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ABSTRACT. It is shown that the Overfull Conjecture, which
would provide a chromatic index charaterization for a large class
of graphs, and the Conformability Conjecture, which would pro-
vide a total chromatic number characterization for a large class
of graphs , both in fact apply to almost all graphs, whether
labelled or unlabelled. The arguments are based on Polya’s
theorem, and are elementary in the sense that practically no
knowledge of random graph theory is presupposed. It is simi-
larly shown that the Biconformability Conjecture, which would
provide a total chromatic number characterization for a large
class of equibipartite graphs, in fact applies to almost all equibi-
partite graphs.

1 Introduction

The graphs in this paper will all be simple and it is well known that the edge
chromatic number of a graph G, x'(G), satisfies A(G) < x'(G) < A(G)+1.
As is also well known [13] , the problem of deciding whether a graph is Class
1 or Class 2, that is whether x/(G) satisfies the left hand or right hand equal-
ity respectively, is NP-hard, thus a reasonable characterization of those
graphs which are Class 1 is unlikely to exist. However, the Overfull Conjec-
ture, if true, would provide such a characterization for all graphs which sat-
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isfy A(G) > 3|V(G)|. A graph G is overfull if |E(G)| = A(G) 14N | +1.
The Overfull Conjecture states:

Conjecture 1. Let A(G) > 3|V(G)|. Then G is Class 2 if and only if G
contains an overfull subgraph H with A(H) = A(G).

For information on this conjecture see [2,3,12]. Since there is unlikely
to be a characterization for all graphs, it is interesting to observe that
the Overfull Conjecture actually applies to almost all graphs (see Theorem
1 and 2), and thus, if true, would provide a characterization for almost
all graphs. Here the phrase “almost all graphs have property P” has the
limited meaning that lim,_, %{-:3 = 1, where P(n) is the cardinality of the
set of all graphs of order » having property P, and A(n) is the cardinality of
the set of all graphs of order n. The graphs in question may all be labelled
or all be unlabelled.

A result in this vein already exists: Erdds and Wilson [5] showed that
almost all graphs are class 1, because almost all graphs have just one vertex
of maximum degree (and such graphs are class 1). Their result, though,
does not classify graphs into class 1 or class 2.

A similar situation is obtained with the total chromatic number of a
graph G, x7(G), and another well known conjecture states that A(G)+1 <
x7r(G) £ A(G) + 2. Graphs which do or do not satisfy the left hand in-
equality are called Type 1 or Type 2 respectively. The next conjecture
involves conformable graphs. A graph G is said to be conformable if G
can be properly vertex coloured with A(G) + 1 colours such that the num-
ber of colour classes of parity different from that of |V(G)| is at most
Yvev(e)(A(G) — d(v)), which is called the deficiency of G and is denoted
def(G). Sanchez-Arroyo {16] showed that it is NP-hard to determine the
total chromatic number of a graph, even if it is bipartite. But the same con-
siderations apply for total colouring as for the edge colouring, and the Con-
formability and Biconformability Conjectures (below) both concern possible
classifications into Type 1 and Type 2 graphs of high maximum degree.

Conjecture 2. (The Conformability Conjecture) Let A(G) > 3(|V(G)| +
1). Then G is Type 2 if and only if G contains a subgraph H with A(H) =
A(G) that is either non-conformable or, in the case when A(G) is even,
Ka(c)+1 With one edge subdivided.

For further information about this conjecture, see [4,7,8,9,10]. Note that
the Conformability Conjecture as stated in [4] has had to be modified in
the light of the Chen and Fu result {1]; in [7] a substantial argument is
given to explain why no further modification is likely to be needed.

The final conjecture is the Biconformability Conjecture which just con-
cerns bipartite graphs. Let G = (A, B) be a bipartite graph and ¢: V(G) —
{1,2,...,A(G) +1}. Let A; = Anc™!(?) and B; = BNc () and
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a; = |A;] and b; = |By|. Also, if W C V(G) let Vca(W) denote the
set of all vertices of W which have degree in G less than A(G). A bipartite
graph G is said to be biconformable if there exists a proper vertex colouring
c: V(G)— {1,2,...,A(C) + 1} such that

A(G)+1
Vea(A\A)| 2 bi—ai, [Vea(B\B;)| 2 a;—b; and def(G) > > [ai=bil.

i=1

Conjecture 3. Let G be a bipartite graph and let A(G) > Z|V(G)|.
Then G is Type 2 if and only if G contains a non-biconformable subgraph
H with A(H) = A(G).

For further information about this conjecture, see [4,8]. Note in partic-
ular that the definition of biconformability in [4] has been modified in [8],
and that a further modification will be nceded to cover an awkward case
discovered recently by Bor, Chen and Fu; the details of this have not yet
been published.

2 Graphs with A(G) > 4|V(G)|

We show first that almost all labelled graphs satisfy A(G) > Hv(o)),
and then, using Polya’s famous asymptotic result (see below), that almost
all unlabelled graphs satisly A(G) > %IV(G)|. Thus the class of graphs,
whether labelled or unlabelled, which are the subject of Conjecture 1, or of
Conjecture 2, includes almost all graphs.

The distribution of degrees in a graph for almost all graphs is a question
that has been studied considerably, and in fact the results of Theorems 1
and 2 seem to be quite well-known. All the same, we have not been able to
find these results stated explicitly. Our short proofs should at least make
these results accessible.

Theorem 1. Almost all labelled graphs G satisfy A(G) > 3|V(G)|.

Proof: For each n > 1, let n* be the larger root of z2 + z — n. Then n* =
—-;- + % 1 +4n and so n* is less than /n by a small amount. Moreover,

n* = \/n— Vn—+vn—_"and n* = /n=n*. Let ng = |n*|, then
ng < vVn—n*.

Consider a bipartite graph H of order n with vertex sets {v;,vs, ..., Uno }
and {un,+1,...,%5}, and with each of the ng(n — ng) edges present with
probability % What is the probability that v; has degree at most 37
Observe that

(n=m0) + 310 < 5(n — 7o) + 5V =T = & m—no)+1/ (1 = m).
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Consequently, by the DeMoivre-Laplace Limit Theorem [6 viii.3], P(d(v) <
%) — N(1) < 1, where N(z) is the normal distribution function. Therefore,
there exists an € < 0 and an integer Np such that N(1) + € < 1 and, for all
n > No, P(d(v)) < Z) < N(1) +e.

Thus for each § > 0 there exists a positive integer N such that the
probability that all of vy, vs,...,vn, have degree at most % is less than §
for eachn > N.

If G is a labelled graph with vertex set {vi,...,vn}, we let Gp be the
bipartite graph obtained from G by deleting all internal edges in the sets
{v1,.++1Vno} and {Upg41,...,vn}. Since the degree of a vertex in G is at
least as big as the degree of the vertex in G, by the above considerations
the probability that each vertex of G has degree less than § goes to zero asn
goes to infinity. Therefore, almost all labelled graphs G satisfy A(G) > .0

We remark that we consider G g instead of G to make {P(d(v;) < ) |
1 <1 < o} a set of independent probabilities.

Let R, and r, be the number of all labelled and unlabelled graphs respec-
tively of order n, that satisly A(G) > %. Let G, and g, be the number of
all labelled and unlabelled graphs respectively of order n. Then Theorem 1
says that %3 ~ 1. Since the number of isomorphically distinct labellings of
a graph G is given by Iﬁ"c’,—), where I'(G) denotes the automorphism group

of the graph G, it [ollows that r, > ’—fﬁl Therefore,

P T S

on ~nlg. I Cn  Cn
where we have used the aforementioned well known result of Polya [14]
which says that g, ~ % Thus we have proved the following:

Theorem 2. Almost all unlabelled graphs G have maximum degree at
least 3|V (G)|.

3 Bipartite graphs with A(G) > 3|V(G)]

A bipartite graph G is called equibipartite if it has a bipartition (A4, B)
with |A| = |B| such that each edge joins a vertex in A to a vertex in B.
In this section we show first that almost all labelled equibipartite graphs
satisfy A(G) > 3|V(G)|. For equibipartite graphs the term unlabelled is
not at first sight clearly defined. We explain how it can be interpreted in
three different ways (bicoloured, bipartitioned, and unassigned), and we
show that whichever meaning is taken, it is nonetheless true that almost all
unlabelled equibipartite graphs satisfy A(G) > %IV(G)L Thus Conjecture
3 applies to almost all equibipartite graphs, whether labelled or unlabelled.

A bicoloured equibipartite graph is an equibipartite graph in which each
vertex is assigned one of two colours in such a way that each vertex is
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adjacent only to vertices of the opposite colour and the number of vertices
of each colour is equal. For example the pairs of graphs Cla and C2a and
also C1b and C2b of Figure 1 are considered to be coloured differently.

AN

Cla C2a Clb C2b Cc
Figure 1

However, we note that there are bicoloured graphs G for which there is no
natural mate G’ with G # G’: for example, graph Cc of Figure 1.

We define an equivalence relation ~y;. on the set of (0, 1) matrices of order
n by C ~yic D if and only if there exist permutation matrices P and Q such
that C = PDQ. The number of distinct bicoloured equibipartite graphs
is the number of equivalence classes under ~y;., and each matrix in the
equivalence class corresponding to a bicoloured equibipartite graph G is a
bipartite adjacency matrix for G (an nxn matrix where |A| = |B| = n). We
think of a labelled bicoloured equibipartite graph as having labels 1,2,...,n
of one colour affixed to the vertices of A and the labels 1,2,...,n of the
other colour affixed to the vertices of B. The number of labelled bicoloured
equibipartite graphs is just the number of (0,1) matrices of order n, as
labelling G just selects one particular matrix from the equivalence class for
G under ~;,.

Theorem 3. Almost all labelled bicoloured equibipartite graphs G of order
2n satisly A(G) > 3|V(G)I.

Proof: Consider an n x n bipartite adjacency matrix A(G) for the graph
G. In order for A(G) < $|V(G)|, each of its row sums must be less than 2.
For each row this has probability at most % Thus the probability of the
graph C satislying A(G) < HV(G)| is at most (1), which clearly tends
to zero. Hence the probability that A(G) > 1[V(G)| tends to one. O
A sccond type of bipartite graph to be discussed will be called a bipar-
titioned equibipartile graph, which is a bipartite graph in which the vertex
set has been partitioned into two parts of equal size such that no formal
identification is given to either part. Considering the above examples, Cla
and C2a are considered the same, but C1b and C2b are considered to be dif-
ferent. Again we note that there are bipartitioned graphs that correspond
to just one bicoloured graph, for instance an uncoloured Cc in Figure 1.
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The number of bipartitioned equibipartite graphs is the number of equiva-
lence classes under the equivalence relation ~y;, on the set of (0, 1)-matrices
of order n, C ~pip D if and only if there exist permutation matrices P and
Q such that C = PDQ or C* = PDQ where C* is the transpose of C. If
an equivalence class under ~pip contains a symmetric matrix then it is also
an equivalence class under ~y;c; otherwise it is the union of two equiva-
lence classes under ~p;c. A labelled bipartitioned equibipartite graph has
the labels 1,2,...,n affixed to the vertices of each part of the bipartition.
The labelled bipartitioned equibipartite graphs G; and G2 with respective
bipartite adjacency matrices A(G;) and A(G2) (row and column numbers
corresponding to the labels) are the same if and only if A(G;) = A(G2) or
A(G1) = A(G2)".

The final type of bipartite graph we consider is when the uncoloured
C1b and C2b are considered to be equal. These will be called unassigned
equibipartite graphs and are defined to be bipartite graphs for which it is
possible to partition the vertex sets into two parts of equal size, but for
which no formal partition is given.

We note that two unassigned cquibipartite graphs are considered to be
the same if and only if they are isomorphic (as graphs). A labelling of
an unassigned equibipartite graph with vertex partition (A, B) consists of
affixing the labels 1,2,...,n to the vertices of A and to the vertices of B.
The labelled unassigned equibipartite graphs Gy and G2 are the same if
there is a label-preserving isomorphism between them.

Lemma 4. Almost all labelled equibipartite graphs are connected.

Proof: Let G = (4, B) be a random equibipartite graph with |A} = |B| =
n. Consider a pair of vertices in A or B to be “bad” if there is no vertex
adjacent to both. Let X(G) be the number of “bad” pairs of vertices in G
and p be the probability of an edge (normally p = % in this paper). Then
the expectation [5(X) of X satisfies ££(X) < n?(1 — p?)*, which tends to
zero as n tends to infinity. Therefore the probability that X(G) = 0 tends
to one. 0

Let C,, and c,, be the number of labelled and unlabelled bicoloured equibi-
partite graphs of order 2n respectively that are connected. Similarly define
B, and b, to be the number of labelled and unlabelled bicoloured equibi-
partite graphs of order 2n respectively. Then Lemma 4 can be restated.
Lemma 4°.

— = lasn — 0.
n

The following lemma will be used to prove analogous results for the un-
labelled case.
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Lemma 5.
bp — m ')2 as n — oo.

Proving this lemma requires further terminology to be defined.

Let b, ¢ be the number of unlabelled bicoloured equibipartite graphs of
order 2n which have exactly ¢ edges and let b(z) = iob gz, From
Harary and Palmer [11] b(z) = Z(Sn % Sn,1 + z), where S, denotes the
symmetric group on n elements and Z(A) is the cycle index for a given
group A. It is also given in [10] that

Z(Sn x Sp) = T Z H ("‘l).'lr(or)Je(ﬁ)

(avﬂ) =1

where 7;(v) is the number of cycles of length  in the disjoint cycle decom-
postion of %, [r,¢t] and (r,¢) denote the l.c. m and g.c.d. of r and ¢ respec-
tively. This however is clearly the same as 25 3= .y h(4,) [Tnie, sg’:l)"“,
where (J,¢) is an ordered pair of partitions of n with j = (j1,72,-..,7n)
and ¢ = (¢3,¢9,...,tn) Where 5, and ¢; are the respective number of parts of
size ¢, and h(j, ) is the number of ordered permutation pairs whose cycle
structures are j and ¢ respectively. Also let ¢(j,¢) denote the number of
edge cycles determined by the partition pair (3, ¢)
Proof of Lemma 5: The number ¢(4, ¢) of edge cycles determined by the
permutation pairs corresponding to the partition pair (4,¢) is
nn
qG,0) = Y (rOjrue (1)

(rt=1

For each nonnegative integer &k (0 < k < 2n) we let b&k) be the contribution
by all partition pairs (4, ¢) such that j;+¢1 = 2n—k. So then Zi:o b = bn
and
bk = ;;3_7 Z h(j, )29,
(3:e)
where the sum is over all (4,¢) such that j; 4+ ¢; = 2n — k. Notice that

b0 = -, b = p° )1‘%‘—,,‘—12, and b = bﬁ?’"—"ggfﬁf—:‘,i), which leads one
to guess the following:
m-—1
For each positive integer m, b, ~ E bR, (2)
k=0

To see this, first establish an upper bound for bs,k) . For each k, consider
those partition pairs (4,¢) with 7; +¢; = 2n — k. On substituting j; = ¢; =
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-5 and o =ip = f in the right hand side of (1) an upper bound for
q(7,¢) is obtained to be

q(,¢) < n? - %k
Also, the number of permutations of n objects with exactly (n— —-) objects
fixed is less than or equal to n!/(n — £)! [14 p. 59]. So then we can say
(k) 1 n! n! n? __;S_gg
n = it (n—% E\(n - !25);
< b(o)nk2—_33"_k
= b(O)(23n\8 )k (3)

Summing (3) over k from m to 2n we get

Z bk < Z bO (rn /2% = b Z (n/2%

k=m k=m

This surn is geometric with common ratio approaching zero as n approaches
infinity, so we can write

2n
36 < Cb(n/2%) (4)
k=1

where C > 1 and close to one for large =.
Next summing bgk) from zero to (m — 1) we get

m— m-1

1
8P < by < 30 0F +5Q0((n/2%)™).
k=0 k=0

Dividing gives: 1 < b, > 1o ”" b <1+ O(n™/2*%™). This verifies (2).
Continuing with the proof of the lemma we return to (3) with £k =m and
see that 6™ < b (n/2° )™. Therefore,

2mn
S b < bQ0(n™ /2% (5)
k=m

and from (4) it follows that

2n
ST bR <bO0@mm /275, (6)
k=2m-+1
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Combining (5) and (6) it [ollows that v b < sDomm /2 %).
Setting m = 3 and adding b(o) + b(2) to both sides yields b, = b(o)(l +

ﬂ-’;—z +0(n32 — —)) and since b( ) = Lemma 5 now follows. ]

n'n!’
Lemma 6. ¢, > W

Proof: The number of labellings c;f any equibipartite bicoloured graph
(preserving bicolouring) equals [r?(!c 1» where I'y(G) is the automorphism
group of G that preserves the bicolouring. a

Lemima 7. b, ~ ¢, for sufliciently large n.

Proof: By Lemmas 5 and 6,

Cn
> > "2 .~ [ Vil A4 .
L2 2 o "W B, B, !
Hence the result follows. 0

We remark that Lemma 7 has a short direct proof (without Lemma 5)
using the expected number of bad vertices as in the proof of Lemma 4.
However, we nced Lemma 5 to prove other results.

Let p,, denote the number of unlabelled bipartitioned equibipartite graphs
of order 2n. The following lemma says that almost no bicoloured equibi-
partite graphs have a symmetric adjacency matrix.

Lemma 8. b,, ~ 2p,

Proof: As in the proof of Lemma 5, we define pp 4 to be the number
of unlabelled bipartitioned equibipartite graphs of order 2n which have
exactly q edges and let p(z) = 3 q:o Pn,gxd. Again we cite [11] and obtain
p(z) = Z([Sn]*?,1 + z), where Z([Sn]*?) = 3(Z(S, x Sa) + Z,,) and

n = |Z}l(J) H ,5'7" H k(’k)f'[ ]JkH (")t).'lrJL

) k odd k even r<t

From Lemma 5 it is cnough Lo show that the contribution of Z,, is almost
zero. Let p, be the contribution of Z!, to Z([S,]%2).
Proceding as in the proof of Lemma § we sce that

9@ =D g+ D k(Jk) + [ lik+ Y _(r t)jrde- (7)

k odd k cven r<t

Now for k£ = 0 through = let pn (&) denote the contribution to P}, determined
by all partitions (j) having exactly n — k parts of size one. As before,
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=Y ro P and piF) = - 0) h(7)29¢9), where the sum is over all
partitions (j) with j; =n — k.
Next we show that: for cach positive integer m,

m—1

P~ SO, ®

k=0
For each k consider those partitions (§) with j; = n — k. substituting with
j1 =n—k and j2 = £ into the right hand side of (7) maximizes q(j) and
soq(j) < ("3 —J(nk+ k- &

Therefore as in Lemma 5,

PR < pO /2t - E)H2 ©)
However, k < n so it follows that
p:SIc) < p:so)(nZ/z(n/2)1-l)k/2. (10)

Summing (10) from k = m to n yields

n

> A < PO 3 (ol 2D an

k=m k=0

The right hand side of (11) is a gecometric series whose common ratio ap-
proaches zero as n increases, so

2 o < Cp®Om? /Ay, (12)
k=m
where C > 1 and close to one for large n
It now follows that 307 mpé") < pu < SPTL B 4 O 2nmiey,

Dividing yields 1 £ pl./ > ke p,fk) < 1+ O(n™/27™/%) which verifies (8).

Returning o (9) with k = m it is seen that pi™ < i (n2/2n+1-3)m/2 =
gm(m—2)/45"0) (1,2 j9m)m/2 ynd hence

2m
S o < p@0(n /22, (13)

k=m

From (12) it follows that 35, . pn® < prlO((n?/2n/2)@m+1/2) =

(0)0((n"‘ /27™/2). Combining this with (13) then glves Y hem p'(k) <
(O)O(n"‘ /272 Setting n = 3 and noting that pp 0 = ! it now follows
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that p}, = ( 1+ O3 )) which tends to zero as n tends to infinity. Thus
Lemma 8 follows O

Lemma 9. ¢, ~ 2p,

Proof: Lemmas 7 and 8. ]

Let u, be the number of unlabelled unassigned equibipartite graphs of
order 2n. Let u) » be the number of such graphs that correspond to exactly
one bipartitioned cquibipartite graph of order 2n; let u>g , be the number
of such graphs that correspond to two or more bipartitioned equibipartite
graphs of order 2n. Also let ¢}, be the number of unlabelled bipartitioned
equibipartite graphs of order 2n that are connected. )

Lemma 10. u1» 2 ¢},

Proof: Any bipartitioned equibipartite graph consisting of one connected
component clearly has only one equibipartition. m]

Lemma 11. Almost all bicoloured equibipartite graphs have a trivial au-
tomorphism group.

Proof: Let G be a bicoloured graph with automorphism group I'(G). Then
G can be labelled in n!n!/|I'(C) ways. Therelore, By = 3 gep. If‘n(;g)f and
50 421 = L ces, Ty Since the left hand side is asymptotic to bn, almost
every term on the right must contribute a one. 0

Lemma 12. Almost all bipartitioned equibipartite graphs have a trivial
automorphism group.

Proof: Adapt the proof of Lemma 11. o
Lemma 13. ¢, ~ p,
Proof: Any bipartitioned cqulblpartite graph yields at most 2(n!)? labelled

bicoloured equibipartite graphs S0 ¢, 2 7—'5; Therefore, by Lemmas 5

and 8,1 > —& > 7;?-, p.. W (' ~ 1. and it is clear that

the result fol]ows O

Let u2 be the number of these unlabelled unassigned equibipartite graphs
of order 2n with A(G) > 3V (C)|.
Lemma 14. u, ~ p,
Proof: Any connected unassigned equibipartite graph has exactly one
equibipartition. Therclore, u, > ¢},. But also every unassigned equibi-

partite graph can be bipartitioned in at least one way. Therefore, p,, > uy,
and so by Lemma 13, ¢}, ~ p, > un > ¢},. ]

Let 42 and B2 be the number of uniabelled and labelled bicoloured
equibipartite graphs of order 2n respectively that satisfy A(G) > 3|V(G)|.
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Theorem 15. b4 ~ by, so almost all unlabelled bicoloured equibipartite
graphs G satisfy A(G) > 1|V (C)|.

A
Proof: By Theorem 3 and Lemma 5, with the obvious notation 1 > %:— >

A A 2 A
f!) . bL ~ (_f%, . (Z!) = %\- ~ 1 and so the result follows. a

Similarly define p2 to be the number of unlabelled bipartitioned equibi-
partite graphs of order 2n.

Theorem 16. p ~ py, so almost all unlabelled bipartitioned equibipartite
graphs G satisfy A(G) > 3|V(G)|.

Proof: Any bipartitioned graph of order 2n ylelds at most 2(n!)? labelled
bicoloured equnblpartlte graphs, thus p4 > (_5" Using Lemma 8, it follows

nt

A 2
that 1 > 2o >7;3—5 p,."’ B % Ti’i)*z‘é%%)—=%f~l' Therefore,
pa ~ pp as required. ]

Lemma 17. u2 ~ p2

Proof: Asin Lemma 14, p8 > 48 > ¢®. From Theorem 16 and Lemma
13 alrnost all blparmlonod equxblparm(, graphs are connected, and almost
aII satisly A(G) > 3 |V((‘)l so almost all are connected and satlsfy A(G) 2

il |V((’)| Therefore, ¢;® ~ p, and thus by Theorem 16, ¢ ~ p2 > ud >
c:® and the result fol]ows O

Theorem 18. uf ~ u, so almost all unlabelled unassigned equibipartite
graphs G satisly A(G) > ${V(C)|.
Proof: This follows from Lemmas 17 and 14, and Theorem 16. (m]

Therefore, Conjecture 3 applies to almost all labelled or unlabelled equibi-
partite graphs regardless of how equivalency is defined.
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