A Note on MAD Spanning Trees

Peter Dankelmann
Department of Mathematics
University of Natal
Durban 4041, South Africa

ABSTRACT. The question whether every connected graph G has a spanning tree T of minimum average distance such that T is distance preserving from some vertex is answered in the negative. Moreover it is shown that, if such a tree exists, it is not necessarily distance preserving from a median vertex.

Over the past two decades the average distance of graphs has sparkled considerable interest (see e.g. [2, 3, 7, 8]). One particular problem that received some attention is that of finding a minimum average distance (MAD) spanning tree of a given connected graph G, i.e. a spanning tree T such that T has minimum average distance among all spanning trees of G. It was proved by Johnson, Lenstra, and Rinnooy-Kan [6] that this problem is NP-complete. Entringer, Kleitman, and Szekely [4] showed that every connected graph G contains a spanning tree T that is distance preserving from some vertex in G such that the average distance of T is less than twice the average distance of G. This prompted the following questions by Entringer [5]:

- 1. Does every graph have a MAD spanning tree that is also distance preserving from some vertex?
- 2. If the graph G has a MAD spanning tree T that is distance preserving, is it distance preserving from a median vertex?

In this note it is shown that both questions have a negative answer.

We employ the notation and terminology of [1]. In particular, if G is a connected graph with vertex set V, then the distance of G, d(G), is defined as

$$d(G) = \sum_{\{v,w\} \subset V} d_G(v,w),$$

where $d_G(v, w)$ denotes the distance between v and w. The average distance of G, $\mu(G)$, is the average of all distances in G, i.e. $\mu(G) = \binom{|V|}{2}^{-1} \sum_{|\{v,w\} \subset V} d_G(v, w)$.

Definition 1. For positive integers k, r let H be the graph obtained from a cycle $C = (v_1, v_2, \ldots, v_{2k-1}, v_1)$ and 2r vertices w_1, w_2, \ldots, w_r , x_1, x_2, \ldots, x_r by joining the w_i with v_k and x_i with v_{k+1} for $i = 1, \ldots, r$. Let H' be a disjoint copy of H with vertex set $\{v'_1, \ldots, v'_{2k-1}, w'_1, \ldots, w'_r, x'_1, \ldots, x'_r\}$. Define G(k, r) as the graph obtained from the union of H and H' by adding the edge $v_1v'_1$.

Theorem 1. Let v be a vertex of G(k,r) and let T be a spanning tree distance preserving from v. Then for $k \geq 3$ and $r \geq 6$, T is not a MAD spanning tree.

Proof: Without loss of generality we can assume that v is in H'. Then T does not contain the edge $e = v_k v_{k+1}$ but the edge $f = v_{k+1} v_{k+2}$. Let $T_1 = T - f + e$. It is easy to verify that T_1 is also a spanning tree of G(k, r).

We now prove that replacing the edge f by the edge e decreases the distance of T (and thus T is not a MAD spanning tree). The only distances that are changed are distances between the w_i and the x_j (each goes down by 2k-3), between w_i and v_{k+1} (down by 2k-3), between each vertex in $\{x_i\} \cup \{v_{k+1}\}$ and every vertex in H' (up by 1). It is easy to check that all the other changes in the distances cancel out. Hence we have, for $k \geq 3$ and $r \geq 6$

$$d(T_1) = d(T) - r^2(2k - 3) - r(2k - 3) + (r + 1)(2k - 1 + 2r)$$

= $d(T) - (r + 1)((2k - 5)(r - 1) - 4)$
< $d(T)$.

Thus T is not a MAD spanning tree.

Definition 2. Let H = H(k,r) be the graph obtained from a cycle $C = (v_1, v_2, \ldots, v_{2k-1}, v_1)$ of order 2k-1 and 5r isolated vertices $x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_r, z_1, z_2, \ldots, z_{3r}$, by joining x_i to v_k and y_i to v_{k+1} for $i = 1, \ldots, r$, and z_j to v_1 for $j = 1, \ldots, 3r$.

Theorem 2. (i) The graph H contains a MAD spanning tree which is distance preserving from some vertex.

(ii) Let T be a spanning tree of H distance preserving from a vertex of minimum distance in H. Then T is not a MAD spanning tree.

Proof: (i) Every spanning tree of H is obtained by deleting a cycle edge e. It is easy to see that it is distance preserving from the vertex on the cycle opposite e. Hence H has a MAD spanning tree which is distance preserving from some vertex.

(ii) It is easy to check that the median of H consists only of v_1 . Let T be the spanning tree of H distance preserving from v_1 . Then T = H - e where $e = v_k v_{k+1}$. We now show that the spanning tree $T_1 = H - f$ with $f = v_{k+1} v_{k+2}$, which is distance preserving from v_2 , has a lower distance than T, hence T is not a MAD spanning tree.

As above we show that replacing the edge f in T by the edge e decreases the distance of T (and thus T is not a MAD spanning tree). The only distances that are changed are distances between the x_i and the y_j (each goes down by 2k-3), between x_i and v_{k+1} (down by 2k-3), between the vertices in $\{y_i\} \cup \{v_{k+1}\}$ and z_j (up by 1). It is easy to check that all the other changes in the distances cancel out. Hence we have, for $k \ge 4$

$$d(T_1) = d(T) - r^2(2k - 3) - r(2k - 3) + (r + 1)3r$$

= $d(T) - r(r + 1)(2k - 6)$
< $d(T)$.

Thus T is not a MAD spanning tree.

References

- [1] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory, McGraw-Hill, Inc., New York (1993).
- [2] P. Dankelmann, O.R. Oellermann and H.C. Swart, The average Steiner distance of a graph, J. Graph Theory 22 (1996), 15-22.
- [3] P. Dankelmann, O.R. Oellermann, and H.C. Swart, On three conjectures of GRAFFITI, Journal of Combinatorial Mathematics and Combinatorial Computing (to appear).
- [4] R.C. Entringer, D. Kleitman, and L. Szekely, A note on spanning trees with minimum average distance, Bull. Inst. Combin. Appl. 17 (1996), 71-78.
- [5] R.C. Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput. 24 (1997), 65-84.
- [6] D.S. Johnson, J.K. Lenstra, and A.H.G. Rinnooy-Kan, The complexity of the network design problem, *Networks* 8 (1978), 279-285.
- [7] M. Kouider and P. Winkler, Mean distance and minimum degree, J. Graph Theory 25 (1997), 95-99.
- [8] J. Plesnik, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984), 1-21.