Ry,2') =
2ad+(2b—2)d/2 = d(2a+b-1). This implies that |d*(z")—d~ (2)| = d(2b—
2)+k+1. Analogously, if z” € Ry, then |dt(z”)—d™(z")| = d(2b—2)+k+1.
If z € YU Z, then |d*(z) —d™(z)| < 1. Therefore,

— Uy —20.+3k+3 <

My ="1 i < v —3v.+2k+2.

236



References

[1] J. Bang-Jensen, G. Gutin and J. Huang, A sufficient condition for a
semicomplete multipartite digraph to be Hamiltonian, Discrete Math.
161 (1996), 1-12.

[2] D. Bauer and E. Schmeichel, Toughness, minimum degree, and the
existence of 2-factors, J. Graph Theory 18 (1994), 241-256.

[3] H. Enomoto, B. Jackson, P. Katerinis and A. Saito, Toughness and
the existence of k-factors, J. Graph Theory 9 (1985), 87-95.

[4] G. Gutin, Characterization of complete n-partite digraphs that have a
Hamiltonian path, Kibernetica 1 (1988), 107-108 (in Russian).

[5] G. Gutin, Polynomial algorithms for finding hamiltonian paths and
cycles in quasi-transitive digraphs, Australasian J. Combin. 10 (1994),
231-236.

[6] G. Gutin, Cycles and paths in semicomplete multipartite digraphs,
theorems and algorithms: a survey, J. Graph Theory 19 (1995), 481-
505.

[7] J. van Leeuwen, Graph Algorithms, in Handbook of Theoretical Com-
puter Science, vol. A, ed. J. van Leeuwen, MIT Press, Cambridge
(MA), 1990.

[8] T. Niessen, Neighborhood unions and regular factors, J. Graph Theory
19 (1995), 45-64.

[9] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. 1962.

[10] L. Volkmann, Regular graphs, regular factors, and the impact of Pe-
tersen’s Theorems, Jber. d. Dt. Math.-Verein. 97 (1995), 19-42.

[11] L. Volkmann, Longest paths in semicomplete multipartite digraphs,
Manuscript, November, 1996.

[12] D.B. West, Introduction to Graph Theory, Prentice-Hall, London,
1996.

[13] A. Yeo, How close to regular must a semicomplete multipartite digraph
be to secure Hamiltonicity, Submitted.

[14] A. Yeo, One-diregular subgraphs in semicomplete multipartite di-
graphs, J. Graph Theory 24 (1997), 1-11.

237



