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Abstract

Let K, be the complete graph on n vertices. Let I(X) denote
the set of integers k for which a pair of maximum pentagon packings
of graph X exist having k common 5-cycles. Let J(n) denote the
set {0,1,2,...,P — 2, P}, where P is the number of 5-cycles in a
maximum pentagon packing of K. This paper shows that I{K,) =
J(n), for all n > 1.

1 Introduction

The intersection problem for a combinatorial structure is the problem of
determining the possible numbers of common objects (such as cycles) in
two combinatorial structures (such as cycle systems) based on a common
underlying set. This problem has been considered for many types of combi-
natorial structures. In 1975, Lindner and Rosa considered the intersection
problem for Steiner triple systems [7]. More recently the problem has been
considered by Fu for pentagon systems [5] and by Billington for m-cycle
systems [2]. Here the intersection problem for maximum pentagon packings
will be considered.

First we need a few definitions and some convenient notation.

Throughout this paper, let K, represent the complete graph on n vertices,
and let K, represent the complete graph on n vertices with a one-factor
removed. If A and B are edge-disjoint graphs, let A + B denote the graph
formed by their union. If B is a subgraph of A4, let A\ B denote the graph
A with the edges of B removed. The complete multipartite graph with m
parts of size n will be denoted by Ky(m), while the complete multipartite
graph with m, parts of size n, and my parts of size n, will be denoted by
Ky (mi)na(ma)- Let e(X) represent the number of edges in the graph X,
let Cy, represent a cycle of length n, and let F represent a one-factor of
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the graph in question. Finally, the notation n - G denotes a graph which
consists of n edge-disjoint copies of the graph G.

A pentagon packing of the graph X, PP(X), is a family of edge-disjoint
pentagons in X. A maximum pentagon packing of X, an M P(X), is
a PP(X) such that no other PP(X) contains more pentagons. We will
refer to an M P(K,) simply as an MP(n). The leave of a PP(X) is
the graph which is the complement of the union of the pentagons in the
PP(X). Since a pentagon packing must have each vertex of even degree,
the number of pentagons in an M P(n) cannot exceed n(n — 1)/10, for n
odd, and n(n — 2)/10, for n even. Let mp(n) represent the number of
pentagons in an M P(n).

Rosa and Znam [8] have shown that the number of pentagons in an M P(n)

is
[ lea/5) if n 2 7,9 mod 10
mp(n) = { len/5) —1 if n=7,9mod 10

where e, = n(n — 1)/2 if n is odd and e, = n(n —2)/2 if n is even.

Table 1 may provide the reader with a clearer idea of what an M P(n) looks
like.

No. of vertices | No. of pentagons Leave
n=1,5mod 10 "‘u‘)" none

n =3 mod 10 n’-n-6 Cs
n=7,9mod 10 L‘l"o'—”- /\/\ or/\ /\
n=0,2mod 10 "2;’—02" F

n = 4,8 mod 10 nl=2n-g C4 and F (see Remark 1.1)
n = 6 mod 10 ni-2n-d 2 + 2 edges (see Remark 1.2)

Table 1: The structure of maximum pentagon packings of K,

Remark 1.1 The C4 and F will occur in one of three configurations. Sup-
pose the Cy4 is (v1,v2,v3,v4). The one-factor may contain the following
edges: 1) both {v1,v3} and {va,v4} i) either {vy,v3} or {v2,v4} iii) nei-
ther {v1,vs} nor {v2,v4}. Any of the three configurations may occur as can
be illustrated by an M P(8).

Remark 1.2 An M P(n) is in fact an M P(K};) for n = 0,2, 4,8 mod 10,
but n = 6 mod 10 is a special case since a mazrimum pentagon packing of
Kg leaves 5 edges which do not contain a one-factor. Consequently if we
consider the graph Kjoz+s = Ki0z+6\Ks + Ke, a mazimum pentagon pack-
ing of K1oz+6\Ke has a leave of a one-factor (52 edges), and a mazimum
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pentagon packing of K¢ has a leave of 5 edges, either a double ended ar-
row or a star. Therefore the leave of an M P(K,,), where n = 10z + 6, is
(n—6)/2+ 5 edges which almost contain a one-factor.

Adams, Bryant and Khodkar [1] have shown that for all odd (even) inte-

gers n and all non-negative integers r and s satisfying 3r + 5s = "—(22'—11

(31' + 55 = 1(’12_-2’1)’ the edge-set of K, (K) can be partitioned into r 3-
cycles and s 5-cycles. When s is as large as possible, and n 2 4, 6,8 mod 10,
the constructions in [1] provide an M P(n). The small M P(n)s, for n =
4,6,8 mod 10, given in the appendices rely on work by Heinrich and Rosa
[6] and by El-Zanati [4]. Combining those small cases with the construc-
tions from [1] we can obtain M P(n)s for all n.

Let I(X) denote the set of integers k for which a pair of M P(X)s exist
having k common cycles. Let J(n) denote the set {0,1,2,...,mp(n) —
2,mp(n)}. It is clear that I(K,) C J(n). The aim of this paper is to show
that I(K,) = J(n).

2 The small cases

The graph H [1], shown in Figure 1, can be decomposed into 5-cycles
in various ways. Hence, many of the small M P(n)s used in this paper
have been constructed using copies of H, as was done in [1]. The follow-

1

8

Figure 1: The graph H
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ing three decompositions of H into 5-cycles show that I(H) = {0,1,3}.
Dy = {16423,14835,12857} D, = {16423, 14857, 12835}
D; = {16482,17583,14235}

Another necessary tool in describing the possible intersections of the
MP(n)s is a specific type of 5-cycle trade of volume 2. For a general
discussion of trades in graphs, see Billington and Hoffman [3]. Here only
the specific trade we need will be introduced. A 5-cycle trade of volume
2 is a graph X whose ten edges can be partitioned into a pair of 5-cycles
in at least two different ways. For example, the graph shown in Figure
2 can be decomposed into the 5-cycles {12345, 16378} or into the 5-cycles

{16345, 12378}.
1
8 5
7 4
3

Figure 2: A 5-cycle trade of volume 2

Notice that if we are given two 5-cycles in which vertices @ and b occur
at distance two in each 5-cycle, then we have a 5-cycle trade of volume
2 as shown above. We will refer to such a trade as an exchange of two
cycles. For instance {azbyz,aubvw} is an exchange of two cycles as it can
be replaced by {aubyz, azbvw}.

The idea of an exchange of two cycles can be extended to any number
of cycles. For example, the graph created by the union of the three cy-
cles {arbst, aubvw, azbyz} could also be partitioned into the cycles {aubst,
arbvw, azbyz} or {aubst,azbvw,arbyz}, using an exchange of two cycles
or an exchange of three cycles. Hence if X were the graph created by the
union of n such cycles, X would contain exchanges of two to n cycles, and
I(X) ={0,1,2,...,n—2,n}.

The proofs of the following three lemmas are found in the appendices.
Lemma 2.1 Forn=1,...,32, I(K,) = J(n).

Lemma 2.2 Fort=0,1,...,9,
I(K10+t \Kt) = {01 la 2) ey e(Klogt\K‘) - 29 E(KN;‘\K') }'
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Lemma 2.3 I(K5@3) = {0,1,...,13,15}.

Notice that maximum pentagon packings of Ko\ K leave either no edges
or a one-factor, and that maximum pentagon packings of Ks5(3) leave no
edges.

3 The larger cases

Lemma 3.1 Let S be the set ofgraphs {K10(3)7K10(4)) K10(3),20(1)) K10(6)|
Kio(7), K10(6),2001)} - For each s € S, I(s) = {0,1,..., e_(5£l -2, E(sil )
Proof By Lemma 3.3 from [1] each of these graphs can be decomposed

into edge-disjoint copies of K5(3). Hence the result follows from Lemma
2.3. a

Lemma 3.2 Fort=3,...,9,
I(Ksoye \ Ki) = {0,1,..., Woop\) _ 5 elBsop\Ko) |,

Proof From (1] Kao4: \ K: = Kio(3)+ 3 (K104¢ \ K;). The result follows
from Lemmas 2.2 and 3.1. o

Lemma 3.3 Forn =33,...,89, I(K,) = J(n).

Proof As shown in [1] the following constructions give K, for n =
33,...,89.

K3o4: = Kazote \ K+ K
Kio4t = Kio)+4- (Ko \ Ki) + K,

Ksort = Kio@a)2o01) + 3 (Kroge \ Ki) + Koot
Koo+t = Kioe) + 6 (K4t \ Ki) + K,
Kro4r = Koy + 7 (Kro4e \ Ki) + K,
Koyt = Kioe),2001) + 6 (K104t \ Ki) + Kao4t
By Lemmas 2.1, 2.2, 3.1 and 3.2, the result follows. a

Lemma 3.4 Forallz > 3, let S be the set of graphs {K3o(z), K30(z),10(1)s
K30(z),20(1)}- For each s€ S, I(s) = {0, 1,..., 8—(551 -2, 5(59-}
Proof By Lemma 3.6 in [1], each of the graphs in § can be decomposed

into edge-disjoint copies of K5(3), and the result follows from Lemma 2.3.
a

69



Lemma 3.5 Forn > 90, I(K,) = J(n).

Proof From Lemma 3.7 in [1] the following construction gives K, for
n > 90. Fort=0,1,...,9, 4 =0,10,20,and z > 3:

K3oz+u+t = Kaoz),u(1) + 2 - (Kaost \ Kt) + Kust

The result follows from Lemmas 2.1, 3.2 and 3.4. a

Combining Lemmas 2.1, 3.3 and 3.5, we obtain the following main result.

Theorem 3.6 For alln > 1, I(K,) = J(n).

The author gratefully acknowledges the support of the authors of [1] and
[3] for providing access to very recent work, and the support of K. Heinrich
for providing the constructions which led to many of the examples found
in the appendices.
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A Proof of Lemma 2.1

In the following tables, the first column contains an M P(n) and subsequent
columns contain M P(n)s which intersect the first one in the cycles which
are left blank. For n > 12, a pair of subscripts after a set of cycles indicate
the two vertices which occur at distance 2 in each cycle of the set. In sets
of cycles without a subscript, semicolons are used to separate exchanges of
two or three cycles and within those exchanges the cycles intersect in the
first and third vertices. Two sets of cycles separated by an R indicate that
the first set of cycles can be replaced by the second set. The two sets of

cycles use the same edges but have no cycles in common.

I(Ks) = J(5) I(Ks) = J(6)

01234 | 01243 01345 | 01543

02413 | 02314 02153 | 02135

1K) = J(7) 1(Ks) = J(3)

03152 02543 17524 15723

01234 | 01245 | 04215 05163 05134 | 05241

06245 | 06234 | 06231 04326 | 04372 | 02736 | 04362
01372 | 01326 | 01623 | 03716

1(Ks) = J(9)

03184 03154

05176 05146 | 05236

14286 14236 | 16237 | 14276

36475 23465 | 25346 | 24365 | 17348

38562 | 34562 | 26357 | 27458 | 27458 | 26538

34527 | 38527 | 37458 | 37568 | 35768 | 46857

I(K[o) = J(].O)

05416 05419

13958 43958 | 43958

37468 37968 | 37968 | 37968

27849 27843 | 27843 | 27813 | 27813

51963 57963 | 57963 | 57463 | 57463 | 57463

02579 02679 | 02519 | 02519 | 02519 | 02519 | 02516

01234 | 08234 | 08234 | 08234 | 08294 | 08294 | 08294 | 08294

08267 | 01267 | 01257 | 01267 | 01267 | 01267 | 01267 | 01267

I(Ky1) = J(11)

Intersection problem has been solved for pentagon systems [5).

I(Klz) = J(12)

From [6] M P(12) = A+ B + C where
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A = {a5b20,a7b42, a9b14,a6b31, a8603} 4,
B = {18360, 19346} 3 and
C = {12947, 23508, 45270, 56789, 57968} R

C' = {12547, 23507, 49280, 56879, 568967}.
From the exchanges in A and B, {5,6,...,10,12} C I(K;3). Replacing C
with C’, {0,1,...,5,7} C I(K12). Combining these we obtain the required
intersection values.

I(Ky3) = J(13)

From [1] K13 = 5- H+C3s0 an M P(13) simply consists of the 5-cycles from
the decomposition of the copies of H given in [1]. Since I(H) = {0, 1,3},
the result follows.

I(K14) = J(l‘l)

From [6] M P(14) = A+ B+ C where

A = {c02d5, c24d6, c41d7, c13d8, ¢30d9} ¢4,

B = {a57b0,a79b1,a96b2, a68b3, a85b4},, and

C = {06381, 05328; 17492, 16439; 52704, 56789}.

From the exchanges in A and B, {6,7,...,14,16} C I(K14). C has been
grouped into three exchanges of two cycles, so {0,2,4,6} C I(C). Combin-
ing these we obtain the required intersection values.

I(K1s) = J(15)

Intersection problem has been solved for pentagon systems [5].

I(Ki¢) = J(16)
From [4] M P(16) = A+ B+ C + D where
A = {1a0b7, 3a2b9, 5a4b1, 7a6b3, 9a8b5} 4»,
B = {0c1d8, 2¢3d0, 4c5d2, 6¢7d4, 8¢9d6} cd,
C = {1e0f9,3e2f1,5e4f3,7e6f5,9e8f7}cs and
D = {83052, 49618, 65870, 21436, 09274, abfce,acdef} R
D' = {83092, 43658, 61870, 21496, 05274, abfec, aedcf}.
From the exchanges in A, B and C, {7,8,...,20,22} C I(K1s). Replacing
D with D', {0,1,...,13,15} C I(Kj6). Combining these we obtain the
required intersection values.

I{K7) = J(17)

From [1] K17 = 8- H 4+ 2-C5 + 2 - C3, giving the M P(17) consisting of
the 5-cycles from the decomposition of the copies of H given in [1] and the
two extra 5-cycles (e8dc4) and (e5da7). Now I(H) = {0,1, 3} and the two
5-cycles form an exchange of two cycles. Combining these we obtain the
required intersection values.

I(K,8) = J(18)
From [6] MP(18) = A+ B+ C + D + E where
A = {1a0b7, 3a2b9, 5a4b1, Ta6b3, 9a8b5} gp,
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B = {0c1d8, 2¢3d0, 4c5d2, 6¢7d4, 8¢9d6} .4,

C = {1e0f9,3e2f1,5e4 3, 7e6 f5, 9e8fT7}ey,

D = {8g1h3, 3g4h0,0g6h5, 597h2,2g9h8} 41 and

E = {61849, 65870;21436,27409; fahbg, fcheb; ecgdf, eaghd}.

From the exchanges in A, B, C and D, {8,9,...,26,28} C I(K1g). E has
been grouped into four exchanges of two cycles, so {0,2,4,6,8} C I(E).
Combining these we obtain the required intersection values.

I(Ky9) = J(19)

From [1] K19 = 11- H +2-C3, so an M P(19) consists of the 5-cycles from
the decomposition of the copies of H given in [1]. Since I(H) = {0, 1,3},
we obtain the required intersection values.

I(Kgo) = J(20)

From [6] MP(20) = A+ B+ C+ D+ E + F + G where

A = {1a0b7, 3a2b9, 5a4b1, 7a6b3, 9a8b5} g,

B = {0c1d8, 2¢3d0, 4c5d2, 6¢7d4, 8¢9d6} ¢4,

C = {1e0f9,3e2f1,5e43,7¢6 f5,9e8 f7}ey,

D = {8g1h3,3g4h0,0g6hk5,597h2, 2g9h8} gs,

E = {6415, 51278, 8i3;7, 74450, 01936 };,

F = {ajbef,agbfc; ifjde,igjhd; hedbi, h fdge; aicje, abcgh} and

G = {49618,21436,27409} R G’ = {43618, 27496, 21409).

From the exchanges in A, B, C, D and E, as well as the four exchanges
of two cycles in F, {3,4,...,34,36} C I(K20)- Replacing G with G’,
{0,1,...,31,33} C I(K3z0). Combining these we obtain the required in-
tersection values.

I(K21) = J(21)
Intersection problem has been solved for pentagon systems [5].

I(Kj3) = J(22)

From [1] K23 = 13- H 4+ 5 Cs, so an M P(22) consists of the 5-cycles
from the decomposition of the copies of H given in [1] and the five ex-
tra 5-cycles {Og7al,12eh7, 1b4hk,25a8l,5c8¢i}. Since I(H) = {0,1,3},
{5,6,...,42,44} C I(K32). Replacing the other cycles by {0g8al, 12¢hk,
17h4b, 25¢81, 5a7gi}, {0,1,...,37,39} C I(Kj2). Combining these we ob-
tain the required intersection values.

I(Ka3) = J(23)

From [1] MP(23) = A+ B + C, where

A = {01756, 04735, 0b7da; 14203, 11265, 1j2i8; 07598, 0djb9, OAj6c;
hbmOk, hem48, h5mi4; Thed2, 7gc46, Tmcea9; lelga, 1hi6b, 1mlick}

B = {0f6ej, 0g6kl; 3ba82, 3ja68; 12kgd, 1ik3 f; 5261c, 596d8; akm9l, ahmji;
2c3mf, 2h3dm; 36mg9, 3am8g; 4dbf9, 4lbk f; jakdl, j5k9c; h9i5d, h6idf;
43e2a, 4beas; f8kTa, fjkeT;8bgi7,8jg fe} and
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C = {0Oecfi, 8cbi, I 7ci3, 92ged, 91g4de, thgbe} R

C' = {Oecbi,lTcfi,18¢i3,91ged, 92g5e, ihgde}.
A has been grouped into six exchanges of three cycles and B into 13 ex-
changes of two cycles. From these exchanges {6,7,...,48,50} C I(K23).
Replacing C with C’, {0,1,...,42,44} C I(K23). Combining these we
obtain the required intersection values.

I(K24) = J(24)

From [6] MP(24) = A+ B+ C+ D+ E + F where

A = {k1216, k2317, k3418, k4019, kbclg, kdeli, kealj} i,

B = {m02n5, m24n6, m41n7, m13n8, m30n9, macn f, mebnh, mbdni,
mdanj}mm

C = {081a9, 0cl5d, 0¢17 f, 0919k, 0i1bj}o1,

D = {56789, 57968, fghij, fhjgi},

E = {fkabl, hkcdl,8aieh} R E' = {h8abl, fkedl, kaieh} and

F = {0b53a, 0k511; 1d25 f, 1h285;2936b, 2c37e, 2f3dg; d8g6j, dIge f;
12754, i3ja5,19j7c; 607a2, 6d7ga; 3b46e, 3g4Th; 4ahb8, 4dh5c;
4fcBe,4jc6h; engme, e5gc9; f6ib9, f8iTb}.

From the exchanges in A, B and C, the two M P(5)sin D and the exchanges

of two and three cycles in F, {3,4,...,50,52} C I(K24). Replacing E with

E', {0,1,...,47,49} C I(K24). Combining these we obtain the required

intersection values.

I(Kzs) = J(25)
Intersection problem has been solved for pentagon systems [5].

I(Kq6) = J(26)
From [6] MP(26) = A+ B+ C+ D+ E + F where
A = {k1216, k2317, k3418, k4019, kabl f, kbclg, kedlh, kdeli, kealj} ki,
B = {mb56n0, m67n2, m78n4, m89nl, m95n3, mfgna, mghnc, mhine,
mijnb, mjfnd}mn,
C = {002p5, 024p7, 041p9, 013p6, 030p8, oacpf, oceph, oebpj, obdpg, odapi} ,p,
D = {081a9, 0c15d, 0e17 f, 0919h, 0i1bj}o1,
E = {klmno, kmpln} and
F = {0b53a, 0k5!1; 1d25f, 1h28j; 2936b, 2c37e, 2 f3dg; d8g6j, d9ge f;
12754, 13ja5, 19j7c; f6ib9, f8i7b; ich8a,ifhjg; 607a2, 6d7ga;
3b46e, 3g4Th; 4ahb8, 4dh5c; 4 fc8e, 4jc6h; 57968, 5e9¢cg}.
From the exchanges in A, B, C and D, as well as the MP(6) in E,
{26,27,...,60,62} C I(Ks6). F has been grouped into exchanges of two
and three cycles, so {0,1,...,24,26} C I(F). Combining these we obtain
the required intersection values.

I(Ka7) = J(27)
From [1] M P(27) = A+ B + C, where
A = {blc20, bpcma; 0562d, 0p6mj; 06cd!, Oocag; T0hep, Tmh8e; 90g2e, 9mgpi;
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0e48m, 0k45n; 2In81, 2bnkq; 1m2k3, 172ni; 40i7h, 4cikh; jallc, jelgh;
i2j18, iqjke; 4anh3, 49npj; 37ahc, 3 fagi; 3apgd, 3mpdb; g6lh9, gklij;
klqmb, kcqd6;9bq52, 9lqgT; 763!, Thqn4; 5¢c8q7, 5g8p9; fdh5b, fohbs;
2ai0 f, 24i6h; d1p28, d4p3n;enoTd, egodm; 193e6, 1g30a; 1nc04, lbcfh;
ebg f1,ecgdf;789fj, 7c9qf},
B = {j1036, 79023, jboa8; 580ge, 5joea, Slok f; mopld, m5phi, mkpfl} and
C = {8k510, 83506, bi5d6, 6adif, 69djn, Tkdgn} R
C' = {83510, 8k5d6, bi506, 69dif, 6adgn, Tkdjn}.
A has been grouped into 27 exchanges of two cycles and B into three ex-
changes of three cycles. From these exchanges {6,7,...,67,69} C I(K27).
Replacing C with C’, {0,1,...,61,63} C I(K27). Combining these we
obtain the required intersection values.

I(K2g) = J(28)

From [6] MP(28) = A+ B+ C+ D+ E+ F + G where

A = {k1216, k2317, k3418, k4019, kabl f, kbclg, kcdlh, kdeli, kealj} i,

B = {m56n0, m67n2, m78n4, m89nl, m95n3, m fgna, mghnc, mhine,
mijnb, mj fnd}mn,

C = {002p5, 024pT7, 041p9, 013p6, 030p8, oacp f, oceph, oebpj, obdpg, odapi} op,

D = {q57r0,979r1, ¢9672, g68r3, ¢85r4, ghjrb, qgird} -,

E = {081a9, 0c15d, 017 f, 0919k, 0i1b; }o1,

F = {0b53a, 0k511; 1d25f, 1h283; 2936b, 2c37e, 23dg; d8¢63, d9ge f; 2754,
i3ja5,1957c; 607a2, 6d7ga; 3b46e, 3g47h; 4ahb8,4dhbc; 4 fc8e, 4jcbh;
a8hei, arh fq; f6ib9, f8iTb; gkrmp, glrom; okprn, olpng} and

G = {9ebgc, gcrgj,qerfi} R G' = {9ergc, gedgj, ger fi}.

From the exchanges in A, B, C, D and E, as well as the exchanges of

two and three cycles in F, {3,4,...,70,72} C I(K2g). Replacing G with

G, {0,1,...,67,69} C I(K2s). Combining these we obtain the required

intersection values.

I(Kzg) = J(29)

From [1] M P(29) = A + B, where

A = {1jc02, 17¢4k; 09irl, Oniar; bki0 f, beill; 143k9, 1a3js; 3rkhl, 3ckmT;
48pji, 4lpn f; g1qs6, grqis; e2imp, eli fo; 3gc1m, 3nc8e; ach35,amhTl;
4519p, 4hind; 81brd, 8ibdh; kdqh2, kgqdo; Tsh6d, Tehgb; glrm4, g frdj;
lornl,ljr9s; 67asm, 68ank; 25qk8,29q f6; Tks 2, Tpsd f; m2rpc, merco;
8 fkp3, 8jkab; b3dc9, bsdgm; Tr8gi, Tn890; ecldi, eklmj; m8opd, mnod9;
06pg5, obp5i; 6rh93, 6bhpi; ednga, ebnbq} and

B = {01034, 0j023, 0sogp; 06578, 0b5mg, 0k5 fm; 059ed, 0796¢, 0a9ng;
58sel, 57s2n, Scsne; 2461p, 2a65b, 216¢q; dahil, d5hj2, df hnj;
475f1,49375s, 4ajqb; f992¢, flgoa, fegap}.

A has been grouped into 28 exchanges of two cycles and B into eight

exchanges of three cycles. Combining these we obtain the required inter-

section values.
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I(Kao) = J(30)

From [6) MP(30) = A+ B+ C+ D+ E + F + G + H where

A = {k1216, k2317, k3418, k4019, kabl f, kbclg, kedlh, kdeli, kealj}xi,

B = {m56n0, m67n2, m78n4, m89n1, m95n3, mfgna, mghnc, mhine,
mijnb, mjfnd}mn,

C = {002p5, 024p7, 041p9, 013p6, 030p8, oacpf, oceph, oebpj, obdpg, odapi} p,

D = {¢57r0,q79r1, 9612, q6873, 8574, qhjrb, qjgre, qgird, qifre}qr,

E = {50611, 5623, s2at4, sa718, s70tb, s5eid, se9t f, s9cth, scgti, sg5tj} o,

F = {081a9, 0c15d, 0el7 f,0g919k, 0i1bj }o1,

G = {0b53a, 0k5!1; 1d25 f, 1h285; 2936, 2¢37¢, 2 f3dg; d8g63], d9ge f, d7gab;
a8hei,arhfq; i2554, i3ja5, 195 7c; 3b46e, 3g4Th; 4ahb8, 4dh5c;
4fc8e,4jcbh; f61b9, f8i7b} and

H = {kpgtm, psqlm, rslom, otkng, snork, kosmg, nprtl, nript} R
H' = {kpglm, rsqtm, pslom, otkqn, nsork, kogms, npltr, nipri}.

From the exchanges in A, B, C, D, E and F, as well as the exchanges of

two and three cycles in G, {8,9,...,82,84} C I(K30). Replacing H with

H', {0,1,...,74,76} C I(K30). Combining these we obtain the required

intersection values.

I(K31) = J(31)
Intersection problem has been solved for pentagon systems [5].

I(Ks3) = J(32)

From [1] K3 = 32 H, so an M P(32) consists of the 5-cycles from the
decomposition of the copies of H given in [1]. Since J(H) = {0,1,3}, we
obtain the required intersection values.

B Proof of Lemma 2.2

Fort = 0, 1, 2, an MP(K]O.H \ Kt) is an MP(K](H.;), and thus I(K10+¢ \
K:) = J(10 + 1).

I(Kis\ K3) = {0,1,...,13,15}

From [1] K13\ K3 = 5- H, so an M P(K,3\ K3) consists of the 5-cycles from
the decomposition of the copies of H given in [1]. Since I(H) = {0, 1,3},
the result follows.

I(K14\ K4) = {0,1,..., 14, 16}

From [1] M P(K14\ K4) = A+ B + C, where

A = {07165, 04159; 1b4a9, 1849d; 2d3c5, 24358; ca396, c7368; 27d4c, 26469},
B = {b38d0, b2ad5, b6a57} and

C = {08746,c0a79,1cb8a} R C’' = {0a746, b879c,08alc}.

A has been grouped into five exchanges of two cycles, while B can be
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replaced by B’ = {b38d5, b2ad0, b6a57} or by B” = {438d5, b6ad0, b2a57}.
From I(A) and I(B), {3,4,...,14,16} C I(K14\ K4). Replacing C with C’,
{0,1,...,11,13} C I(K14 \ K4). Combining these we obtain the required
intersection values.

I(Kls \Ks) = {0, 1,...,17,19}

From (1] MP(K,5\ K5) = A+ B, where

A = {07168, 0518a; 1b2ac, 192ce; 2d387,2537¢; 3cbea, 395ab; 4b7ad, 467d9;
60975, 6c9e3; 9bd1a, 98deb; 54628, 5b6a4} and

B = {c748b, c4eb0, c8e0d}.

A has been grouped into eight exchanges of two cycles, so {0, 2,4,...,14, 16}

C I(A). B can be replaced by B’ = {c748b,c8eb0,c4e0d} or by B" =

{c74e8, c48b0, cdOeb}, so I(B) = {0,1,3}. Combining these we obtain the

required intersection values.

I(K16\ Ke) = {0, 1,..., 18,20}
From [4] MP(K]G\K(;) = A+B+C+D where
A = {al7b0,a39b2,a51b4,a73b6, a95b8} 4,
B = {c08d1, c20d3, c42d5, c64d7, c86d9} ca,
C = {e19f0,e31f2,e53f4,e75f6,€97 f8}¢; and
D = {83052, 49618, 65870,21436,09274} R
D' = {83092, 43658, 61870,21496,05274}.
From the exchanges in A, B and C, {5,6,...,18,20} C I(K16 \ Ks). Re-
placing D with D', {0,1,...,13,15} C I(K;6 \ Ks). Combining these we
obtain the required intersection values.

I(K17\K7) = {0, 1,. ..,21,23}
From [1] MP(K,7\ K7) = A+ B+ C, where
A = {0918a, 071ac; cbdf 1, c2d1e; blge2, b3gc8; 2 f3a9, 2739g; 3cdbe, 384ed;
06978, 0e9cd; 698e f, 6d8gb},
B = {4ag7d, 495d9,4759f} and
C = {685 fc,6e5c7, eabbh7, g6a f0, gdabf,82a7f} R
C' = {6e5 fc, 685b7, ea5cT, gda f0, g6aT f, 82abf}.
A has been grouped into seven exchanges of two cycles, while B can be
replaced by B’ = {4ag7d, 475d9,4¢59f} or by B = {4ag59,4¢75d,47d9f}.
From I(A) and I(B), {6,7,...,21,23} C I(K17\K+7). Replacing C with C’,
{0,1,...,15,17} C I(K17 \ K7). Combining these we obtain the required
intersection values.

I(Kls \ Ks) ={0,1,...,22, 24}

From [6] MP(Klg\Kg) =A+ B+ C+ D+ FE where
A = {c24f6,c41f7,¢c13f8,c30f9}y,

B = {g28hc, g80h4, g05h1, g53h f, g32hT} gs,

C = {a45bc,ab2b1, a27b3,a70bf,a04b8} 4,

D = {dclel, d02¢3,d2 fed, df 57, d5ce8} 4. and
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E = {17492, 16439,06381, 56789, 57968} R

E' = {16492, 17439, 06781, 58369, 56897}.
From the exchanges in A4, B, C and D, {5,6,...,22,24} C I(Kis \ Ks).
Replacing E with E', {0,1,...,17,19} C I(K1s\ Ks). Combining these we
obtain the required intersection values.

I(K19\ Ko) = {0,1,...,25,27}

From [1] K19\ K9 = 9-H, so an M P(K;9\ Kg) consists of the 5-cycles from
the decomposition of the copies of H given in [1]. Since I(H) = {0, 1, 3},
the result follows.

C Proof of Lemma 2.3

1(K5(3)) = {0, 1, ey 13, 15}

From [1] K53y = 5 H, so an M P(Kjy3)) consists of the 5-cycles from the
decomposition of the copies of H given in [1]. Since I(H) = {0,1, 3}, the
result follows.
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