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ABSTRACT. In this paper we show that group divisible designs
with block size five, group-type and index odd exist with a few
possible exceptions.

1 Introduction

Let K be a set of positive integers each of which is at least 2 and let A
be a positive integer. A (K, A)-group divisible design ((k,A\) — GDD) is a
triple (X, G, B) where X is a finite set of points, G is a partition of X into
subsets called groups and B is a set of subsets of X, called blocks, such
that

1) IBgﬂGjI <1forall B; € B and G, € G;
2) |B;| € K;
3) every pair of points from distinct groups occurs in A blocks.

The group-type (type) of the GDD is a listing of the group sizes using
“exponential” notations, i.e. 12263¢ denotes a groups of size 1, b groups of
size 2, etc.. If all groups have the same size, say, g then the type of the
group divisible design is called uniform of type g". When K = {k}, we
simply write k for K. In this case a (k, \)-GDD of type g™ denotes a GDD
with block size k, group size g and index A. Simple counting arguments
show the following.

Lemma 1.1. The necessary conditions for the existence of a (k,\)-GDD
of type g" aren > k, \(n —1)g = 0 (mod k — 1) and An(n —1) = 0
mod k(k —1).
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In the case k = 3,4 these necessary conditions have been proven to be
sufficient [8, 10] with the exception of (4, 1)-GDD of type 2% and 6%. In the
case k = 5, the first result due to Hanani.

Lemma 1.2. [10] Let ¢ =1 (mod 4) be a prime power. Then there exists
a (5,1)-GDD of type 59.

Capitalizing on this result, Hanani’s student D. Avidan [3] showed that a
(5,1)-GDD of type 5" exists for all n =1 (mod 4), n > 5 with the possible
exceptions of n = 33,57, 93,133, 177, 213,413,437, 473,489,493, 497. Later
on, Assaf [2] showed that a (5,1)-GDD of type 5™ exists for all n > 5 with
the possible exception of n = 33. Recently, Yin, Abel, Colbourn, and Ling,
proved the following:

Theorem 1.1. [11] The necessary conditions for the existence of a (5,1)-
GDD of type g™ are also sufficient except for g™ € {25,2',3%,6°} and the
possible exceptions of:

1. g* =3%,3%;
2. ¢=2,6,14,18 (mod 20) and
(a) g = 2andu € {15,35,55,65,71,75,85,95,111,115,135,195, 215,
315, 335, 435, 515, 575};
(b) g =6 and u € {15,35,45,75,95,115,135);
(c) g =18 and u € {11,15,35,71,111, 115,135, 195};

(d) g =2afor > 1and(a,30)=1, and u € {11, 15, 35,71, 75,111,
115,135,195}

(e) g =67, v#0 (mod 5), v # 3 odd, and u = 15;
3. ¢ =10 (mod 20) and

(a) g =10 and u € {5,7,15,23,27, 33,35,39,47, 63}.

(b) g =30 and u € {9,15};

(c) g =90 and u € {7,23,27,39,47};

(d) g =10c, &= 1,5 (mod 6), and u € {7, 15,23, 27, 35, 39,47}.
(e) g =30y, v =5 odd, y#0 (mod 3) or u=15.

In the case ) is even, F. Bennett, N. Shalaby, and J. Yin have shown the
following:

Theorem 1.2. [5] The necessary conditions for the existence of a (5, ))-
GDD of type g™ where X even are also sufficient with the possible exception
of ¢! where g =1 or 5 (mod 6), g is not divisible by 5 and (g,n,)) =
(9,15,2).
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Since A = 1 and )\ even have been treated with few possible exceptions,
our interest here is the case A odd. In this paper we prove the following:

Theorem 1.8. The necessary conditions for the existence of a (5,)-GDD
of type g™, where X is odd, are also sufficient with the possible exceptions
of: v

A=3,9=(10a)" wherea=1o0r5 (mod 6),n € {23,27,39}.
A=5,9=06 and n € {19,23,27}.

2 Recursive Constructions

To describe our recursive constructions, we need the notion of pairwise
balanced designs (PBD), transversal designs, and modified group divisible
designs. For the definition of these designs, we refer the reader to [2]. We
shall adopt the following notations. A PBD (v,k,)) denotes a pairwise
balanced design on v points, block sizes from K and index A. When K =
{k}, the PBD is called balanced incomplete block design and is denoted
by Bfv,k,\]. A T[k, A, m] denotes a transversal design with block size k,
group size m and index A. A MGDIk,\, m,n] denotes a modified group
divisible design with block size k, group size m, row size n, and index A.

The following theorem is our first recursive construction.

Theorem 2.1. If there exists a PBD(n, K, \) and for every k € K there
exists a (5, u)-GDD of type g* then there exists a (5, \u)-GDD of type g".

The application of the above theorem requires the existence of PBD. The
following result is most useful for us.

Theorem 2.2. 1. [10] There exists a Bv,5,\] for all v > 5, (v = 1) =0
(mod 4) and Av(v — 1) = 0 (mod 20).

2. [9] There exists a PBD(v,{5,k*},1) where * means there is exactly
one block of size k where k =9 if v =9 or 17 (mod 20), v > 37, v # 49,
and k = 13 if v = 13 (mod 20), v > 53.

3. [4] Let v be a positive odd integer v > 5, v ¢ {11, 13, 15,17, 19, 23, 27, 29,
31,33,39} then there exists a PBD(v,{5,7,9},1) with the possible excep-
tions of v € {43,51,59,71, 75,83, 87,93, 95, 99,107,111, 113, 115, 119,123,
131,133, 135,139, 143, 153, 163,167,173, 179, 183, 191, 193, 195, 243, 283, 347,
411,459, 563}.

Another way of constructing PBD is the following lemma:

Lemma 2.1. If there exist a T[k, I, m)], then there exist a PBD(km, {k,m},1)
and a PBD(km +1,{k,m+1},1).

Lemma 2.2. (1] (i) There exists a T[5,1, m] for all m > 4, m # 6,10.
(ii) There exist a T[6,1,m] for all m 2 5, m # 6,10, 14,18, 22.
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Using Wilson’s Fundamental Construction [12], one can construct GDD
with large groups from GDD with small groups. A simple version of this
construction is the following:

Theorem 2.8. Assume there exist a (5,1)-GDD of the type g™ and a
T'[5, ,m). Then there exists a (5, \u)-GDD of type (gm)™.

And by breaking the groups, one can construct a GDD with large number
of small groups from a GDD with a small number of large groups as the
following theorem explains
Theorem 2.4. Suppose that there exists a (k, A\)-GDD of type {m; | 1 <
i <r}. Let h > 0 be an integer. If for each i there exists a (k,A\)-GDD
of type {my; | 1 < j < k(3)} U {h} where m; = 2_1<j<k(i) Mij then there
exists a (k, A)-GDD of type {m;; |1<i<r1<j <k@)}U{h}.

A modified group divisible design is called resolvable and denoted by
RMGD[k, A, m,n] if its blocks can be partitioned into parallel classes. No-
tice that & RMGDIk, 1,k, m] is the same as RT[k, 1, m] with one parallel
class of blocks singled out and since RT'[k, 1, m] is equivalent to T[k+1,1,m]
we have the following:

Theorem 2.5. (1] There exists a RMGD[5, 1,5, m] for all positive integers
m, m & {2,3,4,6} with the possible exceptions of m € {10,14,18,22}.
Theorem 2.6. Assume there exists

1) a RMGD[k,1,k,m),

2) a (5,))-GDD of type t* and t*+1,

3) a (5,1)-GDD of type t™s!,

4) a (5,))-GDD of type r=*,

5) a (5,1)-GDD of type r*F*

Then there exists a (5, 1)-GDD of type r7 where j = (kmt+ut+r+s)/r.

Proof: Take a RMGDIk,1,k,m] and inflate this design by a factor of ¢.
To each of u parallel classes, 0 < u < m — 1, we adjoin ¢ new points and
on each block we construct a (5,1)-GDD of type t*+1. On the remaining
parallel classes we construct a (5, A)-GDD of type t*. To the parallel class
of block size m we adjoin s new points and construct a (5, \)-GDD of type
tmsl,

To the groups adjoin r new points and construct a (5, \)-GDD of type
= such that these r points form a group. Notice that the total number of
points added to the original design is ut+7+ s so on these points construct
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a (5, A)-GDD of type P25 Now it is clear that this construction yields
a (5,\)-GDD of type r# where j = (kmt +ut + 1+ s)/r.

The application of the above theorem requires the existence of a (5, A)-
GDD of type t™s!. In the case t = 4 we have the following result

Lemma 2.3. (i) [9] There exists a (5,1)-GDD of type 4™8! for all m =0
or 2 (mod 5), m > 7 with the possible exception of m = 10.

(ii) [2] There exists a (5,1)-GDD of type 4™s' where s=0 whenm =0
or 1 (mod 5) and s =4 when m =0 or 4 (mod 5).

Lemma 2.4. If there exists a (5, A)-GDD of type g™ and a (5, )-GDD of
type g™ then there exists a (5, A + p)-GDD of type g".

Another notion that we require to prove our result is group divisible
designs with a hole. A group divisible design with a hole H and index A is
a quadruple (X, H, G, B) which satisfies the following:

1) X is a finite set of points and H C X.
2) G ={G1,...,Gn} is a partition of X into n sets called groups.

3) There is a positive integer m < n such that {Gp,..., Gn} is a parti-
tion of H.

4) |BNGi|<1forevery Be Band G; € G
5) No block contains two points of H.

6) Every pair {z,y} from distinct groups such that at least one of z,y
is in X\ H belongs to exactly A blocks.

Theorem 2.7. If there exists a (5,\)-GDD of type m" on X\H and a
(5, A)-GDD of type m* on H then there exists a (5, A)-GDD of type mrtt
on X.

Finally, about the notation in this paper, a block , (k k+m k+n k+j f(k))
(mod v) where f(k) = a if k is even and f(k) = b if k is odd is denoted
by (0 m n 5) U {a,b} (mod »). Similarly, a block {((0, ) (0,k +m) (1,k+
n) (1,k+ 7) f(k)) (mod —,v) where f(k) = aif k is even and f(k) = b if
k is odd is denoted by {(0,0) (0,m) (1,n) (1,5)) U {a,b} mod (—,v).

3 GDDs With Index Odd Not Multiple of 5

The necessary conditions for the existence of (5,A)-GDDs for A > 1 odd
not multiple of 5 are the same necessary conditions of the case A = 1.
Therefore, we need only construct (5, A)-GDDs for the exceptional cases of
Theorem 1.1. We treat the case A = 3, other values of A\ are obtained by
means of Lemma. 4.2.
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Lemma 8.1. There exists & (5,3)-GDD of type 2" forall n = 1 or 5
(mod 10), n > 5.

Proof: For n =11, 15 see the following table.

In general, the construction as follows. Let X = Z,_,, U Hypor X =
Zy x ZL-!ﬂ U Hp where Hy, = {hy,...,hp} is the hole. The blocks are
constructed by taking the orbits of the tabulated base blocks. The notation
xm following a base block indicates that the entire orbit is to be taken m
times. Except where otherwise stated the groups are {(0, i)(l,i)};';g if
X = Z3 x Zm and m is odd, and the groups are {(3,), (¢, 5 + )}os
i = 0,1 together with the groups on the hole if X = Zy x Z. UH,, and r
is an even integer.

For n = 5 See Theorem 3.11 of [10).

For n = 35 take a (5,3)-GDD of type 107, Lemma 3.3, and then apply
Theorem 2.4 with A =3, h =0 and mg; = 2.

For n = 55,71,75 applying Lemma 2.1 we obtain a PBD(n, K, 1) where
k € {5,11,15}. Now apply Theorem 2.1.

For n = 65 take a (6,3)-GDD of type 57 [10]. Delete all but two points
from last group and inflate the design by a factor of four. That is, replace
the blocks of size five and six by the blocks of a (5,1)-GDD of type 45 and
46 respectively. The resultant design is a (5,3)-GDD of type 208!, Now
apply Theorem 2.4 with h =2, k=5, A = 3 and mi; = 2.

For n = 85,95,111, 115,135, 195, 215, 315, 335, 435, 515, 575 apply Theo-
rem 2.6 with k =5,t =4, r=2, = 0,4 or 8, m and u as follows:

n 85 95 111 115 135 195 215 315 335 435 515 575
m 7 9 11 11 12 19 20 30 31 41 50 55
» 5 1 0 2 5 1 7 7 12 12 12 12

Point Set Base Blocks

11 Z3; x Z;; On {0} x Z,; construct a B[11,5,2]. Further, take the
following blocks
((0,0)(0,1)(1,2)(1,3)(1,5)) ((0,0)(0,2)(1,1)(1,7)(1,8))
((0,0)(0,3)(1, 6)(1, 9)(1,10)) ((0,0)(0,4)(1, 1)(1, 7)(1,9))
((0,0)(0,5)(1,2)(1,4)(1,9))

15 Zz x Zys  ((3,0)(4,3)(3, 6)(,9)(4, 12)), i = 0,1 (orbit length three)
((1,0)(1,1)(1,2)(1,4)(1,8)) ((0,0)(0,1)(0, 2)(1,3)(1,5))
((0,0)(0,1)(0,3)(1, 11)(1,12)) ((0,0)(0,3)(0,7)(1, 8)(1, 14))
((0,0)(0,2)(0,7)(1,9)(1,14)) ((0,0)(0, 7)(1, 5)(1,10)(1, 13))
{(0,0)(0,4)(0,9)(1,8)(1, 13)) ((0,0)(0,4)(0,9)(1,6)(1,10))
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Lemma 3.2. There exists a (5,3)-GDD of type 6™ for all n = 1 or 5
(mod 10), n > 5.

Proof: For n = 5 See Theorem 3.11 of [10].
For n = 15let X = Zyx Z4UHg. Groups are {(3, 0)(%, 7) (3, 14)(3, 21) (%, 28)
(¢,35)} U Hg, i = 0,1. Blocks are the following mod (-, 42).

((3,0)(, 2)(3, 5) (3, 24)(3,32)) i = 0,1 {(1,0)(1,1)(1,5)(1,6)(1,18))

{{(0,0)(0,19)(1, 0)(1, 4)(1,15)) ((0,0)(0,1)(1,7)(1,32)(1,40))
{(0,0)(0, 6)(0,16)(1,17)(1, 30)) ((0,0)(0,2)(0,13)(1,5)(1,21))
{(0,0)(0,9)(0,17)(1, 35)(1, 37)) {(0,0)(0, 3)(0,15)(1,2)(1,25))} x 2
((0,0)(0,4)(0,22)(1,13)(1,16)) ((0,0)(0,4)(0,22)(1,13)(1,19))
((0,0)(0,4)(1,16)(1,26)(1, 36)) {(0,0)(0,1)(1,0)(1,3)) U {h1, h2}
((01 0)(09 5)(1s 29)(11 30» U {h3a h4} ((0) 0) (0: 13)(1’ 7)(11 18» U {h5’ hs}
((0,0)(0,5)(1,1)(1,13)h1) ((0,0)(0, 6)(1,12)(1, 34) ko)
((0,0)(0, 9)(1,4)(1, 20)h3) ((0,0)(0,11)(1, 21)(1, 27) k)
((0,0)(0, 16)(1, 9)(1, 33)hs) ((0,0)(0,17)(1, 31)(1, 40) hg)

For n = 35 take three copies of a (5,1)-GDD of type 307 and then apply
Theorem 2.4 with h =0, k() =5 and m;; = 6.

For n = 45, 75 notice that 45 € PBD({5},1) and 75 € PBD({5,15},1),
Lemma 2.1, and hence, the result follows from Theorem 2.1.

For n = 95,115 apply Theorem 2.6 with k = 5, ¢ = 12, r = 6 and
(m,u, 8) = (9,1,12), (11, 2,0) respectively.

For n = 135 take a (5,1)-RGD of type 5!3 and inflate the design by a
factor of 12, [7]. To each of two parallel classes we adjoin 12 new points
and construct on each block a (5,3)-GDD of type 125. On the remaining
parallel classes we construct a (5,3)-GDD of type 125. To the groups we
adjoin six new points {h;,...,hs} and on each group construct a (5, 3)-
GDD of type 6! such that {h;,...,he} is a group. Finally, take the set
{hi1,...,he} with the 24 points we added and construct a (5,3)-GDD of
type 65 such that {hy,...,hg} is a group.

Lemma 3.3. There exists a (5,3)-GDD of type 10" for n odd, n > 5 with
the possible exceptions of n = 23,27,39.

Proof: For n = 5 see Theorem 3.11 of [10].

For n = 15 take a (5,3)-GDD of type 25 and then apply Theorem 2.3
with y=1and m=35.

For n = 33 take a (5,1)-GDD of type 5* and then apply Theorem 2.3
with uy=3 and m=2.

For n = 35, 63 apply Theorem 2.1 with K = {5,7,9}, A=1, g=10and
p=3.
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For n = 47 apply Theorem 2.4 to a (5,1)-GDD of type 80°60! with
h=10.

Notice that a (5,1)-GDD of type 80560! can be constructed by deleting
five points from a T'[6, 1, 20] and then replace each block of size five and six
by the blocks of a (5,1)-GDD of type 45 and 48 respectively.

For n = 7. Let X = Z3 x Z3o U Hyo. Groups {(3,5)(i,5 + 3)...(5,5 +
27)}U Hyp, i=0,1, j € Zs.

Blocks are the following mod (-, 30)

((0,0)(0,4)(0,14)(1,0)(1,1)) ((0,0)(0,10)(1,9)(1, 22)(1, 29))
((0,0)(0,2)(0,10)(1, 8)(1, 24)) ((0,0)(0,2)(1, 23)(1, 25)(1, 27))
((0,0)(0,4)(0,11)(1,7)(1, 15)) ((0,0)(0,8)(1,2)(1,18)(1, 28))

((0,0)(0,11)(0,13)(1,13)) U {h1, ha}  ((0,0)(1,3)(1,8)(1,16)) U {hy, ho}
((0,0)(0,1)(0,17)(1,5)) U {hs,ha}  {(0,0)(1,6)(1,10)(1,17)) U {hs, hs}
((01 0) (0! 5)(0v 19)(11 20)) U {hSa hs} «Ot 0)(11 7)(11 9) (11 14)) U {h51 hG}
((0,0)(0,1)(1,0)(1,5)) U {ha, h2} ((0,0)(0,5)(1,1)(1,2)) U {ha, ha}
((0,0)(0,5)(1,12)(1,23)) U {hs, he}  {(0,0)(0,7)(1,15)(1,28)) U {hs, hs}
((0,0)(0,13)(1,5)(1,24)) U {ho, h10}  {(0,0)(0,4)(1,16)(1,17)h7)
{(0,0)(0, 7)(1,13)(1, 21 )ks) ((0,0)(0,8)(1, 3)(1, 19)ho)

((Oa 0) (Oa l)(l’ 10)(]'» 20)h10)

Theorem 3.1. Let A > 1 be an odd integer, not multiple of 5. Then
there exists a (5,))-GDD of type g™ for all g > 0 and n > 5 satisfying
the necessary conditions with the possible exceptions of g = (10a)™ where
a=1or 5 (mod 6), n € {23,27,39} and A = 3.

Proof: we first prove the theorem for A = 3, and it is clear that we only
need to consider the exceptional cases of Theorem 1.1. By Lemma 3.1 a
(5,3)-GDD of type 2" exists for all » = 1,5 (mod 10), n > 5. Therefore
applying Theorem 2.3, a (5,3)-GDD of type g™ exists for all n =1 or 5
(mod 10), n > 5, g = 2,6,14,18 (mod 20), g # 6. For g = 6 the result

follows from Lemma 3.2.

For a (5, 3)-GDD of type 3° see [10], and of type 3%5, 3% apply Theorem
2.1 with K = {5}, A=1, =3, g = 3 and n = 45, 65 respectively.

For g = 10 the result follows from Lemma 3.3 with the possible exceptions
of n = 23,27, 39.

For (5, 3)-GDD of type 30° apply Theorem 2.3 with A=1,g=5,n
¢ =3 and m = 6 and for type 305 apply Theorem 2.3 with A =3, g
n=15 p=1, and m = 15.

For a (5,3)-GDD of type 90", n € {7,23,27,39,47} apply Theorem 2.3
withA=1,9g=230, =3 and m = 3.

For a (5,3)-GDD of type g” where g = 30y, ¥ > 5 odd, v # 0 (mod 3)
or v =9, n =15 take a (5,3)-GDD of type 2!° and then apply Theorem

=9,
=2

il
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2.3 withm=15yand p=1.

For a (5,3)-GDD of type (10c)* where a = 1,5 (mod 6) and n € {7,47}
take a (5, 3)-GDD of type 10", n = 7,47 and then apply Theorem 2.3 with
m=aand p=1.

For a (5,3)-GDD of type (10a)™ where = 1or 5 (mod 6) and » = 15, 35
take a (5,3)-GDD of type 2", n = 15,35 and then apply Theorem 2.3 with
m=>5cxand pu=1.

For A odd, A > 3 not a multiple of five write A = 2a + 58 and notice
that a (5,2)-GDD of type g™ exists for all g and n satisfying the necessary
conditions with the possible exception of type 9'5 and g'® where g =1 or
5 (mod 6), g is not divisible by 5 and a (5, 5)-GDD of type g" exists for all
g and n satisfying the necessary conditions with the possible exceptions of
(g,n) = (6,19)(6,23)(6,27) ( See Theorem 4.5 of the next section). Now
the results follows from Lemma 4.2.

4 GDDs With Index Odd Multiple of 5

In this section we construct (5, A)-GDDs of type g™ where ) is a positive
odd integer which is a multiple of 5. The necessary conditions are:

1) If g=1 (mod 2) then n =1 (mod 4).

2) If g=2 (mod 4) then n =1 (mod 2).

3) If g=0 (mod 4) then n > 5.
Theorem 4.1. Let g =1 (mod 2) be a positive integer, then there exists
a (5,5)-GDD of type g™ for all n =1 (mod 4).

Proof: For g # 3, since a B[n, 5, 5] and a (5,1)-GDD of type g° exists for
all such n and g, the result follows from Theorem 2.1.
For g = 3 notice that if n =1 (mod 4) then:

a) There exists a B[n,5,1] if n =1 or 5 (mod 20).

b) There exists a PBD(n, {5,9*},1) for n = 9 or 17 (mod 20), n > 37,
n # 49, where * means the block of size 9 is unique.

c¢) There exists a PBD(n, {5,13*},1) for n = 13 (mod 20), » > 53.
Hence, by Theorem 2.1 we need only to construct a (5,5)-GDD of
type 3" for n = 5,9, 13, 17, 29, 33, 49.

For n = 5 the result follows from Theorem 3.11 of [10].

For n=9,13,17, 29, 33 see table 4.1.

For n = 49 adjoin a point to the groups of a (5,1)-GDD of type 8° to
obtain a PBD(49, {5,9},1). Now apply Theorem 2.1 to get the result.
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Table 4.1
Point Set Base Blocks

9 Zyn (012415) (0271319) (0361022) (012512)
(015822) (0281519)

13 ZsUHs (i +9i+18i +27hy) i,0,...,8,5=1,2,3
(012430) (03141923) (05111926) (01235)
(0371323) (05131927) (041521) (0516 23h,)
(0715 26h3)

17 Zg {(012413) (0382229) (04102835) (05112032)} x 2
(0131338) (0491937) (0614 2435) (071523 38)

29 ZnUH)s (i +18i+ 36i 4 54h;) i € Zys, j = 13,14, 15
(013717) x 2 (08194251) x 2 (0171629)
(04143449) (053144ky) (053144h;) (0122747hg3)
(0122747h4) (0112651hs) (0137he) (051321h7)
(091944hg) (0112345hg) (0123052hy0) (0531 60k;)
(041133hy2) (082846h;3) (092539h,,)
(0133249h5) (021941) U {h;}L, (0136) U {h;}3
(0103145) U {h;}}12,

33 Zog {(0131128) (05214367) (06355569) (013315473)
(0141049) (052241 81) (07286275) (01226 6479)} x 2
(0181246) (05305672) (09285769) (02411 15)
(0216 3178) (03105984) (06223057) (08174487)

Theorem 4.2. There exists a (5,5)-GDD of type 2" for all n odd, n > 5.

Proof: For n = 1 or 5 (mod 20) apply Theorem 2.1 and notice that a
(5,5)-GDD of type 2° exists by Theorem 3.11 of [10].

For n = 11 or 15 (mod 20) apply Lemma 2.4 with A = 3, 4 = 2 and
g=2.

Forn=9,13,17 (mod 20) there exists a PBD(n, {5,k*},1) where k = 9
if n. =9 or 17 (mod 20), n > 37, n # 49 and k = 13 if n = 13 (mod 20),
n > 53. Therefore, by Theorem 2.1 we only need to construct a (5,5)-GDD
of type 2" for n = 9,13,17, 29, 33, 49.

For n = 49 we have shown that 49 € PBD({5,9}, 1) and hence the result
follows from Theorem 2.1.

For the remaining values of n see table 4.2,

For n = 3,7 or 19 (mod 20), we first construct a (5,5)-GDD of type 2"
for n=17,19, 23,27, 39,43,47,63,67,71.

For n = 7,19, 23, 27, 39, 43 see table 4.2.
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For n = 47, 63, 67 there exists a PBD(n, {5, 7,9}, 1), Theorem 2.2, so the
result follows from Theorem 2.1.

For n = 71 notice that 71 € PBD({5,15},1) by Lemma 2.1 so the result
follows from Theorem 2.1.

For all other values of n = 3,7 or 19 (mod 20) apply Theorem 2.5 with
k=5t=4,r=2 A=25,s8=0,4or 8, as described in Lemma 2.3, and
0<u<s<m-1.

13

17

19

29

Point Set

Za X Zg U Hgz

Z18

Z2s

Z34

Za X Zyo

58

66

Table 4.2
Base Blocks

{(0,0)(0,1)(0,2)(1,0)(1,1)) {(0,0)(0,2)(1,0)(1,1)(1,2)}
((0! 0)(0» 1)(0) 2)(11 3)’“) ((0& 0)(1’ 0)(1: 2)(114)h1)
{(0,0)(0,2)(1,1)(1,3)h2) ((0,0)(0,2)(1,4)(1,5)hz)
{(0,0)(0,1)(1,3)(1,4)) U {hs, h2}.

(01235) (013813) (016812) (0361014).

(012616) (0281120) (0381219) (01236)
(0261118) (0381219).

(012410) x 2 (0381623) (04112025) (05121824)
(0341525) (0252026) (04111823).

«i» 0)(7:: 1)(1:: 3)(i) 5)(7:: 11)):1-' =0,1
{(0,0)(0,4)(1,9)(1,14)(1,17)) {(0, 0)(0,1)(0,2)(0, 5)(1, 3))
{(0,0)(1, 1)(1,2)(1,3)(1,8)) {(0,0)(0,1)(0,8)(0,11)(1,7))
{(0,0)(0,1)(1,6)(1,12)(1,16)) {(0,0)(0,5)(0,12)(1,8)(1,14)}
{(0,0)(0,2)(1,9)(1,12)(1,16)) {(0,0)(0,3)(0,10)(1, 1)(1,2))
{(0,0)(0,7)(1,6)(1,11)(1,18)) {(0,0)(0,6)(1,4)(1,12)(1,13))
{(0,0)(0,4)(0,13)(1,8)(1,17)) {(0,0)(0, 2)(1,1)(1, 3)(1, 7))
{(0,0)(0,4)(0,13)(1,8)(1,16)) {(0,0)(0,5)(1,10)(1,13)(1,15))
{(0,0)(0,3)(1,9)(1,12)(1,16)} {(0,0)(0,5)(0,11)(1,7)(1,16))

(013827) x 2 {04183041) x 2 {06152848) x 2 (013511)
(0372043) (05142447) (06182742) (07192744)
(012617) (03132736) (0719 3745)

{(013721) (05154049) (08243647) (0161435)

(02192648) (03162839)} x 2 (013758) (04132956)
(0921 3149) (04192434),
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23

27

39

43

Z3 X Zag UHy

Z2 X Z22 U Hyo

Z2 X Z39

Za x Z34 U Hyg

On {0} x Z22 construct a (5,2)-GDD of type 211,
{((0,0)(0,2)(1,0)(1, 1)(1, 7)) {(0,0)(0,4)(1, 6)(1, 14)(1, 19))
{(0,0)(0,6)(1,9)(1,17)(1, 19)) {(0,0)(0,8)(1, 4)(1,16)(1,20)}} x 2
((1,0)(1,1)(1,2)(1, 5)(1, 15)) {(0,0)(0, 10)(1,0)(1, 3)(1, 18))
{(0,0)(0,6)(1, 11)(1, 13)(1, 16)) ((0, 0)(0, 3)(0, 10)(1, 15)(1, 17))
{(0,0)(0, 1)(0, 10)(1, 0)(1, 1)} {(0,0)(0, 2)(0, 9)(1, 1)(1,4)}
{(0,0)(0,3)(0, 8)(1,9)(1,18)) {(0,0)(0, 1)(0, 5)(1, 3)(1,7))

((0! 0)(0: 3)(13 14)(1: 19)’11) «01 0)(0: 5)(12 4)(1: 13)h1)
((On 0)(0» 7)(1’ 11)(1, 17)h2) «0’ 0)(0,9)(1, 3)(1, 18)h2)‘
«0: 0)(0s 1)(11 6)(1: 9)) u {hl: h2}

{(3,0)(3, 1)(4, 3)(4, 5) (4, 9))

(G, 0)G, 1)(3, 6)(,9)(¢,16)) } i = 0, 1.

{(0,0)(0,2)(0, 7)(1,0)(1,9)) {(0,0)(0,4)(1,3)(1,5)(1, 10))
{(0,0)(0,1)(0, 9)(1, 13)h1} {(0,0)(1,14)(1,17)(1, 18)h1)
{((0,0)(0, 2)(1,0)(1, 3)h2) {(0,0)(0,4)(1, 2)(1, 10)hs)
{(0,0)(0,6)(1, 14)(1, 18)h4) {(0,0)(0,8)(1, 19)(1,21)h5)
«0' 0)(0n 10)(1! 9)(1s 15)"6) «01 0)(0, 9)(1: 4)(1: 16)h7>
{(0,0)(0,5)(1,8)(1, 18)hs) {(0,0)(0, 10)(1,15)(1, 16)hg)} x 2
«0, 0)(01 3)(13 11)(1> 19)"’10) ((0, 0)(0: 3)(1’ 7)(1s 14)"'10)
{(0,0)(0,3)(1, 7)(1, 14)) U {hy, ha}

{(0,0)(0, 7)(1t 2)(1,9)) U {h;, hj} (3,3) = (3,4), (5,6)
{(0,0)(0,1)(1, 1)(1, 10)) U {hs, 5}, (3, 5) = (7,8),(9,10).

{(£,0)(¢,4)(4,9)(4,17)(4,33)) x 2, i = 0, 1.

{(3,0)(5, 1)(3, 3)(3, 21)(3, 28)), i = 0, 1

{((0,0)(0,9)(1, 10)(1, 17)(1, 37)) {(0,0)(0, 19)(1, 15)(1, 18)(1,24))
{(0,0)(0,2)(0, 14)(1, 9)(1, 33)) {(0,0)(0, 13)(1, 4)(1,6)(1, 29))
{(0,0)(0, 5)(0, 15)(1, 26)(1, 27)) {(0,0)(0, 1)(0, 17)(1, 3)(1, 14))} x 3
{(0,0)(0, 1)(0, 12)(0, 19)(1, 36)) {(0,0)(0, 3)(1, 25)(1, 30)(1, 35))
{(0,0)(0,6)(1,11)(1, 15)(1, 19)) ((0,0)(0, 14)(1, 18)(1,20)(1, 21))
{(0,0)(0, 3)(0, 7)(1, 1)(1, 26)) {(0,0)(0, 6)(1, 15)(1,23)(1, 36))
{(0,0)(0,3)(0, 11)(1, 13)(1, 31)) ((0,0)(0, 18)(1,4)(1, 11)(1, 21)}
{(0,0)(0,7)(0, 11)(1, 29)(1, 34)) ((0,0)(0,8)(1, 7)(1,20)(1, 24))
{(0,0)(0,2)(0, 6)(1, 1)(1, 14)) {(0,0)(0, 7)(1, 5)(1, 23)(1, 33))
{(0,0)(0,8)(0, 11)(1, 14)(1, 31)) ((0,0)(0, 18)(1,8)(1,20)(1, 28))

{3, 0)(E, 1), 3)(3, 7)(5, 15)) x 2 ((£,0)(3, 1)(3, 8)(3, 11)(4, 20))} i = 0,1
{((0,0)(0, 5)(0,18)(1, 33)h;) {(0,0)(1,0)(1,5)(1,18)hs}} i=1,...,5.
((0, 0)(0: ll)(l:4)(]s 13» U {hin hj}s (il J) = (1: 2)(3! 4)(5’6)'

«0! 0)(0: 3)(1’ 6)(1: 25)) U {hn hj}r (‘.; J) = (7: 8)(9: 10)
{(0,0)(0, 7)(1,8)(1, 11)) U {h;, h;}, (i,5) = (11,12)(13,14)
{(0,0)(0,1)(1,20)(1, 27)) U {h1s, h16}

{(0,0)(0,11)(1,7)(1, 14)) U {hi7, ’318}

{((000)(0D 2)(1s8)(1s lg)hlﬁ) «0' 0)(0’ 10)(1! 1)(1r 21)h7)
«0' 0)(01 14)(1, 3)(1= 9)"'8) «0’ 0)(0, 8)(11 17)(1s 29)"9)

((0, 0)(0s 4)(1: 14)(1: 16)h10) «0»0)(0o 6)(11 26)(1’ 30)"'11)
«0, 0)(0,9)(1, 7)(1, 31)h12)} x2 ((0:0)(0’ 6)(1,26)(1, 30)h13)
«0» 0)(00 4)(11 14)(13 16)’113) «0! 0)(0' 9)(1) 7)(1: 31)"14)
((0,0)(0, 1)(1, 10)(1, 20)h14) {(0,0)(0,2)(1, 23)(1, 32)h15)
((0,0)(0,9)(1, 11)(1, 19)h15) {(0, 0)(0, 10)(1, 16)(1,24)h16)
{(0,0)(0,10)(1, 26)(1, 27)h16) {(0,0)(0, 12)(1, 2)(1,25)h17)
{(0,0)(0, 12)(1, 1)(1, 7)h17) {(0,0)(0, 15)(1, 12)(1, 13)h18)
«ol 0)(0: 15)(lv 12)(1123)h18)
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Theorem 4.8. There exists a (5,5)-GDD of type 6™ for all odd n > 5
with the possible exceptions of n=19,23,27.

Proof: The proof of this theorem is similar to the previous one. Forn =1
or 5 (mod 20) apply Theorem 2.1 and notice that a (5, 5)-GDD of type 6°
exists by Theorem 3.11 of [10].

For n = 11 or 15 (mod 20) take a (5, 3) and (5,2)-GDD of type 6".

For n = 9,13 or 17 (mod 20) by the same argument of the previous theo-
rem we only need to construct a (5,5)-GDD of type 6™ forn = 9, 13,17, 29, 33.

For n = 29,33 apply Theorem 2.6 with k =r =6,¢t =4, m = 7, and
(u, 5) = (0, 0), (4, 8) respectively.

For n = 9,13, 17 see table 4.4.

For n = 3,7 or 19 (mod 20) if » ¢ {7, 19, 23, 27, 39, 43, 59, 83, 87, 99, 119,
123,139, 143,163, 167, 183, 243, 283, 347,459,563} = A then n € PDB ({5,
7,9},1) and hence the results follows from Theorem 2.1.

For n = 7 see table 4.4.

For n € A\{19,23,27,39,99,167} apply Theorem 2.6 with k = r = 6,
t = 4 and m, u, and s as described in table 4.3.

For n = 99,167 apply Theorem 2.6 with k = 5, r = 6, ¢t = 12, and
(m,u, s) = (9,3,12), (16, 3, 0) respectively.

For n = 39 take a RMGDI6, 1,6, 8] and inflate this design by a factor of
4. To each of the 7 parallel classes of block size 6 we adjoin 4 new points
and construct a (5,5)-GDD of type 47. On the parallel class of block size 8
we construct a RMGD(4, 1,4, 8]. There are 7 parallel classes of quadruples.
To each parallel class we adjoin a new point and we take 5 copies of each
parallel class. To all the blocks of size 8 we adjoin a new point and construct
a BJ[9,5, 5]. Finally, to the groups we adjoin 6 new points {Ai,..., s} and
on each group we construct a (5,5)-GDD of type 6° such that {hi,...,he}
is a group. The total number of points we added is 42. On these 42 points
we construct a (5,5)-GDD of type 67 such that {hi,...,hs} is a group. It

is easy to check that the above construction yields a (5,5)-GDD of type
639,

n m u s n m u 8
43 9 8 4 163 37 19 8
59 13 5 16 183 43 1 56
83 19 8 4 243 57 19 8
87 19 14 4 283 67 19 8
119 27 13 8 347 8 9 0
123 29 8 4 459 111 21 O
139 32 13 8 563 139 8 4
143 32 19 8
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Point Set Base Blocks

7 Zax Zy Groups {(0, 0)(o, 7)(0, 14)(1,0)(1, 7Q, 14)} +1, 1 € Z7. Blocks:
«i, 0)(i, 1)(i' 3)(iv 5)(7:1 11)) i=0,1, ((0: 0)(0v 1)(01 4)(0: 9)(03 13))
{((0,0)(0, 1)(0, 6)(1, 11)(1, 16)) {(0,0)(0, 10)(1,2)(1,18)(1,19))
((0,0)(0,3)(1,4)(1,6)(1,15))} x 2, {(0,0)(0,2)(1,5)(1, 8)(1, 20))
((0,0)(0,2)(1,1)(1,13)(1,19)) {(0,0)(0,1)(1,2)(1,3)(1,6))
((0,0)(0,3)(1,12)(1, 18)(1, 20)) {(0,0)(0, 8)(1,6)(1,10)(1,16))
((0,0)(0,9)(1,4)(1,12)(1,13)) {(0,0)(0,4)(0,10)(1,1)(1,9))
((0,0)(0,4)(0,9)(1,17)(1,20)) {(0,0)(0,6)(0,8)(1,4)(1,17))

9 Zs {(0132432) (04172838) (05123440) (03111517)} x 2
(0131647) (0151522) (01132039) (05101629)

13 Zr {(013741) (05153551) (08193761) (092344 56)
(0152255) (02101669) (03183050)} x 2 (0137 30)
(05143445) (07152561) (071935 56).

17 Zio {{013642) (05384862) (08305879) (092746 82)
(013738) (09273950) (0103257 76) (013284282)} x 2
(05254971) (063849 56) (08274369) (015711)
(03114390) (04122590) (05213078) (073556 70).

In the case g = 0 (mod 4), the following theorem is most useful to us.
Lemma 4.1. Let n > 5 be an integer. Thenn € PBD({5, 6},5).

Proof: If n =0 or 1 (mod 3) then there exists a B[n, 6,5], [10] and hence
n € PBD({5, 6},5).

For n = 2 (mod 3) take a B[n + 1,6,5] and delete one point from this
design to obtain the result.

Theorem 4.4. There exists a (5,5)-GDD of type g™ for all integers n > 5
and g =0 (mod 4).

Proof: By the previous lemma n € PBD({5,6},5) for all n > 5, and
by Theorem 1.1 a (5,1)-GDD of type g° and type g° exists for all g = 0
(mod 4). Apply Theorem 2.1 and the result follows.

Theorem 4.5. Let a be a positive odd integer. Then there exists a (5, 5a)-
GDD of type g™ for all g and n > 5 satisfying the necessary conditions with
the possible exception of (g,n) = (6,19)(6,23)(6,27) and A = 5.

Proof: We first prove the theorem for A = 5. If g is odd then the result
follows from Theorem 4.1. If g = 0 (mod 4) then the result follows from
Theorem 4.4. If g = 2 or 6 the result is given in Theorem 4.3. For g = 2

(mod 4), g # 2,6 write g = 2m then take a (5,5)-GDD of type 2* and
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then apply Theorem 2.7 with x = 1 and m is odd. We now construct a
(5,15)-GDD of type 6™, n = 19,23,27. For this purpose take a (5,5)-GDD
of type 2®, n = 19,23,27 and then apply Theorem 2.3 with x = 3 and
m=3.

For X\ > 15 write A = 10s + 15¢ and then the result is obtained by taking
s copies of a (5, 10)-GDD of type g™ together with ¢ copies of a (5, 15)-GDD
of type g".
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