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Abstract

For k > 2, the Py-free domination number (G, — P) is the
minimum cardinality of a dominating set S in G such that the
subgraph (S) induced by S contains no path Py on k vertices.
The path-free domination number is at least the domination
number and at most the independent domination number of
the graph. We show that if G is a connected graph of order n >
2, then v(G;-P;) < n+ 2(k - 1) — 24/n(k —1), and this
bound is sharp. We also give another bound on (G;—F%)
that yields the corollary: if G is a graph with y(G) > 2 that
is Ky ¢41-free and (K1 41 + €)-free (t > 3), then v(G; —P3) <
(t—2)v(G)—2(t—3) and we characterize the extremal graphs for
the corollary’s bound. Every graph G with maximum degree at
most 3 is shown to have equal domination number and Ps-free
domination number. We define a graph G to be P;-domination
perfect if v(H) = v(H; — P;,) for every induced subgraph H of
G. We show that a graph G is P;-domination perfect if and
only if y(H) = y(H; — Ps) for every induced subgraph H of G
with v(H) = 3.
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1 Introduction

Let G = (V, E) be a graph with vertex set V' and edge set E, and
let v be a vertex in V. The open neighbourhood of v is N(v) =
{u € V|uv € E} and the closed neighbourhood of v is N[v] =
{v} UN(v). Let N[vi,ve,...,v] denote the closed neighborhood
N[{v1,va,...,vr}] of the set {v1,v2,...,vt}. A path on k vertices is
denoted by Py. For other graph theory terminology, we follow [4].

A set S C V is a dominating set if every vertex in V is either in
S or is adjacent to a vertex in S; that is, N[S] = V. The domi-
nation number of G, denoted by v(G), is the minimum cardinality
of a dominating set in G, while the independent domination number
of G, denoted by i(G), is the minimum cardinality of a dominating
set in G that is independent. We refer to a minimum dominating
set (respectively, minimum independent dominating set) as a -y-set
(respectively, i-set) of G. The concept of domination in graphs, with
its many variations, is now well studied in graph theory. The book
by Chartrand and Lesniak [4] includes a chapter on domination. For
a more thorough study of domination in graphs, see Haynes, Hedet-
niemi and Slater [9, 10].

In this paper, we initiate the study of path-free domination in
graphs. (This topic has been proposed for directed graphs and the
only existing result is the complexity of this problem for directed
graphs [1].) Let £ > 2 be an integer. A Pi-free dominating set S
of a graph G is a dominating set of G where the induced subgraph
(S) contains no path on k vertices as a (not necessarily induced)
subgraph. That is, if S is a Pi-free dominating set of G, then a
longest path in (S) has order & — 1. The Py-free domination number
v(G; —Py) is the minimum cardinality of a Py-free dominating set of
G. We refer to a minimum Py-free dominating set as a (v; —Fj)-set.

The Py-free domination number is a generalization of independent
domination number i(G); that is, if & = 2, then v(G; —P;) = i(G).
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This differs from the k-dependent number defined by Fink and Ja-
cobson [6, 7] which is a generalization of the independence number
B(G). For k > 0, a k-dependent set is defined in [6, 7] as a set
whose induced subgraph has maximum degree at most k& while the
k-dependence number B (G) is defined as the maximum cardinality of
a k-dependent set. In particular, we note that a P3-free dominating
set is precisely a 1-dependent set and that v(G; —P;) < B1(G).

If K > (n+1)/2, then, since every 7-set of a graph G on n vertices
has cardinality at most n/2, v(G; —FPx) = v(G). For 2 < k < n/2,

Y(G) £ ¥(G; —Pe) <i(G).

Both sharpness and strict inequality can be achieved for the param-
eters in these inequalities. For example, consider a caterpillar. A
caterpillar is a tree with the property that the removal of its end-
vertices results in a path. This path is referred to as the spine of
the caterpillar. If the spine is P and each vertex on the spine is
adjacent to r endvertices, then the caterpillar is denoted by C(¢,7).
For G=C(t,r),t>k>2and z =1t (mod k),

Y(G) =t < Y(G; —F) = (k=1)|t/k]+r[t/k]+z < i(G) = ¥(G; - P2).

If t < k, then 7v(G) = v(G; —P;) =t < i(G). Hence for each integer
m > 1, there exists a tree T satisfying y(T; —P;) — v(T') > m and
i(T) —y(T;—P3) > m.

Cockayne, Hedetniemi and Miller [3] introduced the following in-
equality chain involving domination parameters (parameter defini-
tions not given here may be found in [9]):

ir(G) < ¥(G) <i(G) < Bo(G) < T(G) < IR(G) (1)
Since this chain first appeared in the literature in 1978, it has been

the focus of more than 100 research papers and prompted many open
questions such as:

(?) What are upper and lower bounds for each of the parameters
in (1)?
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(#4) Under what conditions are any of the parameters in (1) equal?

(#43) Are there other graph parameters whose values are related to
those in (1)?

Our observation that for 2 < k < n/2, v(G) < Y(G;—F) <
i(G) gives an affirmative answer to Question (iii) by demonstrating
where v(G; —Fg) fits in (1). In fact, for 2 < j < k < n/2, we have
Y(G) £ v(G;—F) £ v(G; —P;) < i(G). (Although we are limiting
our investigation in this paper to the minimum cardinality of any
Py-free dominating set, we make the following observation. If we
define the upper Py-free domination number I'(G; —Py) to be the
maximum cardinality of any minimal Pi-free dominating set, then
ir(G) < 7(G) < i(G) < Bo(G) < T(G; —Py) < IR(G).)

For a partial answer to Question (i), we determine an upper bound
on ¥(G; —Py), which yields as a corollary a known bound on i(G).
That is, we show that if G is a connected graph of order n > 2,
then y(G;—P;) < n+ 2(k — 1) — 2y/n(k —1), and this bound is
sharp. Another upper bound on y(G; — F;) is given and its corollary
shows that if G is a graph with y(G) > 2 that is K, x41-free and
(K141 + €)-free (k > 3), then ¥(G5—Ps) < (k — 2)7(C) — 2(k - 3)
and the extremal graphs are characterized.

Question (ii) has plagued researchers for years for parameters such
as 7(G) and i(G). Since i(G) = 7(G; —P), it is not surprising that
finding conditions for which ¥(G) = v(G; —F) is a difficult problem
as well. We address this question for & = 3. In particular, we ob-
tain a sufficient condition in terms of forbidden induced subgraphs
for the domination number of a graph to equal its P3-free domi-
nation number. As a consequence, every graph G with maximum
degree at most 3 has equal domination number and P;-free domina-
tion number. We define a graph G to be Pi-domination perfect if
v(H) = v(H; — Py) for every induced subgraph H of G. We show that
a graph G is P3-domination perfect if and only if v(H) = v(H; —P3)
for every induced subgraph H of G with v(H) = 3.
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2 Bounds on the P,-free domination number

First we give some more terminology and a result that will be useful.
For each vertex v in a minimal dominating set S of a graph G, the
private neighborhood pn(v, S) of v is given by N[v] — N[S — {v}]. If
u € pn(v, S), then either u is isolated in (S), in which case u = v,
or u € V — S and is adjacent to precisely one vertex of .S, namely
v. We let epn(v, S), or simply epn(v) if the set S is clear from the
context, denote the set of all vertices in V — S that are adjacent with
v but with no other vertex of S; that is, epn(v,S) = pn(v, S) — {v}.
The set epn(v,S) is known as the ezternal private neighborhood of
v. Bollobéds and Cockayne [2] established the following property of
minimum dominating sets in graphs.

Proposition 1 (Bollobds, Cockayne) If G is a graph with no iso-
lated vertez, then there ezists a y-set S of G in which epn(v) # 0 for
every vertez v in G.

Here we address Question (i) and our first result establishes a sharp
upper bound on the Pi-free domination number of a connected graph.

Theorem 2 For k > 2, if G = (V, E) is a connected graph of order

n > 2, then
YG;—Pr) <n+2(k—1)-2ynk-1),

and this bound is sharp.

Proof. Let D = {v,...,vs}, where b > k, be a y-set of G that
satisfies the statement of Proposition 1. We introduce the following
notation. For ¢ = 1,...,b, let W; = epn(v;). By our choice of D,
we know that W; # 0 for all ¢, and W;NW,; =0 for1 <i<j<b.
Since D dominates V', we can partition V into sets Vj,...,V}, where
each V; induces a connected graph of radius one, and where W; C V;
and v; dominates V;. Let S be the set produced by the following
algorithm.
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Algorithm 1 :
Begin

S0, I+ {1,..,b} and i+ 1.
S« SU{v} and I « I—{i}.
If I = 0, then stop; otherwise, let j € I and continue.

Ll

If (SU {v;}) contains a path P; then

4.1. For w € V; do
If d(w,S) > 1 then S« SU{w}.
End for
4.2. I « I —{j}, and return to Step 3;

otherwise set i < j, and return to Step 2.

End

We prove that the set S produced by Algorithm 1 is a Py-free
dominating set of G of cardinality at most n+2(k—1)—2/n(k — 1).
In Step 4 of Algorithm 1, if (S U {v;}) contains a path Py as a
subgraph, then we proceed systematically through the vertices of Vj,
placing a vertex in S only if it not dominated by a vertex already in
S. Hence if (S U {v;}) contains a path P; in Step 4 of Algorithm 1,
then when j is removed from I in Step 4.2, the set S dominates Vj.
Furthermore, whenever a vertex v is added to S at any stage of the
algorithm, either v belongs to D, in which case a longest path in
(S U {v}) has order k — 1, or v belongs to V — D, in which case v is
adjacent to no other vertex of §. Hence S is a Pi-free dominating
set of G.

It remains for us to show that |S| < n+2(k—1)-2y/n(k — 1). For
i=1,...,b, let |V;| =n,;. Since |W;| > 1, we know that n; 2 2 for all
1. Relabeling the sets if necessary, we may assume that n; > ny >

- > ny. By the Pigeonhole Principle, ny > n/b. Hence, applying
mathematical induction, it is straightforward to verify that

2 > el @)
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Since ({v1,...,vk-1}) contains no path Py as a subgraph, {v,...,
ve—1} € S. Fori =1,...,b let S; = S N V,. For each v; € S,
since v; dominates Vj, it is evident from the way in which the set S
is constructed that v; is the only vertex of V; in S;. If v; ¢ S, then
clearly S; contains at most n; — 1 vertices. Hence, if b > k, then for
i=k,...,b,

|Si| < m; — 1. (3)

Since S is a Pg-free dominating set of G, we now have

YG;=P) <|S| = SES|+ Tk |Si]

IA

o1, o1} + They (i = 1) (by (3))
= k-1+(n-in) - (b-k+1)

< nt2k-1)-2l_y (by (2))

The last expression is maximized with b = /n(k — 1). Thus

V(G5 —Py) < IS < n+2(k — 1) — 2¢/n(k — 1).

That this upper bound on ¥(G;—F;) is sharp may be seen by
considering the graph G obtained from a complete graph on (¢ +
1)(k — 1) vertices, where £ > 2 and £ > 2, by attaching to each
of its vertices £ pendant vertices. Then n = (£ + 1)?(k — 1) and
YG;—F) = (k=12 +1) = n+2k-1) —2y/n(k—1). This

completes the proof of the theorem. O

Since i(G) = v(G; —P), the special case of Theorem 2 when k = 2
yields the following result due to Gimbel and Vestergaard (8].

Corollary 3 [8] If G is a connected graph of order n > 2, then
i(G) < n+ 2 —24/n, and this bound is sharp.
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We say that a graph G is H-free if G does not contain H as an
induced subgraph. Furthermore, if H is a collection of graphs, then
we say G is H-free if G is H-free for every H € H. Fort > k > 3,
let H¥ = {H | H is obtained by joining a central vertex of Ps or
K3 to every vertex of a graph of order ¢ — 1 that contains no path
P}. In particular, H3 = {K14,K14 +e,K14 + {e, f}} where here
e and f are nonadjacent edges in the complement of K 4. The next
result establishes an upper bound for the Pi-free domination number
in terms of the domination number.

Theorem 4 If G is an Hf-free graph, 3 < k < t, with v(G) > 2,
then
VG5 —F) < (2 —2)v(G) — 2(t - 3).

Proof. Let D be a v-set of G. By assumption, |D| > 2. Among all
subsets of vertices in D that induce a subgraph containing no Py, let
S be chosen to be one, first, of maximum cardinality and, secondly,
such that (S) has the smallest number of paths P;_; of length k — 2.
Then each vertex v in D — S is adjacent to at least one vertex of
S. Suppose some vertex v € D — S is adjacent to only one vertex
w in S. Then w must be the endvertex of a P;_; subgraph in (S).
Furthermore, S* = (S — {w})U{v} induces a subgraph of cardinality
equal to that of S and having fewer paths of length k£ — 2 than (S).
However (S*) contains no Py, contradicting our choice of S. Hence
each vertex of D — S is adjacent to at least two vertices of S.

Let Y denote the set of vertices in V' — D that are adjacent to no
vertex of S in G. Among the subsets of Y whose induced subgraphs
have no Py, let X be one of maximum cardinality. Then every vertex
of Y — X has a neighbor in X. Thus SU X is a P;-free dominating
set of G, and so v(G;—F;) < |X| + |S|]. Now, each vertex v €
D — S is adjacent to at most ¢ — 2 vertices of X, for otherwise v
is adjacent to at least ¢ — 1 vertices of X and (as shown above) to
at least two vertices of S, and thus belongs to a graph in HF, a
contradiction. This, together with the observation that every vertex
of Y (and hence of X) is adjacent to some vertex of D — S in G,
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implies that | X| < (¢t — 2)(|D] — |S]). Since v(G) = |D| and |S| > 2,
it follows that

Y(Gi—P) <|8]+|X|
< IS+ (t - 2)(+(G) - 1S))
< (t-21(G) — (¢ - 3)S|
< (t - 21(G) - 2(t - 3). o

3 Equality of v(G) and +(G; —P;)

In this section we investigate Question (ii) for the domination and
P;-free domination numbers of a graph. First we observe that if
Y(G) = ¥(G;—P3), then v(G) = ¥(G;—F) for k > 3. Setting
t = k = 3 in Theorem 4, we have the following sufficient condition
for the domination number of a graph to equal its P;-free domination
number.

Theorem 5 If G is H3-free, then ¥(G) = v(G; - P3).

As an immediate consequence of Theorem 5, we have the following
result due to Favaron [5).

Theorem 6 (Favaron [5]) If G is a graph with mazimum degree at
most 3, then v(G) = v(G; - P3).

Since y(H) = 1 = y(H; —P3) for every H € H}, the hypothesis
of Theorem 5 is not a necessary condition. The sufficient condition
presented in Theorem 5 can be strengthened slightly. For this pur-
pose, we introduce a family F of graphs as follows. Let F; be the
graph obtained from K3 by attaching two paths of length 1 to each
vertex of the K3. Equivalently, F; is obtained from three disjoint
Pss by adding three edges joining the central vertices of the paths.
Let 7 = {F | F = F} or F is obtainable from F; by adding edges
Joining vertices at distance 3 apart in F}.
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Theorem 7 If G is K\ 4-free and F-free, then ¥(G) = ¥(G; —F3).

Proof. Let D be a 7-set of G such that (D) has minimum size. We
show that (D) contains no Ps. If this is not the case, then suppose
that vy, v,v3 is a P3 in (D). Then epn(v;) # 0 for i = 1,2,3. If
epn(v;) for i = 1,2,3 contains a vertex z that dominates epn(v;), i.e.,
if z is adjacent to every other vertex of epn(v;), then (D —{v;})U{z}
is a y-set of G of size less than that of D, a contradiction. Hence
lepn(v;)| > 2 and epn(v;) contains no vertex that is adjacent to every
other vertex of epn(v;) for i = 1,2,3. If vjv3 is not an edge of G, then
v1, 2, v3, and any two non-adjacent vertices in epn(v2) induce a Ky 4.
contrary to our assumption that G is K 4-free. Hence v,v3 must be
an edge of G. But then vy, vz, v3, together with two non-adjacent
vertices in each of the sets epn(v;) (¢ = 1,2,3) induce a graph that
belongs to F, a contradiction. O

An immediate consequence of Theorem 7 now follows.

Corollary 8 If a chordal graph G is Ky 4-free and Fy-free, then
v(G) = v(G; —P3).

4 P;-domination perfect graphs

A necessary and sufficient forbidden subgraph list characterizing
graphs G having v(G) = ¥(G; —P) is impossible to obtain. This
is easy to see since the addition of a new vertex adjacent to all ver-
tices of a graph G produces a graph G’ containing G as an induced
subgraph with 4(G') = y(G’; —Px) = 1. Sumner and Moore [11]
defined a graph G to be domination perfect if y(H) = i(H) for every
induced subgraph H of G. We define a graph G to be Pg-domination
perfect for k > 3 if y(H) = y(H; —P) for every induced subgraph H
of G. As a consequence of Theorem 5 and Corollary 8, we have the
following results.

Corollary 9 Every H3-free graph is P3-domination perfect.
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Corollary 10 Every K 4-free and Fi-free chordal graph G is P;-
domination perfect.

Sumner and Moore [11] established that a graph G is domination
perfect if and only if y(H) = ¢(H) for every induced subgraph H
of G with v(H) = 2. Since i{(H) = y(H; —P,), this result may be
generalized as follows.

Theorem 11 For k € {2,3}, a graph G is Pi-domination perfect if
and only if y(H) = v(H; —P) for every induced subgraph H of G
with y(H) = k.

Proof. The necessity is immediate. To prove the sufficiency, let
k € {2,3} and let G = (V, E) be a graph and suppose that v(H) =
v¥(H; —F) for every induced subgraph H of G with y(H) = k. We
show that G is Pg-domination perfect. If this is not the case, then
G contains an induced subgraph F with v(F) < y(F;—P;). Then
Y(F) > k. Among the vy-sets of F, let D be one such that (D) has
a minimum number of paths Py. Since y(F) < y(F;—P), (D) must
contain a P, say vi,v2,...,v¢. Then epn(v;) # @ for 1 < i < k.
Let X = UX_ epn(v;). Further, let D' = {vi,v2,...,v¢} and let YV
denote those vertices in V(F) — (D U X) that are adjacent to no
vertex in D — D'. Then each vertex in Y is adjacent to at least two
of the vertices in D' but to no other vertex of D. Let H be the
subgraph induced by D'U X UY. Then D’ is a dominating set of
H. If y(H) < k—1, then a y-set of H together with the vertices in
D — D' form a dominating set of F of cardinality less than that of
v(F), which is impossible. Hence v(H) = k, and so, by assumption,
Y(H; —Pg) = k. Thus there exists a y-set D* of H that contains no
Py. Since D’ contains a Py, D* must contain at least one vertex of
X UY. However, no vertex in X UY is adjacent to any vertex of
D — D'. Hence, (D — D') U D* is a y-set of F and, since k € {2,3},
it is evident that {(D — D') U D*) has fewer P; subgraphs than (D).
This contradicts our choice of D. O

Theorem 11 shows that is not necessary to check every induced
subgraph of a graph in order to determine if it is Pi-domination
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perfect. Zverovich and Zverovich {12] provided a forbidden induced
subgraph characterization of domination perfect graphs in terms of
seventeen forbidden induced subgraphs. We have yet to determine a
finite forbidden induced subgraph characterization of Pg-domination
perfect graphs. Such a characterization for P3-domination perfect
graphs would, however, involve at least 45 (nonisomorphic) forbid-
den induced subgraphs each with domination number 3 and F;-
domination number 4.
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