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ABSTRACT: A sequence of positive integers a; a2 < ... <an
is called an ascending monotone wave of length n, if a; 11 —a; 2
a; —ai_y fori=2,...,n—-1 Ifay; —a; > 0 —ai for
all i = 2,...,n — 1 the sequence is called an ascending strong
monotone wave of lenght n. Let Zi denote the cyclic group of
order k. If k | n, then we define MW (n, Zx) as the least integer
m such that for any coloring f : {1,...,m} — Zj there exists
an ascending monotone wave of length n, where a, < m, such
that 37, f(a;) = Omod k. Similarly, define SMW(n, Z),
where the ascending monotone wave in MW (n, Z) is replaced
by an ascending strong monotone wave. The main results of
this paper are:

. izzn < MW (n, Zi) < ci(k)n. Hence, this result is tight
up to a constant factor which depends only on k.

o (%) < SMW(n, Z) < ca(k)n®. Hence, this result is tight
up to a constant factor which depends only on k.

o MW(n, Z) = 3n/2.
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. %n—7/6 < MW(n,Z3) < 2n+3.

These results are the zero-sum analogs of theorems proved in
(1] and [5].

1 Introduction

A sequence of positive integers a; < az <... < ap, is called an (ascending)
monotone wave of length n, ifa;; —a; 2 a;—a;_y fori=2,... ,n—1.
If aiy1 —a; > ai —aj—; for all i = 2,... ,n — 1 the sequence is called an
(ascending) strong monotone wave of length n. In particular, every arith-
metic progression is a monotone wave. Alon and Spencer [1] and Brown,
Erdds and Freedman [5] considered the least positive integer ¢(n) such that
in any coloring of the integers in the interval [1,... ,¢(n)], using two col-
ors, there is always a monochromatic monotone wave of length n. It is
shown in [1] that ¢;n3 < t(n) < con® where ¢; and c; are some positive
constants. Bollob4s, Erdés and Jin [4] considered monochromatic pairs of
strong monotone waves of length 2, in a k-coloring of the integers.

In the zero-sum direction, a theorem of Alon and Caro [2] states that
in any coloring of the integers 1,...,2n — 1, where n is even, with the
colors 0 and 1, there is an arithmetic progression ay, ... ,a,, such that
Yinic(ai) = 0mod 2, where c(a;) is the color of a;. Another strongly
related paper is [8]. Motivated by these results and the recent trend in
zero-sum Ramsey Theory (see, e.g. [3, 6, 7]), we shall consider the zero-
sum analogs of the above mentioned results.

Define MW (n, Z;) as the least integer m such that for any coloring f :
{1,...,m} > Z, there exists a monotone wave of length n with a, < m,
such that Y7 | f(a;) = 0 mod k. Define SMW (n, Z;) as the least integer
m such that for any coloring f : {1,...,m} — Zj, there exists a strong
monotone wave of length n with a, < m, such that Y;. ; f(a;) =0 mod k.
Finally, define W(n, Zy) as the least integer m such that for any coloring
f:{1,...,m} — Zi, there exists an arithmetic progression of length n
with a,, < m, such that }_7' | f(a;) = 0mod k. The purpose of this paper
is to investigate these three functions. As usual in zero-sum theory, we
shall assume that k > 2 and that k divides n. Our main results determine
the asymptotic behavior of MW (n, Z;) and SMW(n, Z;), for fixed k. It
turns out that MW(n, Z;) is a linear function of n, and SMW(n, Z;)
is a quadratic function of n. In case k = 2, MW (n, Z;) is determined
precisely, and in case k = 3, tight upper and lower bound are determined.
For W(n, Zx), a quadratic lower bound is determined for fixed k > 3. We
summarize these results in the following theorems:

Theorem 1.1 32&11 < MW(n,Z;) < cn, where ¢ = c(k) is a constant
depending only on k.
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Note that for fixed k, Theorem 1.1 is best possible up to a constant factor.

Theorem 1.2 SMW(n, Z;) < cn?, where ¢ = c(k) is a constant depend-
ing only on k.

Note that for fixed k, Theorem 1.2 is best possible up to a constant factor,
as any strong monotone wave of length  has a, > n(n —1)/2+ 1. Thus,
SMW(n,Zx) 2n(n—1)/2+1.

Theorem 1.8 MW(n, Z;) = 3n/2, #n —7/6 < MW(n,Z3) < 2n+3.

Theorem 1.4 W(n, Z;) > n*(1 — o(1)) whenever k > 3. Furthermore, if
n+1 is a prime, W(n, Z;) > n2.

The last theorem should be compared with the aforementioned theorem
of Alon and Caro, showing that W(n, Z2) =2n — 1.

The rest of this paper is organized as follows. In section 2 we prove
the upper and lower bounds for MW(n, Zx) and SMW (n, Zx), namely
Theorems 1.1 and 1.2. In Section 3 we focus on monotone waves in Z; and
Z3 and prove Theorem 1.3. Arithmetic progressions and Theorem 1.4 are
dealt with in Section 4. The final section contains some concluding remarks
and open problems.

2 Upper bounds for MW(n, Z;) and SMW (n, Z)

We begin this section by proving the lower bound in Theorem 1.1. Clearly,
MW (n, Zy) > n. However, the lower bound of Theorem 1.1, which is
Vkn/2, shows that no absolute multiple of » can bound M W(n, Zy) for
general k:

Proof that MW(n, Zy) > Vkn/2: Let m = |Vk—1]. Let z = |[(n —
m)/2|. Consider the coloring f : [1,...,(m + 1)z + m?] — Zx defined
by f((z+m)i+j)=0fori=0,...,mand j =1,...,, and otherwise
f =1, That is, f assigns = consecutive zerces followed by m consecutive
ones, followed by z consecutive zeroes, and so forth. We claim that there
is no zero-sum monotone wave of length 7, in the defined interval. Indeed,
if a,...,a; is a zero-sum monotone wave, then we shall show that ¢ <
n. To see this, we note first that there are exactly m? integers in the
interval [1,..., (m + 1)z + m?] which are assigned 1 by f. Since m2 <k
it follows that f must be constantly zero on any zero-sum monotone wave.
In particular, f(a;) = 0 for i = 1,...,t. If ¢ < z we are done since
z < n. Otherwise, the definition of f implies that there must be some
j € z, such that aj4; — a; > m+ 1. The monotonicity now implies that
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aj+p—a; 2p(m+1)forp=1,...,t —j. Thus, a; —a; > (t —j)(m+1)
and therefore
2

t<t—jtz < ‘;‘1—+al’+z < m‘:‘_1+z < (m"'n:f:'m +z<2c4m<n
as required. It follows that MW (n, Z) > (m + 1)z +m? +1 > Vkn/2.

We now prove the upper bounds for both MW (n, Zx) and SMW (n, Z;),
thereby completing the proofs of Theorems 1.1 and 1.2. Although the
claimed upper bounds in both theorems are different, the proofs are sim-
ilar. Before we proceed with the proof we need two definitions. Let
MW (n, Zk, s) (SMW(n, Z, s)) be the least integer m, such that for any
coloring f : {1,...,m} — Z, using only s colors from Z, there exists a
zero-sum (strong) monotone wave of length n. Clearly, MW (n, Zx, 1) = n,
SMW (n, Zx,1) = (3)+1, MW(n, Z, k) = MW(n, Zx), SMW (n, Zy, k) =
SMW (n, Zx). The following lemma establishes a relation between MW (n,
Zk, s) and MW (n, Z, s+1), and between SMW (n, Zy, s) and SMW (n, Zy,
s+1).

Lemma 2.1 If n > k? is divisible by k then

MW(n, Zx,s +1) < ((k - 1)(’2+ D+ l) MW(n, Zs,s)
+n—(k-1)(s+1).

SMW (n, Zx,s +1) < ((" - 1)(32 +h+ 1) SMW (n, Z, )

+ (n—(k—l)2(3+1)+1)+1.

Proof: Put x = MW(n, Z, s) (x = SMW(n, Z, s) for the strong mono-
tone wave case). Put ¢ = (k—1)(s+1)andput y = (“})z+n—q (y =
(93 z+ ("2*!)+1 in the strong case). Consider f : [1,... ,y] — Zj where
f(7) € S, and S = {up, ... ,u,} is an s + 1-subset of Zx. We must prove
that there is a (strong) monotone wave of length n which is zero-sum. For
i=0,...s, let (in the non-strong case) r; = [{j : f(§) =wi, j <n—g}
be the number of times f assigns u; to integers in the interval [1,n —g]. In
the strong case, let r; be the number of times f assigns u; to members of
the sequence (%) +1lforj=1,...,n—q. Let 0 < t; < k — 1 be selected
so that ¢; +r; = Omod k. Now, define p = g — 3;_y¢;. Clearly, p > 0.
Since );_o7i =n — ¢ and since k | n, it follows that k | p. Clearly, in the
non-strong case,
n—g

Qo fON+Q mi-t)+p-uw= uilri+t:)+p-uo=0mod k.
j=1

i=0 i=0
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In the strong case we similarly have

n—q . 8 8
(Zf((‘;) +1))+(zui'ti)+p'uo =Zu;(ri+t¢)+p-1zo =0 mod k.
=1

i=0 i=0

Thus, if we can find a strong monotone wave ay,...,0q of length ¢ =
P+ X i_oti in the interval [n — g+ 1,9] (or in the interval [("_g'*'l) +1,9]
in the strong case) having ¢; elements colored by u;, for i = 1,...,s, and
to + p elements colored by uo, and such that a; — (n—q) < az — ay,
(a1 — ("39) — 1 < a2 — a; in the strong case) then extending the interval
[1,...,m—g] (or extending the sequence ()+1forj=1,...,n—qinthe
strong case) with this wave, we obtain a monotone wave (strong monotone
wave) of length n which is zero-sum. We will show that such a (strong)
monotone wave exists, under the assumption that the interval [n—q+1,9]
contains no monotone wave (strong monotone wave) of length n which is
zero-sum (and we can assume the latter, since otherwise we are done).

We shall construct ay, .. . , a4 such that the first p+io elements are colored
ug, the next ¢, elements are colored u1, and so on, the last ¢, elements are
colored u,. Indeed, a; can be found in the interval [n—gq+1,n—g+2], (or in
the interval [("~3?)+1, (*~2*!)+z] in the strong case) since all s+1 colors
appear in this interval, otherwise, by the definition of z, there would have
been a zero-sum (strong) monotone wave of length n. Having determined
ay, we can similarly find ag in the interval [2a; — (n—q)+1, 241 —(n—q)+2]
(or [2a1 — ("39) +2,2a; - (™39 + z + 1] in the strong case). Note that
this guarantees az —a; > a1 —(n —q) (or ag — a1 > a3 — ("9 -1in
the strong case), maintaining (strong) monotonicity. Now as can be found
in the interval [2a2 — a; + 1,2a2 — a1 + z], and so forth, where in the
end a, can be found in the interval [2a;_1 — a2 +1,2a¢-1 — ag—2 + z].
Note that by this construction we get that a; < z - (*3) + (n — g), (or
aj <z (i) + ("2*1) + 1) as can be seen by induction from the fact
that aj41 — a; < aj — aj—1 +z. Since y = () + (n—¢q), (and y =
z(95")+(""2*1)+1 in the strong case) our construction can be completed. O

The following corollary is immediate from Lemma 2.1, since

MW(n, Zy, s+ 1) < MW (n, Zk, s) ((k - 1)(s2+ D+ 1)
+n—(k—1)(s+1) S k*MW(n, Z,s).
Similarly, SMW(n, Z, s + 1) < k*SMW (n, Zy, s).

%:rgllary 2.2 If n > k? then MW(n,Zx) < k*n and SMW(n,Z;) <
k%*n®.
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In case n < k? we trivially have MW (n, Zi) < c(k) and SMW (n, Zi) <
c(k) where c(k) is an appropriately chosen constant since in this case,
MW(n, Zx) and SMW (n, Z;) are only functions of k, bounded by the
Van der Waerden constant. This completes the proof of Theorems 1.1 and
1.2, (m]

The constant c(k) = k** which appears in the upper bounds for MW (n, Z)
and SMW(n, Z;) can be significantly improved when k is prime. We
will show how to obtain MW(n, Z;) < k?n (a similar proof shows that
SMW (n,Z) < k?n?). Consider a oo]onng f:,...,k*n] - Z.. Let
0 <t < k —1 be chosen such that ‘_k_tmodk For_7—1 , k, let
I;= [(,12 —j+1)n,(j%—j+2)n—1]. These k intervals are disjoint and if we
select an element from each interval we obtain a monotone wave of length k.
If f is constant on some I, then I; is a zero-sum monotone wave. Assume,
therefore, that A; = {f(a;), f(b;)} where {a;,b;} C I; and f(a;) # f(b;)-
Applying the Cauchy-Davenport theorem (see, e.g., [9, 10]) to the sets A;

j=1,...,k (here we use the fact that k is prime), we can obtain k integers
my, ..., my such that m; € {a;j,b;} and Ef=1 f(m;) = —t mod k. Thus,
k,k+1,...,n—1,m4,...,my is a zero-sum monotone wave of length n.

3 Zero-sum waves in Z; and Z;3

In this section we prove Theorem 1.3, which determines MW (n, Z;), and
provides a very tight bound for MW (n, Z3). We shall begin with the easier
case:

Determining MW (n, Z3): Since Zx = Z, in this case, we are interested
only in the case where n is even. A lower bound of 3n/2 is established
as follows. Put n = 2m, and consider the interval [1,...,3m — 1] with
the coloring f which is zero everywhere except for f(m + 1) = 1. Clearly,
any monotone wave with length ¢ satisfying Z,_l f(a;) = 0 mod 2 cannot
include the element m + 1. Thus, if 2) > m + 1 we must have ¢t < 2m — 2,
and if a; < m+1 we must have t < m+ (2m —2)/2 = 2m — 1. In any case
t <2m —1=n-1, showing MW(n, Z,) > 3m = 3n/2.

‘We now prove the upper bound. Let n = 2m and consider a fixed Zo-
coloring f of the interval 1,...,3m]. Let b = Ez"‘_ f(a;) mod 2. Con-
sider first the case b = 1. If f(i) =1 for some 2m < i < 3m we are done,
since the sequence {1,...,2m— 1,4} has even sum, and is a monotone wave
of length n. Thus, we assume f(z) = 0 for all 2m < i < 3m. Let j be the
largest index having f(5) = 1. If j < m we are done since the sequence
{m +1,...,3m} has zero sum, and is a monotone wave of length n. We
may therefore assume j > m + 1. Clearly, '};11 flai)mod2=5b—-1=0.
Thus, the sequence {1,...,5—-1,5+1,... ,4m—j+1} has even sum, and is
a monotone wave of length n. Note that the sequence is within the interval
bounds since 4m — 5 +1 < 3m.
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Now consider the case b = 0. By defining the coloring g(i) = 1 — f(z) we
now have a coloring satisfying 231"1 ! g(a;) mod 2 = b+(2m—1) mod 2= 1.
According to the previous arguments, there is a monotone wave of length
n with zero sum, with respect to g. The same sequence has zero sum with
respect to f, since n is even.

A tight bound for MW (n, Z3) We start with a lower bound for MW (n, Z3).
We wish to prove that MW (n, Z3) > Zn — 7/6. The case n = 3 is there-
fore trivial, so we may assume n > 6 is divisible by 3. Let = and y be two
positive integers satisfying 1 < y < < n, and having different parity. Put

z=min{n+z-1,2y—z+2n—1,—-z/2 - 3y/2+3n—1/2}.

Consider the coloring f : [1,...,z] — Z3 which satisfies f(z) = f(y) =1
and f(i) =0 for i ¢ {z,y}. We now show that there is no monotone wave
of length n whose sum (w.r.t f) is divisible by 3. Consider any monotone
wave T = {ay,...,a:} satisfying 21_1 f(ai) = 0mod 3. Clearly, z and y
do not belong to T. We distinguish three cases:

1. If a; > z thent < n since z <z +n.

2. If z > a; > y, (possible only if z —y > 1), then there are at most
z —ay members of T' smaller than z, and the remaining members of T
are greater than z, and have difference at least 2 between each other.
Thus, either t <z —a; <z <m,o0ra, >2(t—(z—a))+z-1
Since a; < 2 < 2y —z+2n—1it follows that 2y —z+2n—1 >
U—x+20 —1>2t —2x+2y+1 which impliest <n—1. :

3. If a; <y there are at most y —a; members of T' smaller than y. Since
z — y is odd, there are at most (z — y — 1)/2 members of T between
z and y, since the difference between these elements is at least 2.
Furthermore, since z —y is odd, the gap between any two elements of
T which are larger than z (if there are any) is at least 3. Thus, either
t<nor

a; > 3(t—(y—ay)—(z-y—1)/2)+z—2 = 3t—3y/2+3a, —z/2-1/2.
Since a; < z < —z/2 — 3y/2 + 3n —1/2 it follows that
—z/2-3y/2+3n—1/2 > 3t—3y/2+3a;—z/2-1/2 > 3t—3y/2+5/2—z/2
which implies t <n - 1.

In all cases, ¢t < n — 1. Thus, there is no monotone wave of length n
whose sum (w.r.t f) is divisible by 3, which means MW(n,Z3) > 2+ 1. It
now remains to choose z and y in order to maximize z, under the constraint
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that 1 <y <z <n and z — y is odd. If we did not insist that z and y be
integers, we can take z = (11n — 2)/12 and y = (5n + 4) /12, giving

z =min{23n/12 — 7/6, 23n/12 — 1/6, 23n/12 — 11/12} = 23n/12 — 7/6

Since y must be an integer, we can round (5n-+4)/12 to the closest integer,
and if this number is odd, round (112 —2)/12 to the closest even integer, or
otherwise to the closest odd integer. Note that these adjustments change
y by at most 1/2 and = by at most 1, thus the three expressions whose
minimum defines z are reduced to give

z =min{23n/12 — 13/6, 23n/12 — 13/6, 23n/12 — 13/6} = 23n/12 — 13/6.

Hence, MW (n, Z3) > 23n/12 — 7/6, as required.

We now prove the claimed upper bound for MW (n, Z3). Fix a coloring
f:[1,...,2n+ 3] — Z3. We must show that there exists a monotone wave
of length n whose sum is divisible by 3. Let z = 37, f() mod 3, where
1<z<3. Putc=3-z. If f(t) =c for some n < t < 2n + 3 we are done
since in this case 1,2,... ,n — 1,¢ is the desired monotone wave. We may
therefore assume that f(j) #cfor j =n,...,2n+ 3. We may also assume
that f is not constant on the interval [n,2n + 3] since in this case we have,
e.g. that n,... ,2n—1 is a zero-sum monotone wave. In particular, we may
assume f(n) # f(t), where ¢t > n is maximum possible.

Putb= Z?___‘f f(2) mod 3, where 0 < b < 2. If b = ¢ we are done since we
can take the sequence 1,... ,n—2,n,¢ which has sum c+ f(n)+ f(t) mod 3
and this is the sum of three distinct values mod 3, and hence divisible by
3. The only problem is when ¢ = n + 1, but the maximality of ¢ implies
that in this case f(n + 1) # f(n +4) = f(n), and then the sequence
1,...,n—-2,n+1,n+4 is monotone, and its sum is divisible by 3. We may
now assume b # c.

Let 0 < a < 2, where a # b and a # c. This uniquely determines a.
Let r > n be the minimal integer satisfying f(r) = b, and let s > n be the
maximal integer satisfying f(s) = b. r and s exist since f is not constant on
[7,...,2n+ 3] and does not get the value c in this interval. Clearly, r < s,
and we can also assume that 7 < 2n — 1 since otherwise f has the constant
value a on the interval n, ... , 2n—1, and this is a zero-sum monotone wave.
Similarly, we can assume s > n + 4, since otherwise f has constant value a
on the interval n+4,...,2n+ 3. We distinguish the following cases, where
each case assumes that the cases above it do not hold:

1. r = n. In this case the sequence 1,...,n — 2,n, s is monotone, and
has sum b+ f(n) + f(s)=b+ b+b=0mod 3.

2. r = s. Since the previous case does not hold we must have f(n) = a.
If f is constantly a on [1,... ,n] we are done. Otherwise, let ¢ < n be
maximal having f(t) # a. We distinguish the following subcases:
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(a) f(t) =c end r—t < n—1. In this case we take the monotone
wave ¢,... ,r — 1,7,... ,t + n — 1 in which the value of f is a
on all elements except f(t) = c and f(r) = b. Thus, the sum is
a(n —2)+b+c=0mod 3.

(b) f(t) = c andr—t > n—1. In this case we take the monotone wave

, ... ,t+n—2,r in which the value of f is a on all elements except
f(t) = cand f(r) = b. Thus, the sum is a(n—2)+b+c = 0 mod 3.

(¢) f(t) = b, t < n/2, and r —t > n. In this case we can take
the monotone wave t + 1, ... ,t +n in which the value of f is
constantly a.

(d) f(t) =b, t <n/2, and r —t < n. In this case we can take the
monotone wave t+1,...,7=1,7+1,... ,2n—r+2t+1 in which
the value of f is constantly a. Note that 2n—r+42t+1 < 2n+3,
so the wave is within bounds.

(e) f(t) =b endt > n/2. Let us denote u = 2b+(n—¢—1)a mod 3,
v = b+(n—t)a mod 3, w = (n—t+1)a mod 3. Clearly, u,v,w are
all distinct mod 3. Assume first that Y5} f(i)+u =0 mod 3. In
this case the monotone wave 1,... ,n—1,7 hassum Yoo} f(i)+
b+(n—t—1)a+b=0mod3. If 3} 1f(z)+'u = 0mod3
the monotone wave 1,... ,n has sum Y51 f(5) + b+ (n—t)a=
0 mod 3. Finally, if E 1 ! £(3) + w = 0 mod 3, we must again
consider two subcases. If 7 and ¢ have the same parity, or if
2n —t 4+ 1 < r we can take the monotone wave 1,...,t —1,t +
1,t +3,.. 2n — t 4+ 1. This sequence does not mclude r and
hassumz f(z)+(n—t+1)a_0mod3 If r and ¢ have
different panty and 2n—t+1 < r we can take the monotone wave
1,...,t=1t+1,...,r=2,r+1,74+4,... ,3n- r/2 3t/2+5/2.
Thls sequence dow not include r and has sum 347) LG+ (n—
t + 1)a = 0mod 3. However, we must show that 3n —r/2 —
3t/2 + 5/2 < 2n + 3, which is equivalent to n < (r + 3t 4+ 1)/2,
and this holds since ¢ > n/2 and r > n.

3. r+1 = s. Once again, there are three subcases:
(8) Yics_ny2f(i) = bmod3. In this case the sequence 7 — n +
2,...,7r=1,r,7+1hassum b+ b+b=0mod 3.

o) Tk +2f(@) = amod3, and r < 2n — 2. In this case the
sequence r —n+2,...,r—1,r+2,7r+5hassuma+a+a=
0 mod 3.

() ik, +2f(3) = amod 3, and r > 2n — 2. Note that since we
always assume r < 2n—1 we must have r = 2n—1. In this case f
has constant value a on the monotone wave n,... ,2n—2,2n41.
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(d -k +2f(3) = cmod 3. In this case the sequence r — n +
2,...,r—1,7,v+2has sum ¢+ b+ amod 3.

4. r 4+ 1 < 8. The subcases are:

(a) Z}:f_n +1f(i) = cmod 3. In this case the sequence r — n +
1,...,r=2,r—1,rhassumec+ f(r—1)+ f(r) =c+a+b=
0 mod 3. (We have used here the fact that Case 1 does not hold,
and thus r > n, which means r —1 > n, and hence f(r—1) = a).

() 7-2 .. f(i) = bmod 3. In this case the sequence 7 — n +
1

i=r—n+1

yeessT—2,7,8shassum b4 b+ b=0mod 3.
(¢) 722 .. f(3) = amod 3. If there exists j > r with f(j) =

a, 't}:ez;énomne wave r —n+1,...,r = 2,7 — 1,5 has sum
a+ f(r — 1)+ f(j) = a+ a+a = 0mod 3. Otherwise, we have
that f(j) =bfor all j > r. If r < n+ 4 we have the monotone
wave 7, ... ,7+n —1 in which f is constantly b, and hence it is
zero-sum. If 7 > n+ 4 we know that f(r —2) = f(r — 1) = a.
This means that the pairs (r — 2,r — 1), (r — 2,7) and (r,7 + 3)
have sums a + a, a 4+ b and b + b respectively, and these sums
are distinct mod 3. Thus, the monotone wave r—n,... ,r—3 of
length n —2 can be continued by one of the three pairs to obtain
a monotone wave of length » which is zero-sum.

This proves MW (n, Z3) < 2n + 3, and completes the proof of Theorem
1.3. (]

4 Zero-sum arithmetic progressions

Arithmetic progressions are a special case of monotone waves. Although
W(n,Z3) = 2n — 1 is completely determined, almost nothing is known
about W(n, Z;) where k > 3. Theorem 1.4 provides a quadratic ($2(n?))
lower bound of for all &£ > 3:
Proof of Theorem 1.4: Let p be the largest prime not exceeding n. We
will show that W(n, Z;) > p(n — 1) + 1. Since for n > 2 there is always a
prime between (n+1)/2 and n, and if » is sufficiently large there is a prime
between n — n%/5 and n [11), it follows that W(n, Zx) > n?(1 — o(1)).
Consider the coloring f : [1,...,p(n — 1)] — Z; which is defined by
f(G)=1if j = 0mod p, and f(j) = 0 otherwise. We will show that there
is no arithmetic progression of length n» whose sum is divisible by k. Let
ajy,... ,an be an arithmetic progression. Thus, a; = a; + (i — 1)d, for some
1<d <p-1. (Note that if d > p, then a, would be out of bounds). We
now show that if 1 <i < j <n and j — i # p, then a; # a; mod p. To see
this, note that aj — a; = (j — #)d and (j — ¢)d is not a multiple of p as p
isprimeandd<p—-landj—is#p,and j—i < 2p, sincen < 2p. It
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follows that for every t = 1,... ,p, there exists an ¢ such that a; = ¢ mod p,
and if i + p < n, then also a;4; = tmodp. Thus, Y7, f(a;) = 1 or
i1 f(a:) = 2. In any case, since k > 3, f is not zero-sum.

In case n+ 1 is a prime, we can strengthen Theorem 1.3. by selecting
p =n+1, and defining f : [1,...,n% — 1] — Z; as follows: f(i) = 1 if
i=0modpori=—1modpand f(i) = 0 otherwise. Now one obtains that
for every arithmetic progression ay, ... , an, any two elements are distinct
mod p, thus the sum of the sequence is either 1 or 2, and thus, not zero-sum.
Hence W(n, Z;) > n? if n+1 is a prime. O

5 Concluding remarks and open problems

1. Although Theorem 1.1 shows that, for fixed k, MW (n, Z;) is a linear
function of n, it is still interesting to determine the correct constant,
which depends on k. Theorem 1.3 states that for k¥ = 2 the constant
is 3/2, and for k = 3 the constant is at least 2— {5 and at most 2. For
k > 3 we only have the lower bound v/k/2 and the upper bound k%,
unless when k is a prime in which case the upper bound is improved
to k2. We conjecture that the constant for the upper bound is less
than k2 for all k.

2. Similar questions to the ones asked in the preceding paragraph are
also valid for SMW (n, Z;). Theorem 1.2 shows that, for fixed k,
SMW (n, Z;) is a quadratic function of n. A proofthat SMW (n, Z3) =
(™3") is known, although it uses different tools, and will be presented
elsewhere. However, unlike MW (n, Z3), we do not know of similar
tight upper and lower bounds for SM W (n, Z3). Furthermore, Theo-
rem 1.1 provides a v'k/2 lower bound for the constant which multiplies
n in MW (n, Z,). We do not know how to prove a lower bound with
a similar constant multiplying n? in SMW (n, Z).

3. Using a computer, we know that MW (3,23) = 7, MW(6,2Z3) =
13, MW(9,Z3) = 18, MW (12,Z3) = 23 and MW(15,Z3) = 29.
We conjecture that MW(n,Zs) < 23n/12 + C where C is some
absolute (small) number. We have also computed MW (4,Z;) =
13, MW (8,Z,) = 21, MW(5,Zs) = 21, SMW(3,Z3) = 9 and
SMW(6,Z3) = 27.

4. The proof of Theorem 1.4 provides a quadratic lower bound for W(n, Z;),
in case k > 3. We do not know of any polynomial upper bound for
this function. In particular, is it true that W(n, Zx) = O(n*)? By
using a computer we have W (3, Zg) = 9 and W (6, Z3) = 36. In view
of Theorem 1.4 it is plausible to conjecture that W(n, Z3) = n?.

113



References
[1] N. Alon and J. Spencer, Ascending Waves, J. Combin. Theory, Ser. A
52 (1989), 275-287.

[2] N. Alon and Y. Caro, On three zero-sum Ramsey-type problems, J.
Graph Theory 17 (1993), 177-192.

[3] A. Bialostocki and P. Dierker, Zero-sum Ramsey Theorems, Congress.
Numer. 70 (1990), 119-130.

[4] B. Bollobés, P. Erdés and G. Jin, Strictly ascending pairs and waves in
graph theory, In: combinatorics and algorithms, Vol. 1,2 (Kalamazoo,
MI 1992), 83-95.

[5] T.C. Brown, P. Erdés and A.R. Freedman, Quasi progressions and
descending waves, J. Combin. Theory, Ser. A 53 (1990), 81-95.

[6] Y. Caro, A survey on zero-sum problems, Discrete Math. 152 (1996),
93-113.

[7] Y. Caro, A complete characterization of the zero-sum (mod 2) Ramsey
numbers, J. Combin. Theory, Ser. A 68 (1994), 205-211.

(8] Y. Caro, Two combinatorial problems on posets, Order 13 (1996), 33—
39.

[9] H. Davenport, On the addition of residue classes, J. London Math.
Soc. 10 (1935), 30-32.

[10] Y.O.Hamidoune, A note on the addition of residues, Graphs and Com-
binatorics 6 (1990), 147-152.

[11] M.N. Huxley, The distribution of prime numbers, Ozford Mathematical
Monographs (1972), 119-120.

114



