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An important problem in graph theory is edge-coloring: coloring the edges
of a graph so that incident edges get different colors. The goal is to use the
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Abstract

In this note, we investigate three versions of the overfull property
for graphs and their relation to the edge-coloring problem. Each
of these properties implies that the graph cannot be edge-colored
with A colors, where A is the maximum degree. The three versions
are not equivalent for general graphs. However, we show that some
equivalences hold for the classes of indifference graphs, split graphs,
and complete multipartite graphs.
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Introduction

minimum number of colors.

A celebrated theorem by Vizing [13, 9] states that this minimum is
always A or A+ 1, where A is the maximum degree of the graph. To decide
between these two possibilities is however NP-hard [8, 1]. More precisely, if
we denote by C1 the class of graphs that are edge-colorable with A colors,
and by C2 the complementary class, we have that C1 recognition is NP
whereas C2 recognition is co-NP. This means that C1 graphs always have
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short certificates. Indeed, to convince someone that a graph is in C1, all
we have to do is to exhibit a A-coloring. In contrast, to show that a graph
is in C2, we must produce an argument that no A-coloring exists.
Nevertheless, for some graphs this argument can be very simple. For
instance, the graph in Figure 1 is in C2. This graph is small enough to
permit trying all possibilities, but the following argument is simpler. Notice
that, in every valid coloring, each color corresponds to a matching and hence
can be assigned to at most two edges in this particular case. Since the total
number of edges is 5, it becomes evident that A = 2 colors do not suffice.

Figure 1: An overfull graph.

Graphs to which a similar argument can be applied have been termed
overfull {10, 11, 6, 5]. We say that a graph G is overfull when the number
of vertices n is odd and

n—1
AT <m,
where m is the number of edges.

Notice that we are using the fact that a matching in an n-vertex graph
has size at most (n—1)/2, when n is odd. The matching number of the graph
could be used instead of the expression (n — 1)/2, but we shall concentrate
in the traditional definition — the one given above — in this note.

In addition, observe that this argument does not work for a graph with
even n. In this case, the following relation is always true:

n

A
2

> m.

This is just another way of saying that the maximum degree is not smaller
than the average degree, if we recall that 2m is equal to the sum of all
degrees.

In our studies on edge-coloring [3, 4], we have been considering two
other definitions of overfullness. We state them in the sequel.
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A graph G is subgraph-overfull [5] when it has an overfull subgraph //
with A(H) = A(G). Here, a subgraph is formed by taking some of the
vertices and some of the edges of G; it does not need to be an induced
subgraph. However, considering induced subgraphs leads to an equivalent
definition. Notice that subgraph-overfull graphs are in C2, since we need
at least A(G) + 1 colors just for the edgesin H.

If the overfull subgraph H can be chosen to be a neighborhood, that
is, induced by a A-vertex and all its neighbors, then we say that G is
neighborhood-overfull [4]. Again, neighborhood-overfull graphs are in C2.

Let O, SO, and NO be the classes of overfull, subgraph-overfull, and
neighborhood-overfull graphs, respectively. These classes are related as
follows:

Theorem 1 We have the following proper inclusions: O C SO C C2 and
NO C SO C C2. In addition, O and NO are incomparable.

Proof: Allinclusions in Theorem 1 are immediate from the definitions. The
Petersen graph, shown in Figure 2, is an example of a C2 graph that is not
subgraph-overfull. Actually, the Petersen graph with one vertex removed
is a C2 graph that is not subgraph-overfull.

Figure 2: Petersen graph - C2 graph not subgraph-overfull.

To get an example of a subgraph-overfull graph that is not overfull
itself, consider the split graph F depicted in Figure 3. This graph can be
partitioned into a clique of size 4 and a stable set of size 2. One vertex of
the stable set sees three vertices of the clique and the other vertex of the
stable set sees the fourth vertex of the clique. This graph is not overfull
because it contains an even number of vertices. On the other hand, by
removing its vertex of degree 1, we obtain a copy of K5 minus one edge, an
overfull graph, with the same maximum degree as F. Note that the graph
K5 minus one edge is actually neighborhood-overfull because it contains a
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Figure 3: A neighborhood-overfull graph that is not overfull.

universal vertex. Thus, F is an example of a neighborhood-overfull graph
that is not overfull.

Finally, Figure 4 shows an example of a graph that is overfull but not
neighborhood-overfull. Thus this graph is a subgraph-overfull graph that
is not neighborhood-overfull. Note that a graph with odd maximum degree
cannot be neighborhood-overfull. ]

Figure 4: A subgraph-overfull graph that is not neighborhood-overfull.

The remainder of this note is devoted to showing that some of the
inclusions in Theorem 1 become equalities if we restrict ourselves to special
classes of graphs.

In Section 3, we show that O = SO for complete multipartite graphs.
It is known that O = C2 for this class [7]. Although the equality O = C2
implies O = SO, we provide in Section 3 a simple counting argument for
that fact. In Section 4, we show that NO = SO for split graphs. We
conjecture that SO = C2 for this class. In Section 5, we show that NO = SO
for indifference graphs. We conjecture that SO = C2 for this class. We
conclude by conjecturing, in Section 6, that neighborhood-overfullness is
the right condition for solving the edge-coloring problem for chordal graphs.
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2 Definitions and notation

In this paper, G denotes a simple, undirected, finite, connected graph.
V(G) and E(G) are the vertex and edge sets of G. A stable set is a set of
vertices pairwise non-adjacent in G. A clique is a set of vertices pairwise
adjacent in G. A mazimal clique of G is a clique not properly contained in
any other clique. A subgraph of G is a graph H with V(1) C V(G) and
E(H) C E(G). For X C V(G), we denote by G[X] the subgraph induced
by X, that is, V(G[X]) = X and E(G[X]) consists of those edges of E(G)
having both ends in X.

For each vertex v of a graph G, Adj(v) denotes the set of vertices which
are adjacent to v. In addition, N(v) denotes the neighborhood of v, that
is, N(v) = Adj(v) U {v}. A subgraph that is induced by the neighborhood
of a vertex is simply called a neighborhood. The degree of a vertex v is
deg(v) = |Adj(v)). The maximum degree of a graph G is then A(G) =
max,cy(c) deg(v). We denote the maximum degree of a graph G by A
when there is no danger of ambiguity. A vertex u is universal if deg(u) =
|V(G)] = 1. A k-neighborhood is the neighborhood of a vertex of degree k.
For us, K, denotes the complete graph on n > 1 vertices.

A vertex v is simplicial if N(v) is complete. A perfect elimination order
of a graph G is a total order on its vertex set vy,vs,...,vn such that for
each i, vertex v; is simplicial in G[v,vs,...,v;]. A graph is chordal if it
admits a perfect elimination order.

An interval graph is the intersection graph of a set of intervals of the
real line. If unitary intervals can be taken, then the graph is called unitary
interval, proper interval or indifference graph. We shall adopt the latter
name, to be consistent with the terminology of indifference orders, defined
below. Indifference graphs can be characterized by a linear order: their
vertices can be linearly ordered so that the vertices contained in the same
clique are consecutive [12]. We call such an order an indifference order. By
definition, every indifference order is a perfect elimination order.

A split graph is a graph whose vertex set admits a partition into a
stable set and a clique. Given such a partition for a split graph, a perfect
elimination order can be defined by placing the vertices in the clique before
the vertices in the stable set. Thus every split graph is a chordal graph.

Let a) < ay < --+ < ap be positive integers. The complete multipartite
graph K(ay,...,a,) is defined as follows. 1t has n = a; +az + -+ + ap
vertices, partitioned into parts Ay, A, ..., A,, where each A; has cardinal-
ity a;. If two vertices are in the same part, they are not adjacent, whereas
if they are in different parts, they are adjacent.
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3 Complete multipartite graphs

In this section we present a simple counting argument that shows that
the particular structure of complete multipartite graphs forces subgraph-
overfullness to be equivalent to overfullness in this case. Although this
result is already known [7], our simple counting argument is useful for
other classes of graphs, as we show next.

Theorem 2 Every complete multipartite graph that is subgraph-overfull is
overfull.

Proof: Suppose there exists a subgraph-overfull complete multipartite
graph G that is not an overfull graph itself. Then, by definition, the graph G
contains a proper induced subgraph H with same maximum degree as G
such that H is an overfull graph.

Since H is an induced subgraph of G, it is also complete multipartite.
Hence, H has ny = hy + hy + - -+ 4+ h,, vertices, partitioned into stable sets
Hy, Hy,..., Hp such that |H;| = h; and there is an edge between every two
vertices that belong to distinct stable sets. Because H is assumed to be
overfull, we have p > 3. We assume that by < hy <--- < hp.

First, note that we must have h; < hy. For note that all vertices in H;
are maximum degree vertices and we have A(H) = hy+- - -+h,. In addition,
because G and H have the same maximum degree, every vertex of G\ H is
missed by all vertices of H,. Therefore, if we had h, = hs, then we would
have A(G) > A(H).

We have my = ). . hihj. On the other hand:

i<j
A(H)ng = 1)/2=(ha 4+ -+ hp)(h1 + ha + -+ + by — 1) /2.

The overfull condition on graph H says that my > A(H)(ng —1)/2. This
implies the following:

o+ hihg+---+ Iy ]Lp >
hahy + hahg + -+ hyhp — (hy + ha + -+ hy) =
ho(he — 1) + ha(hg — 1)+« - + hy(hy — 1).

Now, because h; < hy < -+ < hp, we have
ha(hy — 1)+ hg(hg = 1) + -+ + hp(hy — 1) > hihy + hihg + - - + hyhp.

And this contradiction finishes the proof. |
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4 Split graphs

In this section we prove that, for split graphs, being subgraph-overfull is
equivalent to being neighborhood-overfull.

By definition, every neighborhood-overfull graph is also subgraph-overfull.
We show in Corollary 1 below that, for split graphs, every subgraph-overfull
graph is neighborhood-overfull. Because the class of split graphs is heredi-
tary, it is enough to show that every overfull split graph is neighborhood-
overfull. We begin by showing that every overfull split graph must contain
a universal vertex:

Lemma 1 If G is split and overfull, then G always conteins a universal
vertez.

Proof: Suppose that G is a split graph with vertex set partitioned into two
sets A and B, such that set A is a clique and set B is a stable set. We may
assume that A is a maximal clique and that B is not empty.

We shall use the following notation: ¢ = |A| and b = |B|. Then,
n=a+bA>a,andm<ala—1)/2+a(A-a+1).

Write A = a+x, where z > 0. Then, each vertex of A sees at most z+1
vertices in B. In addition, each A-vertex belongs to A and sees precisely
z + 1 vertices in B.

We shall prove that every split graph that is overfull has b = +1. This
means that each A-vertex belongs to set A and sees every vertex in B. In
particular, every A-vertex is universal.

The condition for a graph to be overfull is: m > A(n — 1)/2. Hence:

m>(a+z)(a+b-1)/2=a(a—-1)/2+ab/2+ z(a +b-1)/2.
On the other hand, the definition of the partition gives:
m<ale—-1)/2+a(A-a+1)=a(a—-1)/2+a(z+1).
By cancelling a(a — 1)/2 in these two inequalities, we conclude that:
ab/2+ z(a+b—1)/2 < a(z +1).
And this in turn implies:
bla+z) — z < ax + 2a.
Recall that we want to show that b=« + 1. If b > z + 2, then,
(x+2)(a+z)—z<bla+2z)—2 < az+2a,

which contradicts 2 > 0. [ |

Corollary 1 If G is split and subgraph-overfull, then G is neighborhood-
overfull. |
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5 Indifference graphs

In this section we prove that for indifference graphs being subgraph-overfull
is equivalent to being neighborhood-overfull.

By definition, every neighborhood-overfull graph is also subgraph-overfull.
We show in Theorem 4 below that for indifference graphs, every subgraph-
overfull graph is neighborhood-overfull. Because the class of indifference
graphs is hereditary, it is enough to show that every overfull indifference
graph is neighborhood-overfull.

We begin by establishing a necessary structural condition for any in-
difference graph that is overfull. We show that every overfull indifference
graph admits a partition of its vertex set into A-neighborhoods.

Consider an indifference graph G = (V, F). An indifference order on V
associates to each vertex an integer i between 0 and n.

Lemma 2 If V is not the disjoint union of A-neighborhoods, then there
exists a sequence of vertices 0 = wo < u; < vy <wy < -+ < up < v < Wy
satisfying the following properties:

1. all u; have degree A;

2 wi=v;+1, for all1 <i<k;

3. wo, w1, ..., wy induce a chordless path in G;

4. there is no vertex x of degree A with wy < x and z € N(wy) \ N(vg).

Proof: We argue by induction on n = |V|. For n < 3, G is trivially
the disjoint union of A-neighborhoods, because G always has a universal
vertex. So, we may assume that n > 4.

For n = 4, suppose that V is not the disjoint union of A-neighborhoods.
Then, G has no universal vertex, which implies that A = 2. In this case,
G is isomorphic to a P;, a path induced by four vertices whose vertices
correspond to a sequence wy, 11, V1, W), as required.

For n > 4, let u; be the rightmost neighbor of wy = 0. Because n > 1,
we have wg < u;. If deg(u;) < A, then wyp is the required sequence.

Otherwise, suppose that deg(ui1) = A. Note that deg{wp) = A implies
that V = N(wp) is the disjoint union of A-neighborhoods. Thus, we have
deg(ui) > deg(wp). Let v; be the rightmost neighbor of u;. We have
u; < v1. Again, because V # N(uy), there exists w; = v; + 1.

Note that the path induced by we,u1,v1,w; has no chords, by the def-
inition of u,,v; as rightmost neighbors of wg, u;, i‘espectively.

If there is no vertex x with deg(z) = A, and z € N(w;) \ N(v;), then
k =1 and wp, uy,v1,w; is the required sequence.

Otherwise, if there is such a vertex z, consider the graph G', induced
by w; and its successors with respect to the indifference order. By defini-
tion, G' is itself indifference with A(G’) = A. Now, if V' is the disjoint
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union of A-neighborhoods, then V = N(u;)UV’ and N(u;)NV' = § imply
that V is the disjoint union of A-neighborhoods.
Thus, by induction for G, we have a sequence

W < << < - <up <vp < wg

with the required properties. This sequence, together with the sequence
wy < uy < vy < wy give the required sequence for G. Indeed, properties 1,
2 and 4 are trivially satisfied. For property 3, if there was a chord in this
path, connecting a vertex before w; to a vertex after w;, we would have
the chord v;us. This is not possible, because vertex u» has degree A in G’
and therefore has no neighbors in N (). [ |

Lemma 3 If an indifference graph G admits a sequence 0 = wp < u; <
v <un < - < up < v < wy, defined as above, then G is not overfull.

Proof: Let us define a function ¢:V — {-1,0,+1} as follows:

+1, for z = wy;
c(z)=4¢ -1, forz=u;
0, otherwise.

We say that v is a positive vertez if c(v) = +1; a negative vertex if
c(v) = —1; and a zero vertez if c(v) = 0. The function c satisfies that
no neighborhood may contain two non-zero vertices with equal signs, as
this gives a vertex of degree greater than A. Indeed, note that given
Wi, Wir1, Vit1, by definition of this sequence, u;+ is a vertex of degree A and
its neighbors are precisely those vertices y # u;41, such that w; <y < viy.

Thus, there is at inost one positive vertex or one negative vertex in each
neighborhood N (z), which gives:

+1, if N(z) has one positive and no negative vertex;
Z c(y) =< -1, if N(z) has one negative and no positive vertex;
yEN(z) 0, otherwise.

Moreover, we note that, for every z € V:

Y. cy) < A - deg(z).

yEN(z)

Indeed, we have A —deg(z) > 0. Suppose for a moment 3, .y, c(y) = +1
and A = deg(x). This means z sees a positive vertex and sees no negative
vertex, i.e., z sees w; but sees no v;. Thus, w; < z, with i # k. Hence,
7 < k and z < ;4 as otherwise = sees v;4;. But now the neighborhood

87



of z lies between w; and vj;1, and does not contain v;y;. Therefore it is
properly contained in N(u;41), which contradicts deg(z) = A.

Now,
S (- (@) -deglm) - T cly)) 20,

zeV YyEN(z)

as it is a sum of positive terms. This in turn gives,

YA = Y deglz) - > e@A+ Y c(x) deg(z)

zeV zeV z€eV zeV
= DD dn+ D @) Y cy) 0.
z€V yeN(z) zeV yEN(z)

Note that 3 . c(x) = 1, as w is a positive vertex and all other w;
cancel with a v;. Hence,

nA - 2m-—-A+4 z c(z) deg(z)

z€V
= DY A+ c@+2 Y c(a)e(y) 20,

z€V yeN(z) z€V : zyeE

i.e.,
nA — 2m-A+ Z c(z) deg(z)
z€eV
= ) c(y)(1+deg(y)) + (2k + 1) — 2k > 0;
yev

and finally,

nA-2m-A>0,
i.e., (n — 1)A > 2m, which implies that the graph G is not overfull. |

Theorem 3 IfG is indifference and overfull, then V(G) can be partitioned
into A-neighborhoods. In particular, we have n = k(A+1), for some integer
k>1.

Proof: The result is a direct consequence of Lemmas 2 and 3. [ |

We are now ready to establish that, for indifference graphs, subgraph-
overfullness is equivalent to neighborhood-overfullness. By definition, every
neighborhood-overfull graph is subgraph-overfull. The following theorem
proves the converse.
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Theorem 4 Every subgraph-overfull indifference graph is also neighborhood-
overfull,

Proof: It suffices to prove that if a graph G is indifference and overfull
then G is neighborhood-overfull.

Let G be an indifference overfull graph. From Theorem 3, we know
that n = k(A + 1). Furthermore, since n must be odd, we have k£ odd and
A even. We shall assume further that G is not neighborhood-overfull and
arrive at a contradiction.

Consider the vertices of G in an indifference order. Theorem 3 allows
us to divide the vertex set V(G) into k consecutive blocks of A + 1 vertices
each. Let V|, V5, ..., V, be these blocks.

Our goal is to count the edges and show that G' cannot be overfull.

Let A; be the set of edges whose left end point is in V;. We claim that

A(A +1)

|4 < 5 (1)
g s HEXD_2 @

Notice that Claim (2) is immediate from our assumption that G is not
neighborhood-overfull, since Ay is the edge set of the neighborhood G[Vy].
We now prove Claim (1).

There are two kinds of edges in A;, for ¢ < k: those whose right end
point is in V; and those that go past V;. The crucial fact here is that, for
each edge going past V;, there is an edge missing between vertices of V;.
Indeed, let u € V; be the left end point of an edge going past V;. Since
deg(u) < A, for each vertex that u sees beyond V; there must be a vertex in
the beginning of V; that u does not see (because the closed neighborhood
N(u) contains at most A + 1 consecutive vertices). Therefore, the total
number of edges in A; is bounded by the number of edges in a complete
graph over V;, that is, A(A + 1)/2.

We now use (1) and (2). Notice that every edge of G must start some-
where; hence

MAA+D) A+ A
3 )+ ( ) 2

k
m=|E|=) |4l < 5 S~
i=1 i=1
_ L AA+D) A A
=y Ty EReh

which shows that G cannot be overfull. This contradiction concludes the
proof. |
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6 Conclusion
We have the following conjecture about edge-coloring chordal graphs:
Conjecture 1 EBvery C2 chordal graph is neighborhood-overfull.

The validity of this conjecture implies that the edge-coloring of chordal
graphs can be solved in polynomial time. We are currently working on two
necessary conditions for this conjecture. Firstly, we need all chordal graphs
that are subgraph-overfull to be also neighborhood-overfull. In this paper,
we have established this fact for two subclasses of chordal graphs: split
graphs and indifference graphs.

Secondly, we need all odd maximum degree chordal graphs to be Cl.
In previous papers, we have established this fact for indifference graphs [4]
and for doubly chordal graphs [3]. Recently, it was proved that all odd
maximum degree split graphs are C1 [2].

Let us consider the class of complete multipartite graphs. It has been
shown recently that any C2 complete multipartite graph is overfull [7]. This
implies in particular that, for complete multipartite graphs, being overfull is
equivalent to being subgraph-overfull. In this paper, we have shown that a
simple counting argument provides an alternative proof for that fact. Now
consider the complete multipartite graph with nine vertices with parts:
Ay, A, As, where each part has three vertices. This graph is overfull but
not neighborhood-overfull. Now consider the complete multipartite graph
with seven vertices with parts: A,, A, A3, where a; = as = 2 and a3 = 3.
This graph is overfull but not neighborhood-overfull, because its maximum
degree is odd.

All examples we have found of odd maximum degree graphs that are
overfull are not chordal graphs. The validity of Conjecture 1 requires that
an odd maximum degree chordal graph cannot be overfull.’

Finally, we remark that one way to prove that an overfull graph is
neighborhood-overfull is to exhibit a universal vertex. That is what we
have done here for the case of split graphs.

For indifference graphs, we had to use another argument to establish
that overfullness implies neighborhood-overfullness. Consider the graph H
obtained by removing an edge ab from K7. This graph is overfull and
neighborhood-overfull. Now consider the graph F obtained as follows. Take
three copies of H, say H,, H,, H3, where H; = K7\ a;b; respectively. Add
edges bjas and baag. This graph F is an indifference graph that is overfull,
neighborhood-overfull but contains no universal vertex. Thus, in the case
of indifference graphs, we had to get deeper into the local structure of the
graph.
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