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ABSTRACT. The [0, co)-valued dominating function minimiza-
tion problem has the [0, co)-valued packing function as its linear
programming dual. The standard {0, 1}-valued minimum domi-
nating set problem has the {0, 1}-valued maximum packing set
problem as its binary dual. The recently introduced comple-
mentary problem to a minimization problem is also a maximiza-
tion problem, and the complementary problem to domination
is the maximum enclaveless problem. This paper investigates
the dual of the enclaveless problem, namely, the domination-
coverage number of a graph. Specifically, let n(G) denote the
minimum total coverage of a dominating set. The number
of edges covered by a vertex v equals its degree, degv, so
7(G) = MIN{3_, sdegs: S is a dominating set}. Bounds on
7(G) and computational complexity results are presented.

1 Introduction

Many graph-theoretic subset problems such as those involving domine-
tion, packing, covering, and independence can be described in matrix form.
Such graph theoretic minimization and maximization problems expressed
as linear programming problems have dual maximization and minimization
problems, respectively. Extending results in [23,26], Slater [27] formally de-
fines “complementary” problems and presents a linear algebraic framework
involving duality and complementarity showing the relationships among
many graph-theoretic subset problems such as those involving domination,
independence, enclavelessness, packing, and covering. As for duality, com-
plementarity involves one minimization and one maximization problem.
(See (4) below.) The complementation theorem [23,26,27] applied to spe-
cific pairs of complementary problems produces results including Gallai’s
covering/independence theorem [10] with a(G) + B(G) = |V(G)| and the
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domination/enclaveless theorem [23] that v(G) + ¥(G) = |V(G)|. In this
paper we begin the study of the parameter 5(G), the domination-coverage
number of graph G, which was defined in [27] as the dual of the enclave-
less number ¥(G). Specifically, n{G) is the minimum total coverage of a
dominating set.

For graph G = (V, E) with vertex set V of order |[V(G)| = n and edge
set E of size |E(G)| = m, we let V(G) = {v1,v2,...,v5} and E(G) =
{e1,€e2,...,em}. Theopen neighborhood of v; € V(G)is N(v;) = {v;: viv; €
E(G)}, and the closed neighborhood is N[v;] = N(v;) U {v;}. The closed
neighborhood matrix N = [n; ;] is the n-by-n binary matrix with n; ; =1
if v; € N[v;] and n; ; = 0 otherwise. Vertex v; dominates each v € N[y,
including »; itself, and edges e, and e, dominate each other if they have
a vertex in common. Vertex v; and edge er = v;v; are said to cover each
other.

Vertex set S C V(G) is a dominating set if each v; is in S or is adjacent to
a vertex in S. That is, we must have (J,c¢ N[s] = V(G). The domination
number (G) is the minimum cardinality of a dominating set. See, for
example, Hedetniemi and Laskar [17] for a collection of papers on graph
domination. Letting Xs = [s1,$2,...,5n]* be the characteristic column
vector for § with s; = 1 if v; € S and s; = 0 if v; &€ S, and letting
T, = [1,1,...,1] be the all ones column n-tuple, S dominates if and only
ifN-Xg>Tn.

This paper is only one of many recent papers to study combinatorial
problems which are posed as linear programming problems. For example,
Chung, et al. [6] have studied the fractional covering problem for hyper-
graphs as well as its linear programming dual, and Tipnis and Trotter
[30] have studied vertex-packing problems in graphs. Fisher [9] continues
the investigation of fractional domination, which was previously studied
by Farber [8]. Also, Karchmer, et al. [21] have recently applied linear
programming to the problem of communication complexity, and Boyd and
Hao [5] have made use of linear programming techniques in the design of
communication networks.

n
Y (G)=MIN ) "z,
i=1

(1) Subject to N - X > 1p,
Withz; €Y

Y-domination for arbitrary subsets Y of the reals, Y C R, is defined in
Bange, et al [4] and by Goddard and Henning [13], and Y-valued parameters
are defined in [26,27] for other graph parameters. For normal domination
we take Y = {0,1} in (1), so ¥(G) = v{0,11(G). If Y = R* = [0,00) then
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(1) defines a linear programming problem with a dual packing problem.

n
py(G) = MAX > =
i=1
(2) Subject to N - X < T,
Withz; €Y

We say that vy and py are Y-duals. In particular, the packing number
p(G) = po,13(G), and ~y and p are binary duals.

For S C V(G) vertex v is an enclave of S if N[v] C S, and v is an
isolate of S if v ¢ S and N(v) C S. Alan Goldman suggested the study of
enclaveless sets (see [23]) and isolate-free sets (see Maurer [22]). Specifically,
the enclaveless number of G, denoted ¥(G), is the maximum cardinality
of a vertex set S C V(G) such that S has no enclaves. Note that S is
enclaveless if N[v;] is not a subset of § for 1 < i < n. Equivalently, we
must have |N[v;] N S| < degv;. Let D = [degvy,degvz,...,degu,]t.

n
Ty (G) = MAX ) _ z;
i=1
(3) Subject to N- X < D
With z; € Y

As noted in [23], domination and enclavelessness are complementary
properties, that is, S is a dominating set if and only if V(G) — S is en-
claveless. It follows that 4(G)+ ¥(G) = n. More generally, Y C R is called
complementable if z € Y implies 1 —z € Y (in particular, {0,1} being
complementable), and we have the following theorem.

Theorem 1. [27) If Y is complementable and ¥y (G) < oo, then vy (G) +
Uy (G)=n.

As in [27), we define the general Y-complementarity problem for a com-
plementable set Y C R. Let M denote an arbitrary k-by-h real matrix; let
C = [c1,¢2,---,cn]* be the vector of coefficients for an objective function;
and let B = [by,b2,...,bk]* be a vector of constraint values. Denote the
jth row sum of M by r; = Z:;l m;i, and let the row sum vector of M
be Lps = [r1,72,...,7]t. Note that a binary h-vector X = [z, Z, ..., zs)"
can be considered to be the characteristic function of a set S of columns of
M, those columns with z; = 1. Clearly, Th—-X = 1—z,1—22,...,1—z4)
is the characteristic function of the complement of S. In general, for a com-
plementable set Y we have X € Y* if and only if T, — X € Y%,

35



PRIMAL

h
Z=MIN ) cz;
i=1
4) Subject to M - X > B
Withz; €Y
DUAL
k
Z* = MAX Z bja:j
Jj=1
Subject to M*- X < C
Withz; €Y
COMPLEMENT

h
Z# = MAXqu,-
i=1
Subject to M - X < Ly — B
Withz; € Y

Theorem 2. (Matrix Complementation [27]) For any k-by-h matrix M, h-
tuple C, k-tuple B, and complementable set Y C R, let L = [ry,r9,...,74]*
be the row sum vector of M. Then if the primal problem in (4) has a feasible
solution, then either Z = —o0 and Z# = oo, or else Z + Z#* = Y1 ci.

Proof: If Z = K > —oo0, then given ¢ > 0 there exists an n-tuple X in Y*
with M - X > B and 2?:1%’%‘ <K+e

NowM-X > B
if and only if for 1 < § < k we have mj1z, + mj2T2 + - - + M5 pTh > bj
if and only if for 1 < j < k we have rj — (mj 121+ mj2T2+ - -+ mjpZr) <
ri —bs
ifJ andJonly if for 1 <7 <k wehave m; (1 -z)+mjo(l —z2)+ -+
mj'h(l —zp) < Tj — bj
if and only if M(1, — X) < L — B. By assumption, I, — X € Y*. Thus
zZ# > 22;1 c(l—x;) = Zi':l ¢ — 22;, G > 2:;1 ¢; — (K + ¢). Hence
Z+Z#* > Z:;l ¢ —e. And if Z# = J < oo, then given € > 0 there exists
an h-tuple X with M- X < L — B and ¥, ciz; > J —e. It follows that
M(-X)>Band Z < Yr ci(l—zi) = Doy ci= b, oimi < Yie, e
J+e Hence Z+ Z# < Z?:x c; + €. Consequently, Z + Z# = 2?:1 .
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If Z = —o0 and —oo < K, then there exists an n-tuple X in Y* with
M-X >Band Y*  cz; < K. Asabove, M(T,—X) < L-BwithT,-X €
Y"* by complementarity. Thus Z# > Y% ¢, = S0 ez > Yon i — K.
So Z# = co. Similarly, Z# = co implies Z = —co, completing the proof.

Two examples will illustrate the many corollaries of the theorem: a
weighted Gallai Theorem (covering/independence) and a weighted domi-
nation/enclaveless theorem. Assume each vertex v; € V(G) has a weight
c;. For § C V(G) define the weight of S to be w(S) =3}, s ¢ci- Let way
and wyy denote the minimum weights of Y-covering and Y-dominating
sets, respectively, using just wa and wy when Y = {0,1}. Let wBy and
wPy denote the maximum weights of Y-independent and Y-enclaveless
sets, respectively, using wg and w¥ for Y = {0,1}.

Corollary 1. If Y is complementable, then

a. way (G) + wPy (G) = w(V(G)).

b. wyy(G) + wly (G) = w(V(G)).

When Y = {0,1} we get the following.
Corollary 2.

a. wa(G) + wh(G) = w(V(G)), and

b. wy(G) + w¥(G) = w(V(G)).

With Y = {0,1} and C = 1,, we get the following.
Corollary 3.

a. a(G) + B(G) =n, and

b. v(G) + ¥(G) =n.

Corollary 3a. is Gallai’s Theorem [12]; using different notation 3b. ap-
peared in [25].

The Y-domination-coverage number defined in (5) is the Y-dual of the
enclaveless problem (3).

1y (G) = MIN ) _(deg ;)

i=1
(5) Subject to N - X > 1,
Withz; € Y
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Of particular interest, of course, is 7(G) = 7y0,13(G) for which 7(G) =
MIN{}_ .gdegs | S is a dominating set}. More generally, the comple-
mentable set Y;, = {1—%,2—k,...,k—2,k—1, k} will be of interest. Note
that degv; is the number of edges covered by v;, so ), s deg s is the total
amount of coverage done by S. For the constraint N-X > T,, in (5) the so-
lution vector X must produce a Y-dominating function on V(G). Thus the
domination-coverage number 7(G) is, in fact, equal to the minimum cov-
erage done by a dominating set. Using LP-duality we get the next result,
and Theorem 4 is obvious.

Theorem 3. ([27]) ¥(G) < ¥r + (G) =& + (G) < n(G).
Theorem 4. ([27]) If Y1 C Y2, then ny2(G) < ny1(G).

2 Examples and Bounds

Let G be the graph obtained from a complete graph K; on a set {v;,vs, ..., v}
by adding two endpoints v} and vf adjacent to each v;. For G we have
n =3t and m =t(t — 1)/2 + 2t. Any dominating set S contains v; or both
v} and v2, and it follows that 7(G) = 2t. More generally, given graphs F
on t vertices and H on r vertices let G = F o H be the graph on #(1 + )
vertices obtained from one copy of F and ¢ copies of H by adding edges
connecting each v € V(F) to every vertex w in a distinct copy of H. Graph
G above is K; 0 K». In general, n(F o K,) = tr. Note that for FoK, =G
the unique n(G)-set consists of the ¢r endpoints while y(G) = ¢.

Also, for example, consider the complete multipartite graph G = Kn1 n2,..nt
withn =n;+ns+...n, and ny; > ng > --- > n, > 1. Note that there are ¢
sets of maximal mutually nonadjacent vertices. We can classify the minimal
dominating sets of G into two groups. One is to use all the vertices in one
of the maximal sets of mutually nonadjacent vertices. The number of such
vertices is n; for some 1 < j <¢. The amount of coverage done by such a
dominating set is n; 3, ., n: = nj(n—n;). The other type of dominating set
consists of two vertices, one from each of two distinct maximal sets of mu-
tually nonadjacent vertices of sizes, say, n; and nx. The amount of coverage
done by these two vertices is n; + ng -}-22;.5‘51.',c n;. If n, =1, then the first
of these two sums is smaller, and 5(G) = n — 1. Otherwise, suppose j < k,
sothat mj+ne+237, 40 o i S20G+23 7,00 6 = 210 M S Nk Do N
Therefore, since the smallest of the sums n;+ng+23, . i = 2n—n;j—ng
is the one for which j =1, k =2, we have 7(G) =nl +n2+2) [ ,n; =
2n — n; — na.

Theorem 5. If the minimum degree §(G) > 1, then n/2 < 9(G) < m.

Proof: To see that n/2 < n(G), let S be any minimal dominating set
of G. If |S| > n/2 then clearly )  .odegs > n/2. If |S| < n/2 then
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|V — S| > n/2, and thus S dominates at least n/2 vertices outside of S
which implies S covers at least n/2 edges. To see that 7(G) < m, let S be
any maximal independent set of G. Since S is independent, each edge of G
is covered at most once, and since S is dominating we have that n(G) < m.

Theorem 6. n(G) = m if and only if each component of G is a C4 or a
Kl,'n—l-

Proof: First note that it it easy to see that 5(C4) = 4 and 9(Kjn-1) =
n — 1. Conversely, suppose that 7(G) = m. Assume that some component
H of G contains two vertices u, v such that d(u,v) = 3. Let u,w, z,v be a
path of length three between u and v. Let S be any maximal independent
set containing » and v. Then $S is a dominating set of G and w,z ¢ S.
Therefore, S is a dominating set of G that covers at most m — 1 edges of
G. Therefore, (G) = m implies that the diameter of each component is at
most two. Suppose that 7{(G) = m and that the diameter of each component
is at most two. Letting H be any component of G with |V(H)| = &,
note that if H contains a vertex of degree k — 1, then 5(G) = m only if
H = K n_1. Otherwise, let u,v € V(H) such that uv ¢ E(H). Then since
diam(H) = 2, there exists w € V(H) such that vw,vw € E(H). Since
degw < k — 1, there exists z € V{(H) that is not adjacent to w. However,
since diam(H) = 2, z is adjacent to some vertex that is adjacent to w.
Without loss of generality, suppose that vz € E(H). If vz ¢ E(H) then
let S be a maximal independent set of H that contains x and v. S is a
dominating set of H that does not cover edge uw and which covers all other
edges at most once. Thus vz € E(H). If these are the only vertices of H,
then H = Cy. Otherwise, there is some vertex y € V(H) distinct from the
other four vertices. Suppose that uy € E(H). Then let S1 = {u,y}. S1
dominates (at least) vertices u, v, w, z, and y. Edges uz and uw are not
covered by S1 and at most one edge incident with these vertices is covered
twice. (If vy € E(H) it is covered twice by S1.) Let S2 be a maximal
independent set of H — N(S1). Then S1U S2 is a dominating set of H
that covers at most m — 1 edges. Therefore, n{G) = m if and only if each
component of G isa Cy or a K 5_1.

Theorem 7. If the minimum degree §(G) > 1, n(G) = n/2 if and only if
G = Ho K, where H is any graph.

Proof: If G = H o K}, it is easy to see that that 7(G) = n/2. Conversely,
suppose that 9(G) = n/2. Let S be an n(G) set. Since each vertex of S
covers at least one edge, |S| < n/2. Also, n(G)=D - X, = (D+ 1, - Tn)-
Xs = (D+1T1,)- Xs —|S|. Because S dominates (D + 1) - X, > n vertices,
if |S| < n/2, then n(G) > n/2. Thus, |S| = n/2. This implies that each
element of S must dominate itself and exactly one other vertex, so we have
that v € S implies deg v = 1. This gives us the result that G & H o K; for
some graph H.
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By noting that any n{G) set is a dominating set of G and each vertex in
an 7(G) set must cover at least as many edges as the minimum degree of G
and no more than the maximum degree of G, A(G), we have the following
result.

Theorem 8. ¥(G) - §(G) < 7(G) < v(G) - A(G).
Corollary. §(G) = A(G) = r implies n(G) = v(G) - r.

For example, both K, and C, are regular, which implies 9{K,) = n —
land 5(C,) = 2[n/3].

For domination each vertex is dominated at least once; for efficient dom-
ination each vertex is dominated at most once and we seek to dominate as
many vertices as possible under this constraint. For “redundance” we seek
to minimize the total amount of domination done, given that every vertex
gets dominated at least once. Studies of efficiency and redundance include
(1, 2, 3, 14, 15, 19, 20]. Because v; dominates |N[v;]| = 1 + degw; vertices,
we have F'(G) = Fyg,1}(G) defined as follows.

Efficient Y-Domination

n
Fy(G) = MAX ) (1 + degv;)z:

i=1
(6) Subject to N - X < T,
Withz; €Y

Y -Redundance

Ry(G) =MIN ) (1 +degwv)z;

i=1
(M Subject to N- X < T,
Withz; € Y

The closed neighborhood order domination (CLOD) and closed neigh-
borhood order packing (CLOP) parameters arose as the positive integer
duals of F and R, respectively. See [24, 25, 18]. Their formulations follow
with D* denoting the column vector [1+degwv;,1+degvs,...,1+deguy,]t.
CLOD

Wy(G) =MIN "z
i=1

(8) Subject to N - X > D*
Withz; € Y
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CLOP

Py(G) =MAX )z
i=1
M Subject to N - X < D*
Withz; €Y

We next compare n(G) to the closed neighborhood parameters F(G),
W(G), P(G), and R(G).
Theorem 9. n < ¥(G) + 7(G) < R(G), and F(G) = n implies that
n =v(G) +n(G) = R(G).

Proof: From Theorem 1, (@) + ¥(G) = n, and from Theorem 3, ¥(G) <
n(G), so together we have that ¥(G) + n(G) > n. Also, if S is an R(G)
set, then S dominates G and S covers R(G) — |S| edges. Since |S| > ¥(G),
we have that 5(G) < R(G) — v(G). Noting that F(G) = n if and only if
R(G) = n (see [14]) completes the proof.

For example, since F(P,) = n, and since v(P,) = [rn/3], we have that
n(P,) = n — [n/3]. However, v(G) + 7(G) = n does not imply F(G) = n.
See Figure 1.

Figure 1.
Tree T for which F(T) =4 < Y(T)+n(T) =5 < 6 = R(T).

Note that (Ko K|) =n/2 < n= F(KoK;) = W(KoK;) = P(KoK,).

On the other hand, consider the graph H in Figure 2. It is easy to
see that F(H) = 3p, R(H) = 6p, and since H is regular we have that
W(H) = P(H) = n = 4p, and since the degree of each vertex is 3p — 1,
n(H) = 6p — 2. Thus, F(H) < W(H)=n= P(H) <n(H) < R(H). From
the graphs in Figures 1 and 2 we have that 7(G) is pairwise incomparable
to F(G), P(G), and W(G). Also the class of graphs in Figure 2 is one in
which 7(G) > n.
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Figure 2.
F(G)=3p<W(G)=4p=n=P(G)<n(G)=6p—2 < R(G) = 6p.

Also, we have the following Nordhaus-Gaddum-type bounds for 7.
Theorem 10. n —1 < 7(G) +7(G) < (3)-

Proof: To prove the lower bound, first suppose that §(G) > 1 and §(G) >
1. Then by Theorem 5, n(G) > n/2 and 5(G) > n/2. Thus, we need
only consider the case in which one of G or G has isolates. Suppose that
G has k > 1 isolated vertices with the set of isolated vertices being X =
{z1,%9,...,2z¢}. Then by Theorem 5, n(G) > (n— k)/2. Suppose also that
there are 7 > 0 vertices of degree n—1 —k in G with the set of such vertices
being called S. Then let H = G — X — S. Note that |V(H)| =n —j — k.
Now if any vertex in X in used as a dominating set of G then the amount of
coverage done is n—1. Otherwise, the 7 vertices of S and some of the vertices
of H are used to dominate G. Noting that the subgraph induced by the
vertices of H has minimum degree of at least 1, we have (G)+7(G) > (n—

R)/2+3k+(n—j—K)/2+ky(H) = n-tjk—j/2-+k(y(H) ~1). I [V(H)| # ¢,
then 7(G) + n(G) > n. Otherwise, G = K; + K. If j = 0 we then have

7(G)+n(G) = n—1, andif j = 1 we have n(G)+n(G) n—1+k—-1. Finally
J > 2and k > 1, so we have that 7(G)+7(G) = min{j—14n—1,j-14jk} =
min{n+35-2,j(k+1)-1} =min{k+25-2,j(k+1)-1} = k+2j -2 > n,
which completes the proof that n—1 < 9(G) +7n(G). This proof also shows
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that this lower bound is attained if and only if G or G is a complete graph.
Also note that G = KoUK is a family of graphs for which 7(G)+n(G) = n.

The upper bound is easy to see since 7(G) + n(G) < |E(G)| + |E(G)| =
(2)-

Noting that this bound is sharp only for those graphs which have the
property that 7(G) = |E(G)| and 5(G) = |E(G)|, we see that the upper
bound is sharp if G is a Cy4, Ps, or a P3. Otherwise from Theorem 5 the
only other graphs to consider are Kjn—1 for n > 3. But for K51, the
complement is an isolate plus a complete graph on n — 1 vertices. Thus,
the upper bound is sharp if and only if G or GisaCy, Py,ora Ps.

If G or G is a complete graph, then 9(G) - n(G) = 0. However, if neither
G nor G has any isolates then we can improve upon this as follows.
Theorem 11. If §(G) > 1 and §(G) > 1, then n?/4 < 7(G) - n(G) <
(3)°/4.

Proof: The lower bound follows from Theorem 5. To get the upper bound,
note that 7(G) - n(G) < |E(G)|((5) — |E(G)]). Letting f(z) = z(a — =), it
follows from calculus that max:cg f(z) = a?/4, which gives us the bound.

Note that 7y (G) > 0 where Y C R*. However, if we extend our scope to
let Y include negative numbers, then there exist graphs for which 7y (G) <
0. For example, with Y, defined as in Section 1, and tree T as in Figure
3, 7(T) = 4 and as indicated nyx(T) = 4 — 2k. Also, nz(T) = no(T) =
ne(T) = —co. By noticing that if 7y(G) < 0, we can simply double the
weights of any domination-coverage function and it is still a dominating
function, then we have the following.

Theorem 12. If 7y(G) < 0 then ny(G) = —oo where Y = {R,Q, Z}.

Theorem 13. ny;(G) = —co if and only if ny2(G) = —oco, where Y1,Y2 €
{R,Q, Z}.

In order to calculate 7yo,1}(G) for some graph G we might attempt to
calculate the associated parameter 7o 1)(G). However, this does not always
work, as illustrated by the graph H in Figure 4. Since H is regular of degree
2p and y(H) = 2, then from the corollary to Theorem 7 we have (0,1} (H) =
4p > n = 3p. However, note that by placing a weight of 1/(2p 4+ 1) on
each vertex we have a [0, 1]-dominating function of H whose coverage is
3p(2p/(2p + 1)). Also, by placing a weight of 2p/(2p + 1) on each vertex,
we have a [0, 1]-enclaveless function whose weight sum is 3p(2p/(2p + 1)).
Therefore, from Theorem 2 we have 7j0,1)(G) = 3p(2p/(2p+1)) <3p=n<

4p = 00,1} (G)-
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Figure 3.
Tree T with 9y (T) = 6 — 2k and nz(T) = no(T) = nr(T) = —co.

=x
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Figure 4.
Graph H for which ny y)(H) < ny0,1) (H).
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The preceding example leads us to wonder about the complexity of the
question “Is n(G) < J7”, which we consider in the next section.

3 Complexity Results

In this section we prove that determining if 7(G) < J is NP-complete
and that determining if 9(G) = ¥(G) is NP-complete even for the class of
chordal graphs.

From Garey and Johnson[11], we know that domination is NP-complete,
even for the class of chordal graphs.
PROBLEM: DOMINATING SET.
INSTANCE: A chordal graph H = (V, E) and a positive integer j < |V].
QUESTION: Is v(H) < j (that is, is there a vertex set S C V such that §
is a dominating set with |S| < 7)?

We will show a polynomial time reduction of the above problem to
domination-coverage to show that it is also NP-complete.

PROBLEM: DOMINATION-COVERAGE.

INSTANCE: A chordal graph G = (V, E) and a positive integer k < |E|.
QUESTION: Is (G) < k (that is, is there a dominating set of G whose
coverage is less than or equal to k)?

Theorem 14. Problem Domination-Coverage is NP-complete, even for the
class of chordal graphs.

Proof: Given a graph G of order n and size m, form graph G’ as in
Figure 5. This construction can clearly be done in polynomial time. Note
that if in G’, the vertices of G are dominated only by vertices in G, then
the minimum amount of coverage done by a dominating set is mvy(G) +
Sr  (m—degv;) +n(mn) = my(G) + mn — 2m + mn? (achieved by using
every t; and yy, together with a minimum dominating set of G). Otherwise
if k > 1 of the vertices in the Ky _degv;’s are used (we can assume that they
are from distinct cliques and that they come from those indexed from 1 to k)
then the amount of coverage done is at least Zf':l(m —degv;)+k+kmn+
Skt (m—degv;)+mn? = k(14+mn)+mn—2m+mn?® > my(G)+mn—
2m+mn?. Therefore, ¥(G) < j if and only if 9(G") £ mj+mn—2m+mn?,
and since G is chordal implies that G’ is chordal, the proof is complete.

In recent years there has been an increasing interest in the complexity
of questions involving the comparison of two graph parameters. One such
well-known question is “Does i(G) = B(G)?”", that is, is every maximal
independent set of maximum size. Graphs which satisfy this property are
said to be well-covered. Chvatal and Slater [7] proved that the question “Is
i(G) < B(G)?” is NP-complete. It is also quite natural to ask about the
complexity of questions concerning the equality of parameters which are
the Y-duals of each other.
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For example, we have recently shown (see [28,29]) that the questions “Is
F(G) =W(@G)? and “Is P(G) = R(G)?" are NP-complete, even for the
class of bipartite graphs. This leads us to consider the complexity of the
question “Is n(G) = ¥(G)?”. From Garey and Johnson [11] we know that
the following problem is NP-complete.

PROBLEM: ONE-IN-THREE 3-SATISFIABILITY WITH NO NEGATED
LITERALS

INSTANCE: Set U of boolean variables, collection C of clauses over U such
that each clause ¢ € C has |¢| = 3 and no c € C contains a negated literal.
QUESTION: Is there a truth assignment for U such that each clause in C
has exactly one true literal?

PROBLEM: n — ¥ EQUALITY.

INSTANCE: A graph G = (V, E)

QUESTION: Does n(G) = ¥(G)?

Theorem 15. Determining if 7(G) = ¥(G) is NP-complete, even for the
class of chordal graphs.
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Proof: The reduction is from Exact 1-in-3 3SAT with no negated literals.
For U = {uy,u,...,un}, let C = (11 Vuia Vu13) A (ug1 V ugy V ugg) A
('u,31 Vu32Vu33) .. -/\(uMIVuMQVuM:;). Notice that |U| = N and ICl =M.
Given an instance of Exact 1-in-3 3SAT with no negated literals construct
the graph G of order n = M + 2N in Figure 6, where each ¢; is made
adjacent to the vertices corresponding to iy, us2, and u;3. Note that
v(G) = N. We show that the instance of Exact 1-in-3-3SAT has a satisfying
truth assignment if and only if n(G) = ¥(G). To see this, note that since
¥(G) +v(G) = n, n(G) = ¥(G) if and only if 7(G) + v(G) = n. Suppose
that the associated instance of Exact 1-in-3-3SAT with no negated literals
has a satisfying truth assignment. Define X to be the set of vertices to which
vertex u; belongs if and only if literal u; is assigned a value of true, to which
vertex v; belongs if and only if literal u; is assigned a value of false and every
¢; € X. It can easily be seen that since the associated instance of Exact 1-
in-3-3SAT with no negated literals has a satisfying truth assignment, then
X is a dominating set and no two vertices of G dominate the same vertex.
Thus, X is an efficient dominating set of G. Therefore, by Theorem 9, we
have that 5(G) + v(G) = n. Conversely, assume the associated instance of
Exact 1-in-3-3SAT with no negated literals does not have a satisfying truth
assignment. For an n{G)-set S if we use only some of the vertices u; and
vj, (that is, no cx € §) then more than N + M edges are covered, which
implies that 7(G) +¥(G) > n. If any vertex ¢j isin S, 1 < j < n, then at
least M + N + 2 edges are covered, and thus #(G) 4+ v(G) > n. Noting that
G is chordal completes the proof.

C Cc
1 2 C3 Cy
Figure 6.
Reduction from Exact 1-in-3 3SAT with no negated literals

47



By noticing, as already pointed out, that 7(G) = ¥(G) if and only if
7(G) + v(G) = n, we have the following corollary.

Corollary. Deciding if 7(G)++(G) = n is NP-complete, even for the class
of chordal graphs.

4 Conclusion

The parameter studied in this paper is only one of many arising out of the
duality-complementarity cycles of the matrix formulations of graph param-
eters presented in [27]. For example another of these new parameters is the
maximum number of edges that can be covered by an open packing, where
an open packing is a subset S of the vertex set that satisfies the condition
that given any vertex v, at most one vertex from S appears in v’s open
neighborhood. This is studied in [12].

Also, while the problem of determining n(G) is NP-complete for general
graphs, it can be solved in linear time for series-parallel graphs. However,
this parameter does not fit the template of Grinstead and Slater [15]. It
does, however, fit a different template that also includes the efficient open
domination parameter mentioned in the previous paragraph, as well as
several other new parameters arising from the framework in [27]. This
template will be presented in later work.
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