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Abstract

The conjecture by E. Wojcicka, that every 3-domination-critical
graph with minimum degree at least two is hamiltonian, has recently
been proved in three different papers by five different authors. We
survey the results which lead to the proof of the conjecture and
consolidate them to form a unit.
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on the occasion of his 60th birthdayv

1 Introduction

All graphs G = (V (G), E (G)) will be finite, undirected and without loops
or multiple edges. Any basic graph-theoretic definitions and notation not
defined below comply with [3], while definitions and notation pertaining
to domination and related concepts can be found in [8]. Specifically, we
denote the domination and independence numbers of a graph G by v(G)
and B (G) respectively.

The graph G = (V, E)} is called k-edge-domination-critical, abbreviated
k-y-critical, if v (G) = k, and for every edge e € E (G). v(G +e) = k ~ 1.
(It is easy to see that the addition of an edge to any graph cannot decrease
the domination number by more than one.) A dominating cycle of G is a
cycle such that each edge of G is incident with at least one vertex of the
cycle. The length of a longest cycle in G is called the circumference of G
and is denoted by ¢(G). Let w (G) denote the number of components of G.
Then G is said to be 1-tough if for each cut-set S of G, w (G — S) < |S|.

If A, B C V(G), where A and B are disjoint, then we use E (A4, B) to
denote the set of edges between vertices in A and vertices in B.

In general, a graph G is critical with respect to a property P if G pos-
sesses the property, but no proper induced subgraph, no proper spanning
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subgraph, or no proper spanning supergraph (as the case may be) of G
possesses P. Studying criticality with respect to major graph-theoretical
properties is important as it affords a deeper understanding of the prop-
erty and the class of graphs that possesses it, and because induction (using
properties of subgraphs of a graph G to deduce properties of G) is often
used in graph-theoretical arguments.

Sumner and Blitch initiated the study of edge-domination-critical graplis
in [11]. This work was continued by Wojcicka in (14] and these two papers
gave rise to two major conjectures, namely Conjectures 1 and 2. which
are stated below.In [11], Sumner and Blitch showed that the I-5-critical
graphs are precisely the complete graphs, and that G is 2-y-critical if and
only if G is the disjoint union of non-trivial stars. They further showed
that a disconnected 3-v-critical graph is the disjoint union of a complete
graph and a 2-y-critical graph, and therefore concentrated their research
on the connected 3-v-critical graphs. These are some of the results that
they obtained: Every 3-y-critical graph of order n and size m

e contains a triangle,

e satisfies m < ,_2Co,

e has a 1-factor if n is even and

e has its clique number bounded below by 3 and above by n — 3.

Sumner and Blitch [11] also pointed out that all the examples of 3-v-
critical graphs with n > 7 that they had constructed contained hamiltonian
paths, and thought it logical to ask when a k-y-critical graph would contain
a hamiltonian path or cycle. In [14], Wojcicka proved the following result:

Theorem 1 If G is a connected, §-y-critical graph on more than siz ver-
tices, then G has a hamiltonian path.

She then formulated the following conjecture:

Conjecture 1 Every connected 3-y-critical graph G with é(G) > 2 is
hamiltonian.

This conjecture is henceforth referred to as Wojcicka’s Conjecture. Ob-
viously, graphs with end-vertices are not hamiltonian, but it was proved by
Xue and Chen in [15] that 3-y-critical graphs with end-vertices yield hamil-
tonian graphs when all end-vertices are removed. We state this result here
for the sake of completeness.

Theorem 2 Let G be a connected, 3-y-critical graph with 6 (G) = 1 and
let Vi = {v € V(G)|deg(v) =1}. Then G — Vi is hamiltonian.
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Sumner and Blitch also formulated the following conjecture in [11]):
Conjecture 2 If G is k-vy-critical, then i (G) = k.

Both these conjectures have generated a great deal of research. Conjec-
ture 1 has been solved. In (5], Favaron, Tian and Zhang showed that (i)
3-y-critical graphs with § > 2 satisfy 8 < § + 2, and went on to prove the
conjecture for B < § + 1. The outstanding case (8 = § + 2) was proved by
Tian, Wei and Zhang in [13]. The proofs make use of the following results
established by Flandrin, Tian, Wei and Zhang in [6]: 3-y-critical graphs
with n vertices and minimum degree § > 2 are (ii) 1-tough and have the
property that (iil) each longest cycle is a dominating cycle. Using (ii} and
(iil), they proved that (iv) the circumference of these graphs is at least
n — 1. In [5], Favaron, Tian and Zhang used (ii) and (iv) to prove Wojci-
cka’s Conjecture for 8 < §+ 1. Furthermore, they showed that if 3 = § + 2,
then (v) every maximum independent set contains all vertices of degree 6,
and (vi) if z is a vertex of degree &, then N(z) induces a clique. Tian, Wei
and Zhang then showed in [13] that (vii) there is only one vertex of degree
-6, and used (ii), (iv), (v), (vi) and (vii) to show that 3-y-critical graphs
with 8 = § 4+ 2 are hamiltonian, thus completing the proof of Wojcicka’s
Conjecture.

The proofs are long and technical and contain many repetitions and
some omissions, and are difficult to follow. In this survey we consolidate
the work done in [5, 6, 10, 11, 13, 14, 15}, of which [5, 6, 13} are the most
important, on this conjecture. Several of the proofs contain lemmas and
other results that are used in more than one paper or more than one proof
in the same paper. We formulate these results separately and ordered
them under the headings Independent sets (Section 2, containing general
results regarding the independent sets of 3-y-critical graphs), Cut-sets, cut-
vertices and end-vertices (Section 3, containing the proof of (ii) and general
results on cut-sets, cut-vertices and end-vertices of 3-v-critical graphs),
Independence numbers (Section 4, results on independence number and
independent domination number, including the proofs of (i), (v) and (vi))
and Longest cycles (Section 5, results pertaining to longest cycles, including
the proofs of (iii), (iv) and (vii)). The proof of Wojcicka’s Conjecture in
the case § < 6 + 1 [5] is given in Section 6. while the proof of the case
B =6+ 2 is given in Section 7.

We have attempted to make these long and difficult proofs as accessible
as possible, thus making the proof of this major conjecture available as one
unit.

Further results on k-v-critical graphs for k£ > 4 can be found in [1, 2. 4.
9]. Those readers who are interested in other issues surrounding criticality
with respect to domination are referred to a survey of various types of
criticality of domination, independence and irredundance by Grobler in
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(7] and the recent survey of domination critical graphs by Sumner and
Wojcicka in [12].

Finally, we use the notation “B’ to indicate the end of the proof of a
theorem or lemma, and “0J” to indicate the end of the proof of a lemma
within the proof of a theorem.

2 Independent sets

By definition, if G is 3-y-critical and u and v are any two nonadjacent
vertices of G, then (G + wv) = 2. In [11], Sumner and Blitch observed
that there therefore exists a vertex z € V (G) \ {u, v} such that in G. {u.z}
dominates G—v but not v (denoted by [u, z] — v) or {v, 2} dominates G —u
but not u (denoted by [v,z] — u). This observation will be used often in
the proofs that follow.

The following lemmas relate to the independent sets of connected. 3--
critical graphs and will be used often in the proofs that follow. Sumner and
Blitch proved the next result in [11], using the condition k& > 4 to ensure
that WNY (W) = ¢ and that y1y2...yx—1 is a path in G, but as observed
in 6], the result can be easily verified for k € {2,3} by using the fact that
G is 3-vy-critical.

Lemma 3 Let G be a connected, 3-y-critical graph and W an indepen-
dent set of k > 2 vertices in G. Then there exists an ordering F (W) =
(w1, ws, ..., wy) of the vertices of W and a sequence Y (W) = (y1.y2. ... yoy)
of k — 1 distinct vertices in G such that [wi.y;| — wiiy. for cach i with
1<i<k-1.

Note that we sometimes denote w; as f; (W) and y; as y; (W) for clarity.
The following two lemmas were proved in [5] for & > 3, but can be extended
to k > 2 as for Lemma 3.

Lemma 4 Let W be an independent set of k > 2 vertices of a connected,
3+y-critical graph G, such that W U {x}, with x ¢ W, is also independent.
Then any sequence Y (W) defined in Lemma 3 belongs to N (x).

Proof. For eachi with1 <i< k-1, [w;,yi] = wiyq. Since x ¢ W and
is not adjacent to w; for each 7 with 1 < ¢ < k, it follows that & is adjacent
to y; for each 7 with 1 < i<k~ 1. Hence Y (W) C N (x). ]

Lemma 5 Let W be an independent set of k > 2 vertices of a connected.
3-y-critical graph G, W U {z} an independent set with v+ ¢ W and Y (1)
the sequence defined in Lemma 3. If deg(z) = k — 1 or if every vertez wn
N (z) \Y (W) is adjacent to every vertez in W, then y,w; € E(G) for each
twith2<i<k-1.
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Proof. Let F (W) = (w;, ws, ..., wx) be the ordering of the vertices of W
described in Lemma 3 and Y (W) = (y1,¥2. ., Yk—1)-

For any ¢ with 2 <7 < k— 1, the vertices w; and w;,) are not adjacent.
So, there exists a vertex z € V {G) \ {w1, w;4,} such that

[‘wi+1,Z] —wy or [wy. 2] — wis.

We first show that z € N (z) NY (W). Since W U {x} is independent. :
dominates z in both cases, and so z € N (z). Also by Lemnma 4. Y (1) &
N (z). If deg(z) =k — 1, then Y (W) = N (z), hence z € N (z) NY (W).
If deg(z) # k — 1, then by the hypothesis every vertex in N (x)\Y (W)
is adjacent to every vertex in W (including w, and w;,,). Hence z ¢
N (z)nY (W).

The case [wiy1,2] — w; is impossible since the only vertex in Y (W)
that possibly does not dominate w, is y; and y; does not dominate .
Hence {wi,2] — wiy1. For each i with 2 < i < k-2, z € {y;,yi+1} as
these are the only two vertices in Y (W) that possibly do not dominate
wi+1. However, z # y;4+1 as yi+1 does not dominate w;,o for each i with
2<i< k-2 Thus 2 =y; andsoy;w; € E(G) foreachi with2 <i < k-2,
Consider i = k — 1. The only vertex in Y (W) not adjacent to wy, is yr_;.
Thus z = yr-; and yr_1wWk.-1 € E(G). It follows that y;w; € E(G) for
eachiwith2<i<k-1. n

3 Cut-sets, cut-vertices and end-vertices

This section contains results involving cut-sets and end-vertices, which will
be used in proving many of the results leading to the proof of Wojcicka's
Conjecture. To begin with, Theorem 6(a) was proved in [11] and (b) in
[15].

Theorem 6 Let G be a connected, 8-y-critical graph.
(a) Any vertez v of G is adjacent to at most one end-vertez of G.

(b) If w is an end-vertex and v is adjacent to w, then N (v)\ {w} induces
a cligue in G.

Proof. (a) Suppose to the contrary that v is adjacent to two end-vertices
a and b. Then since ab ¢ E (G), we can assume without loss of generality
that there is a vertex 2 € V (G) \ {a, b} such that [a,2] — b. Since a only
dominates v (and itself), it follows that z dominates V (G)\ {a,b,v} and
so {v,z} dominates G, a contradiction.

(b) Suppose to the contrary that there are two vertices a and bin N (v) \ {w}
such that ab ¢ E (G). We may assume without loss of generality that there
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is a vertex z € V (G) \ {a, b} such that [a, z] — b. Since {aw. zb} N E (G)
¢, it follows that z = w, and so a dominates V (G)\ {b,w}. Thus {c.v
dominates G, contradicting v (G) = 3.

Il

u-—-

The following useful result involving cut-sets was proved in {11]. It was.
however, improved upon in [6] for § (G) > 2 (see Theorem 2.10).

Theorem 7 Let G be a connected, 3-y-critical graph. If T is a cut-set of
G, then G — T has at most |T| + 1 components.

The next major result that we prove is that every cut-vertex of a 3-v-
critical graph is adjacent to an end-vertex. This will be useful in obtaining
connectivity and toughness properties of 3-y-critical graphs with § > 2
needed in the proof of Wojcicka's Conjecture. We first prove the following
result.

Lemma 8 Let G be a connected, 3-v-critical graph with a cut-vertex v and
let A and B be the vertex sets of the components of G — v. Then exactly
one of A and B is contained in N(v).

Proof. If AU B C N(v), then v dominates G, contradicting v(G) = 3.
Now suppose that A\N(v) # ¢ and B\N(v) # #. We may choose
@' € A and ¥ € B such that d(a’,v) = d(V/,v) = 2. Choosea € N(v)N A
and b € N(v) N B such that {ad’,bb'} C E(G).
‘We show that a dominates A or b dominates B. Suppose to the contrary
that there is a; € A, such that aa; ¢ E(G). Then there is a vertex x such
that

[a,z] a1 or [aj,z] —a.

Consider the former case. Since N(a) N B = ¢ and v does not dominate
by, necessarily € B, and we may assume without loss of generality that
z = b, since b dominates ,. Similarly, in the latter case x € B U {v},
and since v dominates a, * € B. Again we may assume without loss of
generality that = b. Thus we can assume that b dominates B.

Note that since b dominates B U {v}, no vertex a* € A dominates A.
for otherwise {b,a*} is a dominating set, contradicting v (G) = 3.

Consider the vertices ¥’ and v. Since b'v ¢ E(G), there exists a vertex
y such that

by =v or [vyl -V

In the former case, y € A to dominate a’ and y dominates A, a contradic-
tion. Hence it must be that [v,y] — V', and y € A in crder to dominate «’.
Thus v dominates B\ {'}.
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Now consider the vertices a’ and v. Since a’v € E(G), there exists a
vertex z such that

a',zl -v or [v,z] —d.
o', 2] [v, 2]

In the former case, z = ¥, since z must dominate B and not v, and so a’
must dominate A, a contradiction. Therefore it must be that (v, z] — a’.
Since v does not dominate V', z € B, and so v dominates A\ {a'}.

Furthermore, B is complete: Suppose to the contrary that b; and b, are
two vertices in B and b,b; ¢ E(G). Then, without loss of generality, there
exists a vertex z such that [b),2] — b2. Now z € A to dominate o’ and z
dominates A, a contradiction.

Since a’ does not dominate A, there exists a vertex a; € A such that
a1a’ ¢ E(G). Since a b’ ¢ E(G), there exists a vertex x such that

[a1,2] =& or [b' 2] - a.

The former case is impossible, since = v to dominate B\ {¥'}, but then o’
is not dominated. Therefore [',z] — a; and x € A to dominate a’. Note
that = must also dominate v, but not a;. Let & = as, where ay € A\ {a’. ¢}
and a, dominates (A\ {a;}) U {v}.

Since agb ¢ E(G), there exists a vertex x such that

[ag,z] = b or [ba]— ay.

The former case is impossible since no vertex dominates o' and not b. and
the latter case is impossible since no vertex dominates a’ and not a,. Thus
either

AC N(v) or BC N(v)

and the lemma follows. [ |

Theorem 9 Let G be a connected, 3-y-critical graph. If v is a cut-verter
of G, then v is adjacent to an end-vertex of G.

Proof. By Theorem 7, G — v has exactly two components. Let A and B
be the vertex sets of the components of G — v, and assume, without loss of
generality, that B C N(v). Let X = A\N(v). Clearly, |X| # ¢. We show
that |B| = 1.

Suppose to the contrary that |[B| > 2 and let {b,,b2} C B. Consider
any a € AN N{v). Since ab, ¢ E(G), there exists a vertex & such that

[a.z) > b or [b,z] — a

In the former case. z dominates by but not b;, and so »r € B. But then
a dominates A and v dominates {v} U B, contradicting ~ (G) = 3. In the
latter case « dominates A\ {a}, again contradicting v (G) = 3. a
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Corollary 10 Let G be a connected, 3-y-critical graph with 6 (G) > 2.
Then G is 2-connected.

Proof. If G is not 2-connected, then G has a cut-vertex v. By Theorem
9, v is adjacent to an end-vertex, contradicting 6 (G) > 2. [ ]

In an attempt to prove Wojcicka’s Conjecture, Flaudrin, Tian. Wer and
Zhang [6] proved a stronger result than the one stated in Theorem 7. We
begin with a lemma.

Lemma 11 [6] Let G be a connected, 3-y-critical graph. If Ty is a cut-set
of G such that w (G — Tp) = |To| + 1, then v is a cut-vertex for any v € Ty.

Proof. If [To| = 1, then the result holds, so we can assume that |Tp; > 2.
Let |[To| = k — 1 and let 71, T3,..., Tk be the vertex sets of the components
of G — Tp.

Consider a vertex w; € T, for each 7 with 1 < i < k, and let §; =
T\ {w;}. Let W = {w;,ws,...,wi}. Since W is an independent sub-
set of V (G), it follows from Lemma 3 that there is a sequence Y (1) =
(¥1,¥2, .-, Yk—1) such that [w;,y;] — w4, for each i with 1 < ¢ < k-1
(re-organising the numbering of the components if necessary). We consider
two cases depending on Tp and the sets S;.

Case 1 |Tp| >3 or |[Tp| =2 and S; # ¢ for each s with 1 < < 3.

Since y; dominates S; for each j # i, it follows that Y (W) C Ty and so
Y (W) = Tp. Consider the vertices w; and wy. Since wyw € E (G), there
exists a vertex y € V (G) \ {w;, wx} such that

[wi,y] > wr or [wk,y] — wr.

In either case y € Y (W) since y dominates Sy U {wa} or Sy U {wa} re-
spectively. Since y;w; € E(G) for each t with 2 < t < k-1 and
niwe ¢ E(G), the case (wg,y] — w; is impossible. So we must have
that [wy,y] — wk. Since yowy, € E(G) for each t with 1 <t < k-2, it fol-
lows that y = yi_1, i.e. [wi,yx—1] — wi. Hence Tx—q C N (yr-1). But we
also have [wg_1,yr—1] — wi and since wy_, is not adjacent to any vertex
mT=T1UThU..UTk_2USk, we have T C N (yg—1). Thus {yr—1,wr}
dominates V (G), contradicting v (G) = 3. Hence this case is impossible.

Case 2 |Tp| =2 and at least one of S;, Sz and S3 is empty.
Without loss of generality, assume that S3 = ¢, i.e. T3 = {ws}. Thus
N (w3) C Tp. We consider two subcases depending on the value of deg (w3).

Case 2.1 deg(ws) =1.

Since [w;,y1] — we, 1wz € E(G). Thus y; is a cut-vertex and y; € Tp.
By Theorem 6(b), either N (y;) NTy = ¢ or N (y1) NT> = ¢. Consequently
z € To\ {1} is also a cut-vertex and the lemma holds.
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Case 2.2 deg(ws) =2.

Since [wy,y1] — we, it follows that yyws € E(G) and y, € Tp. Since
[wa,y2] — w3, we have y2 € T} and we is adjacent to every vertex in Sp.
Also, N (w3) = Ty = {y1,z} for some x with = # ys.

Now T3 UT, € N (Tp), for otherwise Tp dominates V' (G), contradicting
v(G) = 3. Without loss of generality, we can assume that wp ¢ N (Tp).
By the connectedness of G, Sz # ¢.

Consider u; € Ty and ug € Ty. There is a vertex z such that

[ur,2] »ug or [ug, 2] — u;.

In either case, z dominates w3 so z € Tp. Since wo ¢ N (u3) UN(2), it is
impossible that [uy, 2] — u2. Hence [ug, z] — u;.

Suppose S; = ¢. If deg(w;) = 1, then using a similar argument to Case
2.1, the lemma holds. Thus we can assume deg (w;) = 2, i.e. N (w;) = Tp.
Since {ug,z} dominates G — u; (note that u; = w;) and z € T, it follows
that {us, 2} dominates G, contradicting v (G) = 3.

Hence S, # ¢. Again we consider [u2, 2] — u;, where z € Tp. Without
loss of generality, we can assume that z = y;. Thus T1\ {u1} € N (11)-
Consider 4} € T1\ {¢1}. Using a similar argument to the one above, we
have [ug, 2'] — u}, for some 2’ € Tp. Since uiy1 € E(G), 2/ = z. Thus
T\ {u1} € N (=)

Suppose that |T3| > 3. Then there is a vertex u{ € 71\ {u;,u]}, and
[ug, 2"} — uf for some 2” € Tp. But this is impossible since Top C N (uf).
Thus |T3| = 2.

Now consider the vertices we and w3. Since [ws,y2] — w3, y2 dominates
{w1,u1,7,y1} but not ws. Thus yo € ToUT. Since {1y, w1z} NE(G) =
@, [w2,ya] — wj is impossible, contradicting v (G) = 3. So this case is also
impossible and the lemma holds. |

Theorem 12 Let G be a connected, §-y-critical graph with 6 (G) > 2.
Then G is 1-tough.

Proof. By Theorem 7, if T is a cut-set of a connected 3-y-critical graph,
then w (G — To) < |To|+1. We now show that if § (G) > 2, then w(G-Tp) <
|Tol-

Suppose to the contrary that G is a connected 3-v-critical graph with
§(G) > 2 and that G has a cut-set Tp such that w (G —To) = |To| + 1.
Then by Lemma 11 and Theorem 2.7, each vertex v € Ty is adjacent to an
end-vertex, contradicting 6 (G) > 2. [ |

Corollary 13 Let G be a connected, 3-y-critical graph with 6 (G) > 2. If
T is a cut-set of G, then G has at most |T| components.
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4 Independence numbers

Favaron, Tian and Zhang established an upper bound for the independence
number 3(G) of a 3-y-critical graph G with §(G) > 2 in [5]. Before we
present this result, we prove the following lemma.

Lemma 14 Let = be a vertex of degree d > 2 of a 3-y-critical graph G, I
a mazimum independent set and let A = I\N [z]. If|{IN N (z)| = d, then
|Al < 1.

Proof. Suppose to the contrary that N (z) C I and that |A| > 2. Let
{z,t} C A. Then N (z) U {2,t} C I, so N(x) U {z,t} is independent.
By Lemma 3, there exists an ordering (w;, ws, .... wq42) of the vertices of
N (z) U {z,t} and a path y1y2...ya+1 contained in V (G)\ (N (z) U {z.t})
such that [y;,w;] — w;4, for each ¢ with 1 <i < d+ 1. Now for some pair
G, with1 <i#j<d+1, {w,w;}N{z,t} # & Thus either w, ¢ N ()
or w; ¢ N (z). Since {y;,y;} C V(G)\ (N (z)U{z,t}), either {w;.y;} or
{w;,y;} does not dominate z, a contradiction. Hence |A| < 1. n

Theorem 15 The independence number B(G) of a 8-y-critical graph G
of minimum degree 6 (G) > 2 satisfies 8(G) < 6(G) + 2. Moreover. if
B(G) = 6(G) + 2, then every mazimum independent set contains all the
vertices of degree 6 (G).

Proof. Let x be any vertex of degree 6 (G) in G. I anv wmaxinnun inde-
pendent set, and A = I\ N [z]. Note that if x € I, then I N N (r) = . and
so [I N N [z]| £ 6 (G). By the definition of 4, 3(G) = [N [«] N I} + ;4] and
therefore 3(G) = |[A|+1ifx € Tand B(G) = |A + |IN () D if + ¢ [.
Hence

B(G) < max {|A| +1,|4] + [N (z) N 1|}

If |A] < 1, then 8(G) < max{2,1+|N (z)NI|} < 6(G) + 1.

If |A] = 2, then by Lemma 14, |I N N (z)| € § (G) — 1 and thus 3(G) <
max {3,6 (G)+ 1} = 6(G) + 1 since § (G) > 2.

Now suppose that |A| > 3, say |A| = k. By Lemma 3 there exists an
ordering F (A) = (ay, ag, ..., ax) of the vertices of A and a sequence Y (4) =
(1,92, .., Yx—1) such that [a;,y;] — a4 for each i with 1 < i < & — 1.
Since AU {z} is independent, Y (A) C N (z) by Lemma 4. implying that
6(G) > k — 1. Moreover, Y (A) NI = ¢ since A\{a;,a;s,} C N (y:) for
each i with 1 i<k —1and thus |[N(z)NI| <6(G) - (k-1).

Ifz ¢, then |I| =|N(z)NI|+|A] <6(G)+1. Ifz €1, then |I| =
|A|+1 =k+1< §(G)+2,since §(G) > k—1. Thus B3(G) = |I| < 6§(G)+2
in all cases.
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Moreover, the only possibility for 3(G) to be equal to § (G) + 2 is when
xz € I and |A| = §(G)+1. Since z and I are arbitrary, it follows that every
maximum independent set contains every vertex of degree 6 (G). [ |

We now present a few results regarding 3-y-critical graphs with inde-
pendence number equal to § + 2 will contribute to the proof of Wojcicka's
Conjecture.

Theorem 16 [5] Let G be a 3-y-critical graph with minimum degree 6 (G) >
2 and B(G) = 6(G) + 2, and let = be a verter of G of degree 6 = 6(G).
Then (N(z)) is a cligue and A(G) > 26 (G).

Proof. By Theorem 15, every maximum independent set S of G is of the
form WU {z}. By Lemma 5 there is an ordering F(W") = (w. 1wy, ..o
of the vertices of W and an ordering Y (W) = (y1,¥2,... .ys) of the vertices
of N(z) such that

[wi, i) — w4 for each i with 1 <7 <6,

yiw; € FE(G) foreach jwith3 <j<6+1
and
yiw;j € E(G) for each pair4,j with2<i<é and j#i+1.

For any pair 1, j of vertices with 1 <7 < j < 6, there exists a vertex y such
that

[wi-l-lay] — Wj4y OF [wj+lay] - Wj.

Without loss of generality, assume [w;+1,y] — wjy1. The vertex y belongs
to N(z) by Theorem 15. The only vertex in N(z) not adjacent to wj,
is y;. Soy = yj. Since wiiy: ¢ E(G), y;ju: € E(G). Since this holds
for any pair 4, j, it follows that (N(z)) is a clique. Moreover, every vertex
yi € N(z)\ {1} is adjacent to z, to every vertex of N(z)\ {y:} and to every
vertex of W\ {w;4+1}. Hence deg(y;) > 1+ (6 — 1) + § = 26 and therefore
A(G) > 26(G). |

Corollary 17 [5| Every 3-y-critical graph G with § (G) 2 2 and A(G) <
26 (G) satisfies B(G) < 6(G) +1.

Theorem 18 [13] Let G be a connected, 3-y-critical graph with 6 = 6 (G) >
2 and B = B(G) = 6§ (G) + 2. Then G has only one vertex of degree 6 (G).
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Proof. Suppose that W = {w;,ws,...,wss2} is a maximum independent
set of G. By Theorem 15, W contains all the vertices of degree 6. By
Lemma 3 there exists an ordering F(W) = (w;,,w;,,... ,w;,,,) and a
sequence Y (W) = (y1,¥2,- .- ,¥s+1) of 8 + 1 vertices such that

[wi;,y;] = wi,, for each j with1<j<é+1.

Suppose deg(w;;) = & for some j with 1 < j < § + 1. Since § > 2,
B =6+2 > 4. We can therefore choose two vertices w;, and w;, from
W\ {wi;,wi,, }. Since wiw;, ¢ E(G), we can assume without loss of
generality that there exists a vertex u € V(G)\W such that (w;, ,u] — w;,.
Obviously {w;;,w;,,, } € N(u), and in particular u € N(w;,). By Theorem
16, (N(w;,)) is complete and thus N(w;;)\ {u} C N(u). Since

VA (N(wij) u {wij’wi.‘r-f-l’yj}) € N(y;),

{yj,u} dominates G, contradicting v (G) = 3.
Thus w;,,, is the only vertex of degree 6, and the proof is complete. B

5 Longest cycles

In this section we state some results regarding longest cycles that will be
used in the proof of Wojcicka’s Conjecture. The notation defined here will
be used throughout the dissertation.

Let C be a longest cycle of a graph G and H a component of G—V (C).
We choose an arbitrary orientation on C and use classical notation: the
successor (predecessor) of a vertex of C is denoted by v* (v~). If « and
v are distinct vertices on C, then C [u,v] or wCv, (whichever is more
convenient) is the path from u to v on C, following the orientation. C [u. |
can also be considered to be the set of vertices on the path. C [u,v] =uCv
is defined similarly. We define the following sets:

X = N¢ (H) = {z1,%2, ..., Tk}

where the indices follow the orientation of C;

A = Xt ={ayaz,...ar}, where a; = x},
B = X" ={b.bo....b}.where b,_, =~
and C; = c lai, b;], for each i with 1 < i < &,

where the indices are taken modulo £.
The first two results are classical in the theory of hamiltonicity and are
therefore stated without proof.
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Lemma 19 For any vertex v € V (H), AU {v} is independent.

Lemma 20 For any pair i,5 with 1 < i # j < k, N{(a;) N N(a;) N
(V(G\V(C) =o.

We obtain symmetric results by replacing A with B.

Recall that a cycle C of a connected graph G is called a dominating
cycle if each component of G — V(C) has only one vertex, that is, if each
edge of G is incident with a vertex of C. From the definition it is obvious
that if C is a dominating cycle of a graph G, then V(C) dominates V(G).

The following theorem is important for the proof of Wojcicka’s Conjec-
ture. It helps to establish a lower bound for longest cycles of 2-connected,
3-v-critical graphs (see Theorem 23), and was proved in (6] by Flandrin,
Tian, Wei and Zhang.

Theorem 21 [6] Let G be a connected, 3-y-critical greph.  Then cach
longest cycle of G is a dominating cycle.

Proof. Suppose to the contrary that there exists a longest cycle C of G
and a component H of G — V (C) such that |V (H)| > 2. Let (" have an
arbitrary orientation. Let the sets X, A, B and C; be defined as above.

Suppose |X| = 1. Then X = {z,} and 2, is a cut-vertex. By Theorem
9 there exists an end-vertex v such that va; € E(G). But (V (. )\{rh
is not a clique since a; is not adjacent to any vertex of H, by Lemma 19.
This is contrary to Theorem 6(b) and so we can assume that | X| > 2.

We denote the longest (z;, x;)-path with internal vertices in H by ., H.r,.
We first prove the following lemma.

Lemma 21.1 Y(A)C X and Y (B) C X.

Proof. By symmetry, we only need to show that Y (A) C X. By Lemma 3.
since A is independent, there exists an ordering F' (4) = (a;,.q;,.....q1},)
of the vertices of A and a sequence Y (A) = (y1.y2.....yx—1) such that
[aj:,vi] = aj.,, foreachi with1<i<k—1.

By Lemma 19, y; dominates V (H) for each t with 1 < ¢t < k- L
Therefore y, € V(H)U X. We will show that u; ¢ X for each ¢ with
1 <t < k—1. Suppose to the contrary that y, € V (H) for some ¢ with
1 <t < k-1. Then k = 2, for otherwise {a;,,y:} cannot dominate
A\ {aj,,aj,,, }, & contradiction. Without loss of generality, we can assume
that [al,yl] — ag.

Any (z;,z2)-path P (also written z) Pxy) that is internally disjoint
from C contains at most one vertex of V (H), for suppose the contrary.
Then by the maximality of C, |Cg| > 2. Thus a # 2, and so a; dominates
aF. But then

z1 P2, Carad Ty
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is a cycle longer than C, a contradiction.

Thus Ny (z,) = Ny (z2) = {u} for some vertex u € V(H). Since
|V (H)| =2, uis a cut-vertex of G. So by Theorem 9. the vertex v (where
{v} =V (H)\ {u}) is an end-vertex. By Theorem 6(b). .ryry € E(G).

Since [a1,11] — ag and y; = u, V(G)\(V (H) < X = A) = N (ay;. By
the maximality of C,

as ¢ N(z) forany z € V(Cy). {1y
for otherwise
2, CaszCa 2t Cugua,
is a cycle longer than C if z # b; and
z;Cafa Cbiagwour,
is a cycle longer than C if z = b;. We now consider two cases.

Case 1 V(G)\(V(C)UV (H)) # ¢.

Let H, # H be a component of G — C and choose u; € V (H;). Then
V (H,) € N(a1). By Lemma 20, agu; ¢ E(G), and so there exists a
vertex y such that

[u1,y] = a2 or [az,y] — u.

In either case, y € V (H) in order to dominate v. Consequently, the second
case is impossible since a; ¢ N (a2)UN (y). Hence [u;,y] — a2, and uymust
dominate V (C)\ {21, %2, az}. If u; also dominated z;, then

u1a ﬁ.’lflul

would be a cycle longer than C, a contradiction. Therefore y dominates
{z1,z2,v} and so y = u. Again, by the maximality of C' a; = b; and
as = by. Now consider the vertices u and a;. Since ua, ¢ E(G), there
exists a vertex y’ such that

[a1,¥'] = v or [u,¥]— a.

The former case is impossible since y’ must belong to V (H) to dominate
v, but V(H) = {u,v} and v is adjacent to u. The second case is also
impossible since 3’ must belong to V (H;) to dominate u,;, but V (H;) C
N (a1). This contradicts ¥ (G) = 3, and so Y (4) C X.

Case 2 V(G —-C) =V (H).
Since v (G) = 3, neither {u,z1} nor {u,22} can dominate V (G). Thus

Nezi] #V (C), for i=1,2. (2)

142



Suppose a; = b>. Then a; # b, by 2. Consider the vertices v and as.
Since vas ¢ E (G), there is a vertex y such that

[a29y] —v Oor ['U. y] — Q2.

In the former case, y € {z1, 2} since uag ¢ E (G). But this is impossible by
1and 2. Thus [v,y] — ag, and consequently y € (N (z1) N N (x2)) \ {u, a2},
i.e., y € Cy. Since yu ¢ E(G), there exists a vertex y’such that

v, ¥] =u or [u,y]—uy.

The former case is impossible since v cannot be dominated without u being
dominated. Consider the latter case. Since y € N (z1)NN (z2)NC), either
as or a vertex of C; will not be dominated by 1 and 2, and so this case is
also impossible. This contradicts v(G) =3, and so Y (4) C X.

Suppose az # bs. Then a1b2 € E (G). By the maximality of C, a; # b1,
z1b) ¢ E(G) and azz; ¢ E (G). Thus there exists a vertex y such that

[y, z1] = b1 or [y,b1] — 2.

In either case, y € V (H) to dominate v, and so az ¢ N (y). The first
case is impossible since az ¢ N (1) and the second case is impossible since
az ¢ N (b) by 1. This contradicts  (G) = 3, consequently Y (A) C X and
the proof of Lemma 21.1 is complete. ]

By Lemma 21.1,Y (4) C X, and so we write X (A) = (z;,, Tiy, ..., Tiy._, )
for an ordering of the k — 1 vertices of X such that [a;,,2;,] — aj,,, for
each t with 1 <t < k — 1, in what follows.

For each t with 1 < ¢ < k — 1, we have that

A\ {ajl’ajl+l} - N(.’L‘il) i @5, ¢ N (ﬂ,’i,) (3)
and
V(H) C N(z;,). (4)
Let X\X (A) = {z;,} and choose u € V (H) N N (z;,). Then
k
u e ﬂN(xi,)- (5)
t=1

From 4 and the fact that |V (H)| > 2, we have:

Lemma 21.2 Between any two wertices x; and x; of X. there us an
(x:,2j)-path P internally disjoint from C that contawns at least tiwo vertices

of V(H).
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By Lemma 21.2 and the maximality of C, |C;| > 2 for each i with
1 < i < k. We now consider two cases depending on |N (V (H))| = k.

Casel k£ 2>3.
(i) Consider the vertices u and b;, _,. Since ub;,_, ¢ E (G), there exists a
vertex y such that

[u,y] = by, or [bi_,,y] > u

Suppose [b;,_,,y] — u. Then y ¢ X by 5 and so y € V(H) to domi-
nate V (H)\ {«}. But no vertex of B\ {b;,_, } is dominated by {y,b;, _, }
(Lemma 19 applied to B), a contradiction. Thus [u,y] — b;,_,. Obviously
y#zrand by 3, y # z;, for any t with1 < ¢ < k—1. Hencey € V (C)\X.
Moreover,

V(O\ (XU {bi_,¥}) SN )5 b, € Nyl (6)
We need the following lemma.

Lemma 21.3 y¢ AUBUATUB™.

Proof. By Lemma 19, AU {u} is independent, and so if y € A. {u.y}
does not dominate A\ {y}, a contradiction. Thus y ¢ A. and by a similar
argument y ¢ B. Suppose to the contrary that y € A*. Let y = «] for
some % with 1 < i < k and let a; € A\ {a:}. By 6, aja; € E(G). Thus

(Ei?.’l:j fafaj Caz;
is a cycle longer than C, a contradiction. Thus y ¢ A*. By a symmetric
argument y ¢ B~. This completes the proof of Lemma 21.3. “
(i) We next consider the vertices v and y. Since uy ¢ E (G), there exists
some vertex y; such that
[iul =y or [y —u

Suppose [y,y1] — u. Then y; ¢ X by 5. Hence y € V (H) in order 1o
dominate V (H)\ {u}. But then b;,_, cannot be dominated by {y.y1}. a
contradiction. Thus [y;,u] — y. By 6, y1 € X U {b;,., }. But since y,
dominates B, y; # bi,_,, by Lemma 19. Thus y; € X. By 3. yy = ,,.
that is, {u,z;,] = y. By Lemma 21.3,y ¢ AUB,soy*.y~ ¢ X = N¢ (u).
Hence

{y"\y"}UAUBC N (). (7)

Now consider the independent set B. As in the case of A there is an
ordering

F(B) = (b, by,.....by,)
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of the vertices of B and an ordering
X(B)= (:cm,,a:m,, s Ty, )

of k — 1 vertices of X such that (z,,,b;,] — b;,,, for each t with 1 < ¢
k-1 By7 BC N(zi). Soxi ¢ X(B)and thus {x; .ts,....0,, }
{Tm,Tmy, s T, }. Analogous to 3, we get

<

B\ {bi,, b1, } € N(2m,); bi,,, &€ N [Zm,] for each t with 1 < < & — 1.
(N
We now prove the following lemma.
Lemma 21.4 (a) AU {y*} and BU{y~} are independent.
(b) vy~ ¢ E(G).
Proof. (a) Suppose to the contrary that A U {y*} is not independent.

Then a;y* € E(G) for some a; € A.
Suppose y € C;. By 6, ya;1 € E(G), so

2;Hzip) Cyta; Cyaip, Ca

is a cycle longer than C, a contradiction.
Thus y ¢ C;. But then the cycle

aiyt CaiHzip 5yb,~‘ Ca;

is a cycle longer than C since yb; € E(G) by 6 and x;Hx;,, contains at
least two vertices. This contradicts the maximality of C. Hence A U { y*}
is independent. Similarly we can show that BU {y~} is independent.

(b) Suppose to the contrary that y*y~ € E(G). Let y € C;\ {a;.b;}
for some i with 1 <i < k. By 6, {a;,a;s1} C N (v), and so the cycle

b pa—
Yai41 CaiHaip Cyty™ Casy

is longer than C, a contradiction. This completes the proof of Lemima 21.-4.
a

(iif) Now consider the vertices y+ and y~. Since y*y~ ¢ E(G). there is a
vertex yo such that

[v'92) v~ or [yT,u] -y

In either case y» € XUV (H) to dominate V (H) since y ¢ AUB by Lemma
21.3. By Lemma 21.4(a), it follows that y» € X to dominate A U B. More
precisely, by 7 it follows that yo € X\ {z;,}. Let yo = x;, for some ¢
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with 1 < ¢ < k—1. By Lemma 21.3, y~ ¢ A. Thusif [y".x;,] — y~.
A C N(y*)UN (z;,). But by Lemma 21.4(a), aj,., ¢ N(y*) and by 3
@j,., ¢ N (zi,), a contradiction.

Similarly [y~,y2] — y* is impossible as one vertex of B will not be
dominated by N (y~)UN (y2), contradicting v (G) = 3. Hence |V (H)| =1
when k£ > 3. :

Case 2 k=2.

Assume without loss of generality that a;, = a; and a;, = a2. Then
z;, = =1 and x;, = T;, = 2. From the proof of Lemma 21.3 it is easy to
see that y ¢ AUBU A+ U B~ except when y = by and [u.y] — b;. Hence
if y # b5, then we can proceed in the same way we did in Case 1. Suppose
that y = b5 . Then y is not adjacent to u. So there exists a vertex y, such
that

[%yll — Yy or [y) yl] - u.

Using a similar argument as in (ii) when k > 3, we have that [w.n] — v,
i.e. [u,y1] — by . Since 6 holds, y, € X.

Now by # ag, for otherwise {b{ , u} does not dominate A, contradicting
{b5,u} dominating V (G)\ {b2}. Thus y1 = 22 to dominate ap. By the
proof of Lemma 21.4(b), baby 2 ¢ E(G). Thus there exists some vertex yz
such that

[b2,y2) = b32 or [b7% 9] — b2

In either case, yo € X to dominate AU {u} and by 7, yo = z;. But
[632, 1] — by is impossible since z1b2 € E (G). Thus [b, z1) — b3 2.
Further, b5 a; € E (G) by 6, and hence by 2 £ ay, for otherwise

1 Hzo (C’—albz' boxy

is a cycle longer than C by Lemma 21.2, a contradiction. Since [b2, 1] —
by . either byaz € E(G) or z1az € E (G). But then

lewg‘ﬁalb{ (éasz:vl
or
mleg(—C_albz_ (C’-ale
is a cycle longer than C by Lemma 21.2, a contradiction. This contradicts

v(G) = 3 and hence |V (H)| = 1.
The proof of Theorem 21 is now complete. n

The following result is an obvious consequence of Theorem 2.19.
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Corollary 22 [13] Let G be a connected, 3-y-critical graph. Then G has
a cycle C such that V (C) dominates V (G).

The next theorem, also proved by Flandrin, Tian, Wei and Zhang in [6],
uses Theorem 21 to establish a lower bound for a longest cycle of a 3-y-
critical graph. This result is crucial in the proof of Wojcicka’s Conjecture.

Theorem 23 [6] Let G be a connected, 3-y-critical graph of order n and
C a longest cycle of G. If there exists a vertez u in V (G)\V (C) such that
IN (u) NV (C)| > 2, then ¢(G) > n— 1. In particular, if C is 2-connected,
then ¢(G) >n —1.

Proof. Let C be a longest cycle of G, a connected 3-y-critical graph and
suppose that there is a vertex y € V (G)\V (C) such that dege (y) > 2.
We will show that |V (C)| >n —1.

By Theorem 21, V (G)\V (C) is an independent set, so dege (u) =
deg (u). Take u € V (G) \V (C) such that

deg (u) = max {deg (¥) |y € V(G)\V (C)}.
Let deg(u) = k. Then by the hypothesis, k£ > 2. Let X = N (u) and define
the sets A, B and C; as before. We first prove the following lemma.

Lemma 23.1 Let y € Ci\{ai,b;i} for some i with 1 < i < k. If A

C N (y) and b € N (y) for some b€ C [xip1.2:] N B, then AU{y*} is an
independent set in G.

Proof. Suppose that by € E (G) for some ¢t # i. Since a;,y € E(G). we
have that a;y* ¢ E (G) for any j # i + 1, otherwise
—

Tip1u; C i1y Cajy* Cay
is a cycle longer than C, a contradiction. Now suppose that a, y* €
E (G). Then ‘

Zi41 Cy* a1 Coy T xepiuzin
is a cycle longer than C, a contradiction. Thus AN N (y*) = . Siuce A is
an independent set of G, the result follows. w

To continue the proof of Theorem 23, assume to the contrary that
[V(C)| € n—2. Let v be an arbitrary vertex of V(G — C)\ {u}. We
prove the following lemma.

Lemma 23.2 |N (u)NN (v)| > k — L
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Proof. Since A is independent, Lemma 3 asserts the existence of an
ordering F (A) = (aj,,aj,,...,a;,) of the vertices of A and a sequence
Y (A) = (y1,¥2. .- Yr—1) of k—1 distinct vertices such that laj, .y} — a,, .
foreacht with 1 <t < k—1. If v ¢ N(A), then Y (A) € N (v). Also,
Y (A) € X = N (u) since N (u)NA = ¢. Thus [N (u) "N (v)] 2 |[Y (A)| =
k-1

If v € N(A), then by Lemma 20, [N (v)N A} = 1. Without loss of
generality, let a;v € E(G). Then afv ¢ E(G) as C is a longest cycle in
G. Also afu and afa; do not belong to E (G) for any j # 1, for otherwise
the cycle

C'= xlua'l"axl
or
—
C'=x;Calu, _C-q.z'lu.zj,

is a cycle of maximum length with a;v € E (G — C"), contradicting Theo-
rem 21. Thus 4; = {a],az, ...,ax} is an independent set of G. There exists
an ordering F (A;) of the vertices of A; and a sequence Y (A;) of k— 1 dis-
tinct vertices such that Lemma 3 holds. Since N (u)NA4; = N (v)NA, = ¢.
Y (A1) € N(u)N N (v). Thus [N (u) NN (v)| 2 [V (A)| =k -1 i

By Lemma 23.2 and the choice of u, k£ — 1 < deg (v) < & for any vertex
v € V(G - C)\ {u}. We consider the following two cases.

Case 1 deg(v) =k —1.
Without loss of generality we may assume that N (v) = X\ {x;}. Since
uv ¢ E (G), there exists a vertex y such that

[y, v] > u or [u,y]—wv.

‘We now show that y ¢ X in either case.

In the former case, y ¢ X since N (u) = X.

In the latter case, ¥ ¢ X\ {z1} since N (v) = X\ {x1}. Moreover.
y # z,, for otherwise V (G) \ (X U {v}) C N (2) which implies that {v..,}
dominates V (G), contrary to ¥ (G) = 3.

Since (AUB) N (N (w)UN (v)) = ¢, (AUB) C N(y). By Lemma 20
and the fact that A and B are independent sets in G, y € V(C)\(X AU
B). By Lemma 23.1, A2 = AU {y*} is an independent set of G. Thus
there exists an ordering F (Az) of A2 and a sequence Y (Ay) of & distinct
vertices such that Lemma 3 holds. Since N (u) N Ay = N (v) N Az = o,
Y (A2) € N (w)NN (v). Thus [N (u) NN (v)| > |Y (A2)| = &, contradicting
deg(v) =k -1

Case 2 deg(v) =k.
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Since v is an arbitrary vertex of V (G — C)—{u} and k > 2, we may assume
6 (G) > 2. We consider two subcases.

Case 2.1 N (u)= N (v).
Since uv ¢ E (G), there exists a vertex y such that

v,y = u or [u,y] — .

Since N(u) = N(v) = X,y ¢ X. By Lemma 19, AU B C N (y). Hence
y € V(C)O\(XUAUB). Sincey ¢ AUB, N(y*)N{u,v} = ¢, and (by
Lemma 23.1) AU {y*} is independent. Further, A3 = AU {y*.v} is an
independent set of G. Thus there exists an ordering F (Az) of the vertices
of A3 and a sequence Y (A3) of k+ 1 distinct vertices that satisfy Lemma
3. Since N (u)N Az = ¢, Y (A3) C N (u). Thus |N (u)] > |Y (A3)| = k+1.
contrary to deg (u) = k.

Case 2.2 N (u) # N (v).

By Lemma 23.2, |N (u) NN (v)] = k — 1, and we assume without loss of
generality that N (u) N N (v) = X\ {z1}. Since uv ¢ E (G), there exists a
vertex y such that

[y,v] > u or [y,u]—w.

By symmetry, we only deal with the case [y,v] — u. Using similar ar-
guments to those in Case 1, we can show that y € V(C)\X. If v ¢
N(A)UN (B), then AUB C N (y). Since A and B are independent, y €
Ci\ {ai, b;} for some i with 1 < ¢ < k. This implies that y* ¢ N (u)NN (v).
By Lemma 23.1, AU {y*} is an independent set of G. Thus there ex-
ists an ordering F (AU {y*}) of the vertices of AU {y*} and a sequence
Y (AU {y*}) of k distinct vertices such that Lemma 3 is satisfied. Since
(Au{y*h NN (@) NN(v) = ¢, Y (AU {y*}) C (N (x)N N (v)). Thus
N (uw) NN ()| 2 |Y (Au{y*})| =k, a contradiction.

Now suppose v € N (A)UN (B). Without loss of generality assume that
vay € E(G). Let Ay = (A\ {a1}) U {af}. Then A, is independent by the
maximality of C. Also, uaf ¢ E(G), for otherwise uay C'zyu is a longest
cycle that is not dominating, which contradicts Theoreiz 21. Therefore
A4 U {u} is independent.

By the maximality of C, aj v ¢ E (G) and hence a; # b,. Since N (v) =
(X\{z1}) U{a1}, (A4UB)N N (v) = ¢. Thus A4 UB C N (y). Since A4
and B are independent sets and N (u) = X,y € V(C)\ (44U BU X).

Let y € C;\ {ai,b;} for some ¢ with 1 < i < k, and define A5 = A4 U
{y*}. We complete the proof by showing that As is independent. Since
As N (N (u) NN (v)) = @, the sequence Y (A4s), as defined in Lemnma 3, is
contained in N (u) N N (v). This implies that |N (u) N N (v)| > |Y (45)| =
k, a contradiction.
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Since A4N(N () NN (v)) = pand y™ ¢ XU{a1}, AsN(N (u) NN (v)) =
¢. We now show that Aj is independent. Since A4 is independent, we need
only show that N (y*) N Ay = ¢, where y € Ci\ {ai, bi}.

Since b;_1y € E(G), it follows that y*a; ¢ E(G) for any j # i, for
otherwise

T4 ?ybi_ 1 *éajy’r ?;L‘j vr;

is a cycle longer than C. To show that {aiy*,afy*} 11 E(G) = 0. we
consider the cases i # k and ¢ = k separately.

Consider i # k. Since aiy1y € E(G), {aw*,afy*} N E(G) = ¢, for
otherwise

2141 Cytai Cyaip Caiuzip,
is a cycle longer than C, or
—
zip1 Cytad Cyain Coruzisy
is a longest cycle in G that is not dominating, a contradiction.
Now consider i = k. Since {be—1y,a7y} C E(G), {afyT,aryt} N
E (G) = ¢, for otherwise
xk?ybk_l(ﬁaf’y*' C zyuzy
or
21 Cyta, Cyal Crruz,
is a longest cycle of G but is not dominating, a contradiction. Thus Az is
independent, which completes the proof. Thus ¢(G) >n — 1. |
The next result is a direct consequence of Theorem 2.21 and Corollary

2.8.

Corollary 24 [13] Let G be a connected, 3-y-critical graph with ¢ (G) > 2.
Then ¢(G) 2 n— 1.

As indicated in [6], we can use Theorems 21 and 23 to prove Theorems
1 and 2. We present the proofs below for the sake of completeness. Note
that by Theorem 21, we can choose a longest dominating cycle C of G.

Proof of Theorem 1. If |C| > n—1, then G contains a hamiltonian path.
Assume that |C| < n—2. Then by Theorem 23, deg,- (u) = 1 for any vertex
u € V(G — C). Since G is 3-y-critical, we can easily prove that 1C’ = 2
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when n > 6. Let {u,v} = V(G- C), {z} = Ng(u) and {y} = N¢ (v).
Since C' is a dominating cycle, u and v are end-vertices. By Theorem 6(a),
z #y. When ¢ = y* or ¢ = y~, then G contains a hamiltonian path.
When z # y* and z # y~, then zty* € E (G), for suppose this is not the
case. Then there is a vertex z such that [z%,2] — y* or [y*,2] - 2*. In
either case, {u,v} C N (z), which is impossible. Thus z*y* € E(G) and
uz Cy*a* Cyv is a hamiltonian path. n

Proof of Theorem 2. If ¢(G) = n — 1, then clearly G - V| (G) is hanil-
tonian. If ¢(G) < n — 2, then by Theorem 23, deg(u) = 1 for any vertex
v € V(G- C). So G — Vi (G) is hamiltonian. [ |

The proof of Wojcicka’s Conjecture, which is given in Sections 6 and
7, is obtained through contradiction. The results that follow apply to the
longest cycles of a 3-y-critical graph G of order n with minimum degree
6 (G) > 2, and which we assume is not hamiltonian.

Let C be a longest cycle of such a graph G. Then by Theorem 23.
|C} =n —1 and so G — V (C) has only one component H which cousists
of a single vertex. Let V (H) = {z¢} and let the sets X, A, B and C; be
defined as earlier in the section. In this instance we let oo (o) = ». and
S0

X = {zi,z2,... .2} = N(xg).

A = {ay,ag,...,0,} =X", ie a; =2,
B = {bl,bg,... ,br} ———X~: i.c. b-,'_| =.l',_
and C; = ?[ai,bi] for each i with 1 <i <,

where the indices are taken modulo r. We observe the following as a result
of the maximality of C:

e A and B are independent sets.
o AN X = ¢, which implies that AU {xg} is an independent set.

o BN X = ¢, which implies that B U {20} is an independent set.

We say that a vertex v of C; is an A-verter if vto., € E(G) and a
B-vertex if v=b; € E(G). It is easy to see that each a; € A (each b; €
B, respectively), for each 7 with 1 < ¢ < r, is an A-vertex {a B-vertex.
respectively).

The following lemmas result from the maximality of C.
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Lemma 25 (5] Let u; € C; and u; € C; be two A-vertices (or B-vertices)
with i # j. Then uu; ¢ E(G).

Proof. Suppose to the contrary that u;u; € E(G). Then the cycle
uiuj?aju;-" Czizor; Cufai Cus

is longer than C, a contradiction. [ |

Lemma 26 [5] (a) Let u; € C; and u; € C; be two A-vertices (or B3-
vertices) with i # j. For any verter v € c [uf Sy ], of vu; € E(G) then
v u; ¢ E(G).

(b) Let a; € A and b; € B such that i # j+ 1. For any verter
veC [aj+1, i), f vb; € E(G), then v~ a; & E(G).
Proof. (a) Suppose to the contrary that {vu;, v u;} C E(G). If v = q;
then vu; ¢ E(G), and if v = u] then v~u; ¢ E(G) by Lemma 25. So we
can assume that v ¢ {a;,u] }.

fveT [uF?, ;] then the cycle

o =
zjwoz; Cufa; Cuv C ufa; Cuv Cx;
is longer than C, a contradiction. If v € c [a;’, uJ'] then the cycle
— —
T;ToT; Cu;'aj -6v'uj Cvu; Cawf Ca;

is longer than C, a contradiction.

(b) Suppose to the contrary that {vb;,v"a;} C E(G). Then the cycle
vbj?a,-v“—C—ijxoa:;@v

is longer than C, a contradiction. |

Lemma 27 [13) Let a; € A and b; € B such that i # j + 1. For any
ve C [zj41,bi-1], if vb; € E(G), then v*a; ¢ E(G).

Proof. Suppose to the contrary that {vb;,v*a;} C E(G). Then the cycle
Tj41 _C?‘Ubj ?aiv"' 6:3,':170:12]'.}.1

is longer than C, a contradiction. |

152



Lemma 28 [5] Suppose bj_ia; € E(G). If v € C; is an A-vertex with
i # j, thenve; &€ E(G). If v € C; is a B-vertex with i # j — 1, then
vz; ¢ E(G).

Proof. Suppose that b;_1a; € E(G) and that v € C; is an A-vertex with
i # j. Also suppose, to the contrary, that vx; € E(G). Now v and g,
are A-vertices and z; € C [v*,a5]. Since bj_1a; € E(G), z;v ¢ E(G) by
Lemma 26(a). The proof for the case where v is a B-vertex follows similarly
from Lemma 26. ]

Lemma 29 (13] Suppose a;b; € E(G) for some pair i,j with i # j + 1.
{u,u*} C C [ai,b;] and {v,v+} C T [b7,a;]. Then

{uv,utv*} N E(G)| <1 and |{utv,vTu}NnE(G)| < 1.
Proof. Suppose to the contrary that {a;b;,uv,utv*} C F(G). Then the
cycle
Tjt1 _C—’vuec_aibj(au"'v'*'aximngﬂ
is longer than C, a contradiction. Similarly we can show that
[{vv*,utv} NE@G)| < 1.
|

The following three results are obtained using the maximality of C and
the assumption that §(G) <+ L

Lemma 30 [5] (a) If v € C; is an A-vertex, then all the vertices of
T [as,v) are A-vertices.

(b) Ifv € C; is a B-vertez, then all the vertices of C [v,b;] are B-
vertices.

Moreover, if a;b; € E(QG), then all the vertices in C;\ {a;.b;} are A-
vertices and B-vertices.

Proof. (a) Suppose that v € C; is an A-vertex and that, to the contrary.
there are vertices in C [aF,v*] that are not adjacent to a;. Let y be the
last vertex in C [a,v*] that is not adjacent to a;. Then y is an A-vertex.
and by Lemma 25 A U {zo,y} is independent. But |[AU {zg,y}| =7 + 2,
contradicting 5(G) < r + 1.

(b) The proof here is similar to (a).
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Now suppose a;b; € E(G). Then b; is an A-vertex and so by (a), all the
vertices in C [a:, b7 ] are A-vertices. Similarly all the vertices in C [a), bi)
are B-vertices. Thus all the vertices in C;\ {a:, b;} are both A-vertices and

B-vertices. |

Lemma 31 [5] Let u; € C; be an A-vertex. If N(w;) N Ci1 # &, then
usbi_y € E(G). Similarly, let v; € C; be a B-vertex. If N(v;) N Ciy1 # o,
then via;+1 € E(G).

Proof. Suppose that N(u;)NCi—1 # ¢, and that to the contrary u;b;— ¢
E(G). Let y be the last vertex in C;_, that is adjacent to u;. By Lemma
26(a) y* is not adjacent to a; for j # ¢ and y* is not adjacent to u;
by the choice of y. Also N(u;) N (A\{a;}) = # by Lemma 25. Hence
{y*, 20, u; }U(A\ {a;}) is an independent set of r +2 vertices, contradicting
B(G) < 7+ 1. The proof is similar if v; is a B-vertex. |

Lemma 32 (5] For each a; € A\B, N(a;)NB # ¢ and for each b; € B\A,
Nb)NA#e.

Proof. Let a; € A\B and suppose to the contrary that N (a;,) N B = o.
Then B U {a;,zo} is an independent set of r + 2 vertices, contradicting
B(G) < r + 1. Similarly, N(b;) N A # ¢ for each b; € B\A. [ ]

The following lemmas result from the maximality of C' and the assump-

tion that deg (zo) = 6 (G) and B(G) = 6(G) + 2.

Lemma 33 [13] For each a; € A (or bj € B), there exsts a vertex y such
that [a;,y) — zo (or [bj,y] — o), wherey ¢ X.

Proof. Since a;zg ¢ E(G), there exists a vertex y such that (i y] — o
or [zg,y] — a;:. Suppose that [zo,3] — a;. Then {z;,y} dominates G since
(X) is a clique (by Theorem 16), contradicting v (G) = 3. Thus la,. y} — 1o
and obviously y ¢ X. [ |

Lemma 34 [13] (a) Ifa;b; € E(G) for some pairi,j with i ¢ {j.j + 1}.
then

N(bi—1) N{ait1. g2 .- Lajl = o.
(b) Ifa;b; € E(G) for some pairi,j withi ¢ {j.j — 1}. then

N(aj+1) M {biabi-{-ly ...,bj._l} = ¢.
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Proof. (a) Suppose to the contrary that
a¢ € N(bi—1) N{@it1.@iz2.... .q;}.
By Theorem 16, (X) is a clique and so
bi_laeﬁbjaiﬁxexi$0$j+| 6b,~_1

is a cycle longer than C, a contradiction.
The second case follows a similar proof. |

6 Thecase §<6+1

In this and the next section we complete the proof of Wojcicka's Conjecture,
restated below for emphasis. To summarise, the following properties of a
connected 3-y-critical graph G with 8 (G) > 2 have contributed rowards
the proof of Wojcicka’s Conjecture:

(i) Theorem15 [5] B(G)<L6(G)+2.

(ii) Theorem 12 [6] G is 1-tough.

(ii) Theorem 21 [6] Each longest cycle of G is a dominating cycle.

(iv)  Theorem23 (6] ¢(G)2n-—1

(v)  Theorem 15 [5] If B(G) = 6(G) + 2, then every maximum
independent set contains all vertices of
degree 6 (G).

(vi) Theorem 16 [5] If B(G)=6(G)+2 and deg(x) =06 (G).
then N [z] induces a clique.

(vii) Theorem 18 ([13] If B3(G) = 6(G) + 2, then G has only one
vertex of degree & (G).

Result (i) helped to divide the proof of the conjecture into the two cases
B<&§+1and 8 =6+ 2. Results (ii) and (iii) were used to obtain (iv),
which is central to the proof of the conjecture. Further, (v) was used to
obtain (vi) which was in turn used to prove (vii). Finally, (vi) and (vii) are
crucial results in the proof of the case § = § + 2. Proofs of all these results
have been given in the previous sections, as indicated.

Conjecture 1 (Wojcicka’s Conjecture) Every connected, 3-y-critical graph
G with 6 (G) > 2 is hamiltonian.

Let G be a 3-v-critical graph of order n and with § (G) > 2. If C is a
longest cycle of G, and G is not hamiltonian, then it follows from (iv) that
[V(C)| = n— 1. Thus V (G — C) contains one vertex, which we will call
Zo.

To prove the conjecture for §(G) < 6 (G) + 1, we first show that if
G is non-hamiltonian, then B(G) > deg(zo) + 2 (Theorem 35). Since
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deg (z¢) > 6(G), it is an obvious consequence of Theorem 35 that G is
hamiltonian when 3 (G) < § (G) + 1. Another consequence of Theorem 35
is that if 8(G) = 6 (G) + 2, then deg (zo) = 6 (G), an observation which is
crucial to the proof of the case 8(G) = 6 (G) + 2.

The proofs for both cases make extensive use of the results involving
longest cycles, which occur in Section 5.

The following theorem will help to establish the conjecture for 3 < o+ 1.

Theorem 35 (5] Let G be a non-hamiltonian, 3-v-critical graph with 6(G) >
2 and let C be a longest cycle of G with xo the only vertex not on C. Then
B(G) = deg(mo) + 2.

Proof. Let the sets X, A, B and C; be defined as in Section 5 and let
deg(zg) = r. Suppose to the contrary that 8(G) < r + 1. We consider
three cases, depending on the value of r.

Casel 7=2.

We first show that AN B = ¢. Suppose to the contrary that a; = b;. Then
a1by ¢ E(G) and byay ¢ E(G) by Lemma 25. By Lemma 31, E(C,, () =
¢. Thus G — {21, z2} consists of three components, contradicting Corollary
13. Thus a; # b; and ag # be. By Lemma 32 either {a1b,,a2b2} C E(G)
or {ai1bs,aszb1} € E(G). We will show that in either case

{a1b1,a1be, a2by,a2b2} C E(G).

Case 1.1 {albl,asz} - E(G)

By Lemma 30, the vertices in C;\ {a;, b;} are both A-vertices and B-vertices
for i = 1,2, and so by Lemma 25, E(C1,C2) C {a1bs,azby}. By the 1-
toughness of G, E(C1,C2) # ¢. Therefore, at least one of a1b2 and asb,
belongs to E(G). Suppose, without loss of generality, that a;b; € E(G)
and agh, ¢ E(G). Since a1be € E(G), |C;| > 3 for i = 1.2. for otherwise
{b2, z2} dominates G if |C| = 2 and {a),z2} dominates G if |C3] = 2,
contradicting v (G) = 3.

Since agb, ¢ E(G), there is a vertex x € V(G)\ {az.b1} such that

[@g,z] — b1 or [by,z] — a2.

In either case, z = ; since z must dominate {xg,a;.b2} but must not he
adjacent to b; or as.

Now, [a2,z1] — b is impossible since for each v € Ci\{a1,b:}, v ¢
N(az) by Lemma 25 and v ¢ N(z,), for otherwise the cycle

— =
a1b Cmgrcorvlv—é'blv Ca;

is longer than C, a contradiction. So (b, 1] — a2. But this is not possible
because for each v € Co\ {az2,b2}, v ¢ N(b1) by Lemma 25 and v € N(xy),
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for otherwise the cycle
vZ12022 C a1by Cv+tas Cv

is longer than C, a contradiction. Hence axb; € E(G).

Case 1.2 {albz,azbl} (_: E(G)
We show that {a;b;,a2b2} C E(G). Suppose that a1, ¢ E(G). Then
there exists a vertex € X such that

[@1,2) = b or [b1,z] — ay,

since z must dominate xg.
Suppose [a1,z] — b;. Then z = z; as z2 dominates b,. But azz; ¢
E(G), for otherwise

—
agr1Z9x2 C a1bs _C_'ag

is a cycle longer than C, a contradiction. Thus [b;,z] — a;. In this case
T = z9 since x; dominates a;. But boze ¢ E(G) by Lemma 28. Thus
a1b; € E(G).

Similarly we can show that asbe € E(G).

Hence {a1by, a1be, a2, azbe} € E(G) and as shown in Case 1.1, |C;| >
3, and the vertices in C;\ {ai,b;} are both A- and B-vertices, for i = 1,2.
Consider the vertices v; € C1\ {a1,b1} and v2 € Co\ {a2,b2}. By Lemma
25, there is an x € V(G)\ {v1,v2} such that

[v1,2] — v2 or [v2,z] — ;.

Suppose, without loss of generality, that [v) 2] — vo. Then x € X as .r
must dominate {zg,as,bs}. Note that z # 2, for otherwise asxy € E(G)
and the cycle

— —
T12922 C a1bs C agr,

is longer than C, a contradiction. So £ = x2. But then byz, € E(G). which
contradicts Lemma 28. Hence {v;,2} does not dominate V(G)\ {v2} for
any = € X, contradicting v(G) = 3. Therefore 8(G) >r +2if rr = 2.

Case 2 r=3.
For convenience, we define:

= |{a1b3,agb1,a3b2} N E(G)!
g = {aiba.azbs,a3zb} N E(G).
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We first show that |C;| > 2 for each ¢ with 1 < ¢ < 3. Suppose to the
contrary that |C;| < 1, for some %, say ¢ = 1. Then a; = b;, and by Lemma
25,

{a102,a103,a1b2,a1b3} N E(G) = ¢.
So by Lemma 31, E(C,,C3) = E(C},C2) = ¢. Thus ajz3 € E(G) since
z1 2wy C 2y
is a cycle as long as C but does not contain a,, and so
deg (a1) = deg(zo) = 3.

By Lemma 28, azb; ¢ E(G).
Now consider the vertices a; and zp. Since a; is not adjacent to .rg.
there exists a vertexy € V (G) \ {zo,a,} such that

[a1,y] = @0 or [y,20] — a1,

In either case, since N (a1) = N(z¢) = X and asa3 and bebs do not belong
to E(G), it follows that y € Cy U C2\ {a2, a3, b2, b3}. The vertex y must
dominate Cs and C3, and thus agzbs € E(G) by Lemina 31. a contradiction.

We now prove two results regarding the numbers p and q.
Lemma 35.1 If p> 2, then p=3.

Proof. Without loss of generality, assume to the contrary that {a,b3, asb, }
C E(G) and that agbs ¢ E(G). Then there exists x € X\ {x3} such that

[aa,:lt] — b2 or [bg,.’b] — Qas.

The first case is impossible since asz; and a;22 do not belong to E(G) by
Lemma 29. Similarly the second case is impossible, contradicting v(G) = 3.
Hence asbe € E(G) and p = 3. O

Lemma 35.2 If ¢ > 2, then ¢ =3 and p = 3.

Proof. Assume, without loss of generality, that {a;b2,a2b3} C E(G), and
suppose, to the contrary, that agh; ¢ E(G). Then there exists some z € X
such that

[a3,:c] s bl or [b],.’B] — a3.

If [a3,z] — by, then = € {z),z3}. But a2 ¢ N(z;) U N(z3) by Lemma
26(b) and (1) respectively, and so this case is impossible. So, [b1, 2] — a3,
where z € {z;,22}. But by ¢ N(z;) U N(z2) by Lemma 26(b) and (1)
respectively, a contradiction. Thus agb; € E(G) and ¢ = 3.
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We now prove that apb, € E(G). Suppose to the contrary that aqb, ¢
E(G). Then

lag,z} = by or [bi,z] — a2

for some = € {z;,z3}. By Lemma 26, as ¢ N(z;) U N(x23) and b, ¢
N(z1) U N(z3). So in either case ; must be adjacent to 3 But this
results in the cycle

T1x3 Z’b;;ag E'bgal a.’vz:’coml

which is longer than C, a contradiction. So azb, € E(G). Since ¢ = 3. we
can use symmetric arguments to show that a;b3 and azbs belong to £(G),
and hence p = 3. d0

To prove the theorem for r = 3, we consider the following two cases:

p>2and p<1.

Case 2.1 p>2.

By Lemma 35.1 this implies that p = 3, and so b;a;4; € E(G) for each i
with 1 <i < 3. We also know that |C;| > 2 for each ¢ with 1 < ¢ < 3, and
we now show that |C;| > 3. Suppose, to the contrary, thai C; = {ay,b1},
for example. Then the cycle

—
Ti1a; b3 C agb]_.’l,‘gxoml

is longer that C, a contradiction. Thus |C;| > 3 for each ¢ with 1 <i < 3.
Now suppose a1b; ¢ E(G). Then

[al,:r] ad b1 or [bl,:v] — a1

for some = € X. Suppose [a;,z] — b;. Then {as,a3} C N(z), where z €
{z1,z3}. But ag ¢ N(z3) and a3 ¢ N(z;) by Lemma 28, a contradiction.
By a symmetrical argument, we can show that the second case is impossible.
Hence a1b; € E(G). Similarly, asbs and asbs belong to E(G). By Lemma
30, all the vertices in C;\ {a;, b;}, for each ¢ with 1 < ¢ < 3, are A-vertices
and B-vertices.

Since |C;] > 3 for each ¢ with 1 <7 < 3, we can take v; € C)\ {a),b;}
and vy € C2\ {az, b2}. By Lemma 25 there exists a vertex z € X such that

[v1i,2] = v2 or [vg,z] — vy.

In either case # must dominate {ag,b3}, but b3 ¢ N(z2) U N(a3) and
a3 ¢ N(z1) by Lemma 28, a contradiction. Hence the theorem holds when
p22.
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Case 2.2 p< 1
By Lemma 35.2 this implies that ¢ < 1 too. Assume without loss of gener-
ality that azb; and azbe do not belong to E(G). By Lemma 31,

N(ag)NC,y =N(b)NnCs =N(a3)nCQ=N(b2)ﬂC3=¢.

Now consider the vertices zg and a;. Since z9a; ¢ E(G), there is a
vertex y € V(G)\ {0, a1} such that

[a1,9] = 20 or [x0,y] — a1

In both cases y must dominate {as,a3}. Soy ¢ Co U C; and y is not an
A-vertex.

If [ay,y] — w0, theny ¢ X and thusy € C3\ {as}. Since N(b2)NC3 = &,
a1b; € E(G), and so agb; and agbs do not belong to E(G), since ¢ < 1.
Since azbs ¢ E(G), y € C3\ {as,b3}. Since y is not an A-vertex, azbs ¢
E(G) by Lemma 30. Thus N(a3) N B = ¢, contradicting Lemma 32.

Thus [z9,y] — a1 and y must dominate AU B\ {a;}. Since

N(ag) NCy = N(b)NCy = N(bz) NC3 = o,

it follows that y € X\ {z1}. Suppose y = z3. Then [zg,z2] — a; and
therefore {zsas, 2b, w2b3} C E(G). Hence by Lemma 26, biaz and azb,
do not belong to E(G).

Applying Lemma 32 to b, a2 and a3, we get a;b; € E(G) for each i
with 1 <7 < 3. Thus by Lemma 30 all the vertices in C,\ {a,.b;} are A-
and B-vertices for each ¢ with 1 < ¢ < 3. By Lemima 25,

E(Ci\ai,b:},Ci\{a;,b;}) =g for 1 <i<j <3

But there must be at least one edge between the vertex sets C,Cq, C3 since
G — X has at most three components as G is 1-tough. The only possible
edges are a1b3 and a1bs.

Suppose a1b3 € E(G), i.e. p = 1, and consider the vertices a3 and bs.
Since agbs ¢ E(G),

[az,z] = ba or [ba, 2] — a3

for some z € X. In either case = ¢ {x3,22} since {by.az} C N(x2)NN(ay).
Hence x = z; and thus z,ay € E(G) in the first case and by « E{G i
the second case. In each case, this contradicts Lemma 29.

Therefore a,b3 ¢ E(G), i.e. p =0, and a1b2 € E(G). By Lemma 26.
z3b; and z;b; do not belong to E(G). Now consider the vertices by and by.
Since bybs ¢ E(G), there is a vertex x such that

[b2,2] — b3 or (b3, x] — by
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In the first case, z = z3, since {z1b3, 2203} C E(G), which implies that

z3b; € E(G), a contradiction. In the second case. x = xy, since {x2bs. 230}

C E(G), implying z1b; € E(G), a contradiction. So y # 2. In a sunilar

way we can show that y # z3, and thus y(G) = 3 is contradicted.
Therefore 3 (G) > r + 2 when r = 3.

Case 3 7 > 4.

Since the set A is contained in the independent set A ') {zg}, it follows
from Lemma 4 that there is an ordering F(A) = (aj,.aj,.... .a,, ) of the
vertices of A and a sequence Y (4) = (@;,,Zi,,... ,@i,_,) of r — 1 vertices
of N(z¢) = X such that [aj,,z;,] — aj,,, for each t with 1 <t <r-1.
Let X\V(Y (A)) = {z;.}. We have the following:

Y(A)\{z} € Nlay)

Y (A)\{zi.,} C N(aj,) (9)
Y (A)\ {mi,_,,mi,} C N(aj)foreach l with2 <l <r—1
and
r—2<|N(z;,)NA|<r—1foreacht with1<t<r-1 (10)
Since r > 4, |

N(z;,) N (A\{a;,}) # ¢ for each t with1 <t <r —1. (11)

The following lemma follows from 11 and Lemma 28.
Lemma 35.3 For every indexr t # ir. bi_10, ¢ E(G).

Now consider the vertices zg and a;, . Since xoa;, ¢ E(G). either
Jr T
(@, Ya] — X0 OF [Z0,Ya] — aj,

for some vertex y, € V (G)\ {0, aj,}.

Suppose [a;,,Ya] — zo. Clearly, yo ¢ X U A. Let y, € Ci\ {ax} for
some k with 1 < k < 7. Then |Ck| > 2. We first prove the following five
lemmas.

Lemma 35.4 k=14,_;.

Proof. Suppose not. Since [a;,,¥a] — Zo, it follows that ysar+) € E(G)
and thus by Lemma 31, ar41br € E(G) for some k + 1 # i,.. But this
contradicts Lemma 35.3. Hence y, € C;,._, . O

Lemma 35.5 a;.b;._, € E(G).

Proof. Suppose not. Then ygb;,._, € E(G) which implies that a;_ _ b;,_, €
E(G), by Lemma 31. But this, once again, contradicts Lemma 35.3. a
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Lemma 35.6 N(z;_,)NA= {ai,,,ai,__, } and thus r = 4.

Proof. By Lemma 35.5 and Lemma 26(a), N(z;,_, )N (A\ {a;, .a;,_, }) =
¢. The lemma therefore holds by 10. =

Lemma 35.7 a;,._,b;,_, € E(G).

Proof. Since a; ;,_, € E(G) by Lemma 35.6, N(a;, )N (B\{b,. ,}) =
¢ by Lemma 26(b). Thus a;._,b;,_, € E(G) by Lemma 32. -

Lemma 35.8 y, =b;,_,, i.e [ai,_,bi,,_,] — 2.

Proof. Suppose not. Then by Lemma 35.7 and Lemma 30. y, is an A-
vertex, and by Lemma 25, {y,,a;,.} does not dominate A\ {a;,‘, a,,_, } a
contradiction. =

Using 7 = 4 and 9, we find that there are at least two vertices in A thar
are adjacent to at least two vertices in Y (A). So we can choose a vertex
a; # a;, and one neighbour x, of a; in X\ {u; } such that »o # . If
Ts € C [:vj_,.l ,a:i,__,], then by Lemma 26(a). {u,i,_‘ bi, } does not domninate
bs—1. If z, € a[xi,,,a:j.‘l], then by Lemma 26(b), {a.i,_.bi,u,} does not
dominate a,. Thus it is impossible that [a;,,b;, ] — o

Therefore [z, yo] — ai,. Since N(z) N (AU B) = ¢, we get

(AuB)\{ai.} € N(va). (12)

Suppose that y, € C; for some t with 1 <t < r. If ¢t = i{,_;, then
Yabi,_, € E(G) by 12, and thus a;,_,b;._, € E(G) by Lemma 31. But this
contradicts Lemma 35.3. If ¢ # 1,1, then y,a:+1 € E(G), again by 12, and
thus a;410; € E(G) by Lemma 31. Again, this contradicts Lemma 35.3.
Thus y, € X. Since z;,a;, € E(G), y, € Y (A).

Now consider the independent set B. Since B is contained in the in-
dependent set B U {29}, we obtain an ordering F(B) = (b,.by,.... .b1,)
of the vertices of B and a sequence Y (B) = (ark, yThiyy oo s Tk I) of r -1
vertices of X such that [by,, x| — by, for each ¢ with 1 <t <7 —1. Let
X\Y (B) = {ax,.}-

We can show by a symmetric argument that [bg, , ys] — o is impossible
for any vertex y, € V(G)\ {bx,., o} and that [zg, ys] — bi,. for some y, € X.
Analogous to 12, we also have the following:

AU B\ {b,} C N(ys)- 3.4
By the second inequality of 10, A\N(a) # ¢ for each « € ¥ (A). Thus by

(3.4"), yp = x;,. Similarly y, = zy,..
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Now, ys = z;, implies that A C N(z;.). By Lemma 5, a;,x;, € E(G)
for each t with 2 <t <r — 1. Thus

[N(a;)NX| >r—1 for any a; € A. (13)

Also by Lemma 28, we have b;. _,a;, ¢ E(G), and so, using Lemma 3.13.
the following now holds:

For every t with 1 <t <7, b—1a; ¢ E(G). (14)

We are now ready to conclude the proof. Suppose that a;b; € E(G)
for some i # j. By 14, j # i — 1. By Lemma 26, a;;12; and @;4+1%;41 do
not belong to E(G) and thus |N(ai+1) N X| < r — 2, which contradicts 13.
Therefore

a:b; ¢ E(G) for all i # j. (15)

For each a; # b;, a;b; € E(G) by Lemma 32 and 15. Hence if a; # b;, all the
vertices in C;\ {a;,b;} are A-vertices and B-vertices by Lemma 30. Thus
by Lemma 25, E(C;,C;) = ¢ for all i # j. This contradicts the fact that
G is 1-tough, and hence 8(G) >r + 2 when r > 4. |

As a direct consequence of Theorem 35, we have the following result:

Corollary 36 (5] IfG is a connected, 3-y-critical graph with §(G) > 2 and
B(G) < 8(G) + 1, then G is hamiltonian.

This leaves open only the case 8 = § + 2, which is considered in the
next section.

7 The case 8 =0+2

Theorem 37 which was proved by Tian, Wei and Zhang ix: [13] is the final
result needed to settle Wojcicka’s Conjecture.

Theorem 37 [13] If G is a connected, 3-y-critical graph with 6(G) > 2
and B(G) = 6§ (G) + 2, then G is hamiltonian.

Proof. Suppose to the contrary that G is not hamiltonian and let C be a
longest cycle of G. By Theorem 23, |V(C)| =n - 1.

Let g be the only vertex not on C and define the sets X, A, B and C; as
in Section 5. By Theorem 35, 3(G) > deg(xg) + 2. Since 3(G) = &(G) +2
by the hypothesis, and deg(z¢) > 6 (G). it follows that deg(.rg) = ¢ (G - 1.
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It follows from Theorem 18 that deg (v) >  for any vertex v € V(G)\ {zo}.
Thus

V(C') = V(C) for each longest cycle C’ of G. (16)

Before continuing with the proof of the theorem, we prove the following
lemma.

Lemma 37.1 |C;| > 2 for each i with 1 <i < r.

Proof. Suppose to the contrary that a; = b; for some i with 1 < i < r.
Then

TiTQTi41 E'fb‘i

is a cycle as long as C' which does not contain a;, contradicting 16. Therefore
the result holds. O

We now proceed with the proof of Theorem 37 and consider two cases
depending on the value of r.

Casel r=2.
We define

p = |E({a1,a2},{b1,b2})|.

Clearly p < 4, and furthermore p > 1, otherwise {wxg.a;,a2.b;.b2} is an
independent set consisting of five vertices, contradicting 3 (G) = 4. We
first prove two lemmas before proceeding with the proof of this case.

Lemma 37.2 |C;] >3 fori=1,2.

Proof. Suppose to the contrary that |Cy| = 2. Then |C2| > 3. for other-
wise {z,x2} is a dominating set, contradicting v (G) = 3. We now show
that E ({a1,a2},{b1,b2}) = {a1b1}, 1.e. p=1.

Suppose asb; € E(G). Then

a2b1 T2XoTy C az

is a cycle as long as C which does not contain a;. This contradicts 16. so
a2b1 ¢ E(G) Similarly a1b2 ¢ E(G)

Suppose agbs € E(G) and recall that E(C;,Cs) # ¢ by Theorem 12.
We can, therefore, assume without loss of generality that N(b;) N C, # o.
Let v € C; such that ub; € E(G). Then {u=bs,u"a1} N E(G) = ¢ by
Lemma 26, and u~zs ¢ E(G) by Lemma 29. Now consider the vertices a,
and by. Since a1by ¢ E(G), either

[al,xg] i bz or Ibg,.’l)g] — Qay.
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In both cases u~ cannot be dominated, contradicting v(G) = 3. Thus
agbe ¢ E(G). Therefore either

[az,.’L‘Q] band b2 or [bz,xll — Q.

Without loss of generality assume that [ag, z2] — b, hence 290, € E(G)
and zobs ¢ E(G). Also, note that |Ca| > 4, otherwise {x2.b2} dominates
V(G), contradicting v (G) = 3.

Consider the vertices a; and ao. Since aias ¢ E(G), either

a1, ] = a2 or j{az.x] —a,

for some z € X U {zg}. Consider the latter case and note that .« ¢ X since
X C N(a;) and z # 7o as {ag, 2o} does not dominate {b;,b2}. Therefore
[a2, ] = a; is impossible and thus |a;, 1] — a2, which implies that a2 ¢
E(G).

We will now prove that Co\ {a2,b2} C N(ay). Suppose to the contrary
that there is a vertex v € Ca\ {az, b2} such that va; ¢ E(G). Then either

[v,2] > a1 or [a5,z]—v

for some z € X. The former is impossible since X C N{(a,). The larter
is impossible since {a;, 21} does not dominate ay and {a..c2} does not
dominate by. Hence Co\ {a2,b2} C N{a1). Since |C3| > 4, we have the
following cycle:

gl xoxzaga;{ala;"z ﬁxl s

which is as long as C, but excludes by, contradicting 16. O
Lemma 37.3 p<2.

Proof. We first show that {agb1,a1b2} € E(G). Suppose to the contrary
that ash; and a,bo are edges in G. Then, by Lemma 28, asx, and boxo are
not edges in G. Let u € C;\ {a1,b1} such that u ¢ N(b2) but c [x1.u7] C
N(b), and let v € C3\ {ag,b2} such that v ¢ N(b;) but Cleg. o™i &
N(b;). Then uv ¢ E(G), for otherwise

uvabgu‘ﬁwlxoxzav“bl Cu

is a cycle longer than C, a contradiction.
Without loss of generality we may assume that there exists a vertex
z € X such that [u,z] — v. Then uas ¢ E(G), for otherwise

— e
T1Z0Z2 Cuazabzu Cz
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is a cycle longer than C, and (by our choice of u) uby ¢ E(G). Thus »
must dominate {ag, bo}. If z = 21, then ay is not dominated and if .« = .r.
then b, is not dominated, a contradiction.

Thus {a2by,a1b2} € E(G), and so p < 3. Suppose to the contrary
that p = 3. Without loss of generality, we may assume that a2b, ¢ E(G).
Therefore, either

[az,:L'l] — bl or [b],:rll — Q9.

Consider the former case. Since a1b; € F(G), b7az ¢ E(G) by Lemma
26(a). Therefore b7 z; € E(G). But this results in the cyrle

bl z1z022 6b2a1 5‘b1‘ ,

which is as long as C' but excludes b, contradicting 16. Similarly, if we
assume [by, 1] — a2, we get a contradiction. Thus p < 2. O

We are now ready to prove the theorem for § (G) = 2 by considering
four subcases.

Case 1.1 {albl,agbl} g E(G)
Since agby ¢ E(G), either

lag,z2]) = b2 or [be,z1] — ao.

Consider the former case. Since aga; ¢ E(G), a1z2 € E(G). But this
results in the cycle

oo 6a2b1 ‘aall‘g
which is longer than C, a contradiction. Therefore [ag, x2] — b2 is impossi-
ble, and thus [bs, z1] — ag and 21b; € E(G).
Now consider the vertices a; and by. Since ajby ¢ E(G), either

[@1,z2] = b2 or [bg,x2] — a;.

Consider the latter case and note that bea] ¢ E(G) by Lemma 26(a):
therefore zoa] € E(G). But this results in the cycle

zoaf Chias C @120,

which is as long as C but excludes a,, contradicting 16. Therefore [ba, o] —
a; is impossible and so [a1, z2] — ba. Now b3 ay ¢ E(G), for otherwise

by a; ablmlﬂ:o.’vz 61)5

166



is a cycle as long as C excluding bs, contradicting 16. Also, b; z2 ¢ E(G).
for otherwise

bz_a:‘)xol']ﬁb]a@?b;

is a cycle as long as C which excludes b2, again contradicting 16.

We get a contradiction in a similar way if we assume that {a,bs. asby} C
E(G).
Case 1.2 {albl,azbz} - E(G)
Consider the vertices a; and z¢9. By Lemma 33 there exists a vertex y
such that [a;,y] — zo. Since {a1b2,a1a2} N E(G) = ¢, it follows that
{yba,yas} C E (G). Suppose that y € Ci. Then clearly y ¢ {a1.b1}. Also
y # b7, otherwise the cycle

b,‘bg‘@'—xgxozl ‘ébl‘

is as long as C and excludes by, contradicting 16.
We now show that

N(y+) N {xlwaaahaQ} = (f)'

By Lemma 27 and the fact that yby € E(G), it follows that y*az ¢ E(G).
Next, y*z; ¢ E(G), for otherwise the cycle

y* 212022 Cboy Carh; Cy™

results, which is longer than C. Further, y*xy ¢ E(G), for otherwise the
cycle

2oyt Cbia, Cyay Cxyzoas

results, which is also longer that C. Finally, y*a; ¢ E(G) as a result of
Lemma 26(a) and the fact that yas € E(G).
Now consider the vertices a; and az. Since ajas ¢ E(G), either

[al,il:]] — a9 Or [ag,;l‘-;] — aj.

But in either case y* cannot be dominated. a contradiction. Hence y € (s
We now show that C; € Niajj. Suppose the contrary and let w he

the first vertex in C [b1,a1) not adjacent to a;. Then yu € E(G) and so
y # by, for otherwise

— e
bax1zoxe Cutaiuby Cazby
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is a cycle longer than C. By Lemma 26(a), y*b; ¢ E(G) because yby €
E(G). Next, y*z; ¢ E(G), for otherwise

yT 217012 Cutay CuyCazby Cy*
is a cycle longer than C. Further, y*a; ¢ E(G), for otherwise the cycle
y* Caxyzoze Cutay CuyCagy™

is longer than C. Thus N(y*)N{b;,z1,a2} = ¢. Now consider the vertices
az and b;. Since azb, € E(G), either

laz,z] = b1 or [by,x1] — ay.

But in either case y* cannot be dominated: a contradiction. Therefore
C] C_: N [al].

Again, by Lemma 33, there exists a vertex y' € X suel: that ay. g
zo. By a similar argument, we can show that C; C Niayj. Thus E(C,.() =
¢ by Lemma 25, contradicting the 1-toughness of G.

Case 1.3 a;1bg € E(G); {a1b1,a2by,a2b} N E(G) = ¢.
Since a1by ¢ E(G), either [a1,x1] — by or [by,x2] — a1. If [ay.0y] — b).
then agz; € E(G) since ajaz ¢ E (G). But this results in the cycle

— —
129z C a1bs Casay,

which is longer than C, a contradiction. Thus by, 22] — a; and so byry €
E(G).
Since agbs ¢ E(G), either

la2,z] = b2 or [by,z| — ay

for some z € X. The former case is impossible since X C N{(b,). Thus
[b2,z] — a2 and = = z;. But the cycle

—
as 61)20,1 C b] T1ToTaag

results, which is longer than C, a contradiction.
We obtain a similar contradiction if a2b; € E(G) and {a,1b1, a1, azby }n

E(G) = ¢.

Case 1.4 a1b; € E(G); {a1b2,a2by,a2b2} N E(G) = o
Since agby ¢ E(G), either [ag, o] — by or [by.ay] — ay. Without loss of
generality, assume that [a2,22] — b2. This implies that z0a; € F(G) and
that zobe ¢ E(G).

Since ajas ¢ E(G) and X C N(ay), it follows that {a;,.r;] — ay,
implying that asz; ¢ E(G).
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Now consider the vertices aj and a;. Note that aja; ¢ E(G). for
otherwise the cycle

—
a¥ Cxyzoxs Carad
results, which is as long as C but excludes ay. a contradiction. Therefore
[e3.2) a1 or a1z} — a3

for some z € X. Since X C N(ap), it follows that |¢».x] — a3. But
{a1,z1} does not dominate a2 and {a1,z2} does not dominate bs, a con-
tradiction.

Similarly, if agbs € E(G) and {a1b1,a1b2,a201} N E(G) = ¢, we obtain
a contradiction.

This proves the theorem for r = 2.

Case 2 r> 3.
Two additional lemmas are required for the proof of this case, the first of
which is given below.

Lemma 37.4 There ezists o mazimum independent set of the form
AU {zg,b} for some be B
or
BU{zg,a} for some a€ A.
Proof. Suppose the contrary. Then
Nla;])N B # ¢ for each a; € A
and
N[b;)N A # ¢ for each b; € B. (17)

We will consider two cases.

Case 1 There exists a maximum independent set I such that A C I or
BCI

Without loss of generality, assume that A C I. Since deg(zo) = 6(G)
(=), it follows from Theorem 15 that xp € I. So we may suppose that

I=AuU {:Bo,u},

where u € V(G)\ ({0} UX UAUB). Let SU {zo} = I. Then S is an
independent set consisting of r + 1 vertices. By Lemma 4 there exists an
ordering

F(S)=(s1,52,.+ 1 Sr41)
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of the vertices of S, and the sequence
Y(S)=(iy2,--- ) S N(zo) = X
such that
[si,9i) — siy1 for each i with 1 <i <.
We will first show the following;:

@ {y,y2,-.. ¥} =X.

(i) N(s;)NX >r—1foreachiwithl<i<r+1.

(iii) If z; = y1, then |[N(z;) N A| > r — 2; otherwise |N (z;) N Al > » — 1.
(iv) ai41b; ¢ E(G) for each i with 1 <i < 7.

(i) By Lemma 4, Y(S) C N(zo) = X. Since [Y(S)| = | X| =, (i) follows.

(if) Since [s;, i) — si41 for each i with 1 < i < 7, it follows that

Y\{n} S N(s1),
Y\{y.} € N(sr41) and
Y\ {%i,9i+1} € N(s;)foreachiwith2<i<r

By Lemma 5, y;s; € E(G) for each i with 2 <7 <, and so (ii) follows.
(iii) Since S =AU {u},

[ANN(z;)| > |SNN(x;)| -1 for each i with 1 <i <r.
Suppose that z; = y;. Since S\ {s1,s2} C N(x;),
[ANN@)| 2 ((r+1)-2)-1=r-2

Suppose that z; = y;, where j > 1. Then S\ {s;4+1} € N(x;) by Lemma 5.
Therefore

JANN(z)] > ((r+1)-1)-1

r—1.

Hence (iii) holds.
(iv) Suppose that r > 4. Then by (iii),

IN(x;)NA >7r—22>2 for each { with 1 < < r.
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So z;41 is adjacent to some a;j # ai41- If aip1b; € E(G), then
a:o:vi+1ajﬁbiai+1 611:‘,':120

is a cycle longer than C.
Suppose 7 = 3 and suppose to the contrary that a1b3 € E(G). By
Lemma 28, azz; ¢ E(G), and asz, ¢ E(G), for otherwise the cycle

= —
1T Ca1b3 Ca2;v1

results, which is longer than C. It follows from (iii) that y; = 21, and that
|N (z2) N A| > 2 and |N (z3) N A| > 2. Since {a1,a3} NN (r2) # . azby ¢
E (G), otherwise a cycle longer than C results. Similarly azb; ¢ E(G).

Suppose s; = a;. Then [a1, 1] — s2. Since {a1a2,a1az.x102. 1103} N
E(G) = ¢, {a1,z1} does not dominate at least one of s3 and «,. a conrra-
diction.

Suppose that s; = az. Then [ag,z1] — s2. Now biaz ¢ E(G) and
biz; ¢ E(G) by Lemma 28 and our assumption that a,b3 € E (G). s0
{a2, 1} does not dominate by, a contradiction.

Suppose that s; = az. Then [a3,z1] — s2. Now byaz ¢ E(G) and
bozy ¢ E(G) by Lemma 28 and our assumption that a by € E((). Hence
{a3,z1} does not dominate bz, a contradiction.

Suppose that s; = u. Then [u, ;] — s2 and {a1,a2.a3} = {2.53. 54}
This implies that at least one of x1a2 and z;ag3 are in G. a contradiction.

Hence (iv) holds.

We define
h =max{j —i|aibj € E(G), a; € A, b; € B},
where all operations are modulo r, and show that
h=0. (18)

Suppose to the contrary that A > 1. Then we may suppose without loss of
generality that

a1bpyy € E(G) for some h > 0.
By (iv), a1 # ar+2, which implies that z; # zp42. Moreover, by Lemma
26, {ap4+1%1,0h+1Th42} N E(G) = ¢ and so |[N(app) N X[ < 7 - 2, con-
tradicting (ii).

‘We now show that

Ci\ {ai,b;} € N(a;) N N(b;) for each i with 1 <7 <.
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Suppose the contrary. Note that it follows from 17 and 18 that
a;b; € E(G) for each i with 1 <i < 7.

We can therefore choose, without loss of generality, a vertex w € '} such
that wb, ¢ E(G) and C (@1, w™] € N(by). Since w is a B-vertex, B U {w}
is independent. Also,

C:\ {b;} C N(b;), for each i with2 < i < r. (19)

for otherwise there will be a vertex z € Ci\{a;.b;}. where / # 1. such that
zb; ¢ E(G) and C lai, 27} © N(b;). Thus 2 is a B-vertex. and by Lenuna
25, BU{z,w} is an independent set, hence BU{z,w, 2o} is an independent
set of r + 3 vertices, a contradiction.

By Lemma 33 there exists y ¢ X such that [b;,y] — xo. Since bya, ¢
E(G), y ¢ A\{a2}. Furthermore y # a2, for otherwise asb. € E(G).
contradicting 18. Clearly y ¢ B\ {b,}, otherwise B\ {6;,y} cannot be dom-
inated (by Lemma 25). Moreover, y ¢ Ul_,C;\ {as,b;}, otherwise B can-
not be dominated (by 19 and Lemma 25). Hence y € C;\ {a;1,b,}. Since
{b1ag,b16,} N E(G) = ¢, {yaz,ybr} C E(G). It follows that y # by, for
otherwise the cycle

T1Z0Z2b1a; ?bi— as 6’1‘1

results, which is longer than C.

Let Ay = AU {y*}. Since yb, € E(G), it follows from Lemma 27
that A;\ {a,} is independent. Moreover, since yas € £(G), it follows from
Lemma 26(a) that y*a; ¢ E(G) and so A, is independent. Thus there
is an ordering F(A;) of the vertices of A; and a sequence Y(A;) such
that Lemma 3 is satisfied. Since A; U {zg} is independent, it follows from
Lemma 4 that Y(A4;) C X, and by applying (ii) to A;, it follows that
IN(y*)NX| > r — 1. This implies that at least one of y*z, and y*z, is
in E(G), contradicting Lemnma 29.

Hence C;\{ai,b;} C N(b;) for each ¢ with 1 < i < r. Similarly, we can
show that C;\ {a;,b;} C N(a;) for each ¢ with 1 <i < r.

It therefore follows from Lemma 25 and 18 that

E(Ci,Cj)=¢, forl1<i#j<r,

contradicting the 1-toughness of G.

Case 2 For each maximum independent set I, AZ I and B ¢ I.
Under the condition that A € I and B € I, we will show the following:

(i) If v € C;is an A-vertex, then all the vertices of c [ai, v] are A-vertices.
If N(ai) NCi—1 # ¢, then a;b;_, € E(G)

172



(ii) If v € C; is a B-vertex, then all the vertices of 5[1}, b;] are B-vertices.
If N(b;) N Ciy1 # ¢, then ai41b; € E(G).

We will only show the proof of (i) as the proof of (ii) is similar.

Suppose the contrary, and assume that y is the last vertex in C [a}'ﬂ v+]
that is not adjacent to a;. Clearly, y ¢ {a},v*}, and y is an A-vertex.
By Lemma 25, AU {y*} is an independent set, and so AU {yT,zo} is a
maximum independent set containing A, contradicting the hypothesis.

Now suppose to the contrary that N(a;)NC;i_1 # ¢ and a;bi—, ¢ E(G).
Let y be the last vertex of E’i_l which is not adjacent to a;. It follows
from Lemma 26(a) that yTa; ¢ E(G) for j # i. Therefore AU {yt.zo}
is a maximum independent set containing A, contradicting the hypothesis.
This concludes the proof of (i).

Now consider the independent set A. By Lemma 4 we can find an
ordering F(A) = (aj,, ..., a;,) of the vertices of A and a sequence Y(A)C X
such that

[aj;,yi] — aj.,, foreachiwithl <i<r-1
Without loss of generality we may assume that
{z1} = X\Y(4).

We will first show the following:
(ili) ai41b; ¢ E(G) foreach i with1<i<7—-1.
(iv) y € Cr, where [a1,y] — 20, and s0 |Cr| 2 2.
(v) aibr—1 & E(G).
(iii) Suppose firstly that r > 4. Since {a;,|t #i.i + 1} C N(yi),

IN@)NAl 2T -222

Therefore |N(z;) N A| > 2 for each ¢ with 2 < ¢ <7, and 50 &iy1a; € E(G)
for each i with 1 <i <r —1 and some j # i + 1. Now a;4,b; ¢ E(G). for
otherwise

Ti105 E’biai.f.] —Cq.’l?jil,'o.'v,'+1

is a cycle longer than C.
Now consider r = 3 and assume without loss of generality that Y(A) =
(z2,z3). Suppose the contrary and let

p = |{agb1, a3bz, a1b3} N E(G)| .

173



We first show that if p > 2, then p = 3. (This is similar to the proof used
in Theorem 35).

Assume without loss of generality that {a1b3,a2b} C E(G) and a3by ¢
E(G). Then there exists some z € X\{z3} such that

laz,z] = by or [bg,z] — a3.

The former case is impossible since z; does not dominate ay and 5 does
not dominate a; by Lemma 28. Similarly, [bs, 2] — a3 can be shown to be
impossible and so azb; € E(G) and thus p = 3.

Now consider the vertices az and bs.

Suppose agzby € E(G). Then {air3,a223} N E(G) = , for otherwise
a cycle longer than C results. Since Y(A) = (z9,23), ®3a;, € E(G) and
so a;, = az. Also, x2a;, ¢ E(G) and so a;, = a). Therefore F(A4j -
(a3,a1,0a2), i.e. (a3, z2] — a1 and [a1, 23] — as.

Consider [a;,z3] — a2 and note that a;b3 € E(G) since w303 ¢ E(G)
by Lemma 28. So p > 2 and thus p = 3, i.e. {agb1,asbs,a1b3} C E(G).

Now consider (a3, 2] — a1. Since bzzs ¢ E(G) by Lemma 28, azbs €
E(G). Hence Cs\{as,b3} C N(a3) N N(b3) by (i) and (ii). It follows
from Lemma 25 that (C3\ {a3,b3}) N N(a;) = ¢ and from Lemma 28 that
(C3\ {a3,b3}) ﬂN(.’ra) = ¢. Thus [al,x;;] — ag implies that C3 = {a3.b3}.
But this contradicts Lemma 27 because azb; € E(G) and bza (= aJa;) €
E(G).

Now suppose that azbs ¢ E(G). Since we have assumed (to the con-
trary) that a;+1b; € E(G) for some i with 1 <7 < r — 1. we mayv assume
without loss of generality that agb; € E(G). By Lemuna 28. it follows that

{z2a1, 22b3, w203, 22b2 } N E(G) = 0.

Since [aj, , z2] — aj, and [a;,, z3] — aj,, it follows that {a;j,,a;,} = {a), a3}
and that a = aj,. Suppose that a3 = a;,. Then [a3.2,] — @), which is
impossible since {a3, 2} does not dominate by. So a; = a;, and F(A) =
(@1.a3,a2). Thus [a;,z2] — a3 and since z9b3 ¢ E(G) by Lemma 2.26.
a1b3 € E(G). Thus p > 2 and so p = 3, contradicting azb, ¢ E(G). This
concludes the proof of (iii).

(iv) By Lemma 33, [a1,y] — 2o for some y ¢ X. Suppose to the contrary
that y € Ci for some k with 1 < k < r —1. Then ary, # a;. and so
yary1 € E(G). By (ii) agx+1br € E(G), contradicting (iii) and thus (iv)
holds.

(v) Suppose to the contrary that a;b,.—; € E(G). Then by Lemma 34(b).
{blab2y oo »br—2} n N(ar) =¢
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and by (iii), arb.—1 ¢ E(G). It follows from 17 that a, b, € E(G). and (i)
and (ii) imply that C,\ {a,,b,} € N(a;) N N(b;). Now, by (iv), y € C»
where [a1,y] — z0. Ty € C,\ {b-}, then by Lemma 25 a» cannot be
dominated. So y = b, i.e. [a1.b;] — wo. Therefore bya, | € E(G) and
a1br—1 € E(G), contradicting Lemma 2.32.

We can now complete the proof of Lemma 37.4.

Again by Lemma 33 there is a vertex y ¢ X such that (a;.y] — wo. It
follows from (v) that yb._; € E(G). Since y € C by (iv), it follows from
(ii) that a.b._1 € E(G), contradicting (iii). o

Thus there exists a maximum independent set of the form
AU {zg,b} forsomebe B
or
BU{zg,a} forsomea € A.

It follows, therefore, that A # B. So we may assume without loss of
generality that b ¢ A and that AU {b1, 70} is a maximum independent
set. Let

A1=AU{b1}

Then there is an ordering F((A;) of the vertices of A; and 2 sequence Y(A)
such that Lemma 3 is satisfied. By Lemma 4, Y (4;) C N(zo) = X, and in
fact Y(A4;) = X since

[Y(A)l =141| - 1=r=[X].
It now follows from Lemma 5 that for every a € A;,
IN(@) N X|=|N(@)NY(A)[2r—-122 (20)
and for every z € X,
[N(z)NA|Z2r—-122. (21)

We now formulate and prove the second lemma, which we will use to
complete the proof of this case.

Lemma 37.5 {a;}U B is independent.

Proof. Suppose firstly that 215, € E(G). Then by Lemma 26(a), B\ {61 jia)
N(ay) = ¢. Also, a1b; ¢ E(G) since AU {b} is independent. Therefore
{a1} U B is independent.
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Now suppose z16, ¢ E(G). Since b, € A;, it follows from 20 that
X\{z1} C N(b1). For each i with 2 < i < 7 — 1, since byz;y, € E(G). it
follows that a;b; ¢ E(G), for otherwise the cycle

— — —
Ti1b1 Carb; Cxazory C iy

results, which is longer than C. Since z1b, ¢ E(G) it follows from 21
and Lemma 28 that a,b, ¢ E(G). Furthermore, a6, ¢ E(G) since A, is
independent. Thus BU {a,} is independent. G

Let By = BU {a)}. By Lemma 37.5 there is an ordering F(B;) of the
vertices of By and a sequence Y (B;) such that Lemma 3 is satisfied. As
for Ay, Y(B1) = X and for every b € By,

INB)NX| > r—1,
while for every z € X,
IN(z)NBy|>r-12>2.

It follows from Lemma 33 that there is a vertex y ¢ X such that [b;,y] —
zp. Since A; and B are independent,

AUB\{b} C N(y) (22)
andy ¢ AUB.

We will now show the following;:
(vi) y € Ci\{a1,b1}
(vii) y ¢ {by,a}} and thus |Cy] > 5.

(vi) Suppose the contrary and suppose firstly that y € C,. It follows from
22 that {yb,ya1} C E(G). Thus {y*a;,y*b;1} N E(G) = ¢ by Lemma 27.
and (A\ {a:})NN(y*) = ¢ by Lemma 26(a). Thus A; U{y*} is a maximal
independent set excluding o, a contradiction. Now suppose that y € Cj,
for some k with 2 < k < r— 1. By 22, yb, € E(G) and so it follows from
Lemma 26(a) that y*b; ¢ E(G). Since ybiy1 € E(G), Lemma 27 implies
that y*ary; ¢ E(G). Further, since yary; € E(G), it follows from Lemma
26 (1) that (A\{ar+1}) " N(y") = #. Again A, U {y*} is a maximal
independent set excluding g, and so (vi) holds.

(vii) Suppose to the contrary that y = b]. By 22. yb, € E(G) and so the
cycle

yb,. (—C—:L‘gxoil‘] Uy
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results, which is as long as C but excludes by, contradicting 16.
Now suppose that y = af. By 22, ya, € E(G) and so the cycle

Yo, E’zl xoxr‘ay

results, which is as long as C but excludes a;, again contradicting 16.
Thus y € Cy\ {al,a;L, by, b1} and so |Cy] > 5. Therefore (vii) holds.

Let A2 = AU{y*} and B; = BU{y~}. It follows from Lemma 26(a) and
the inclusion AU B C N(y) that A and B; are independent. Thus we can
obtain an ordering F(Aj) of the vertices in A5 and a sequence Y (As), and
an ordering F'(Bz) of the vertices in By and a sequence Y (B;), such that
Lemma 3 is satisfied in both instances, and where Y (A;) = Y(B,) = X.

We will show the following:
(viii) A ¢ N(z), for any z € X.
(ix) B¢ N(z), for any z € X.
(x) y*y~ ¢ E(G).

(viii) Suppose the contrary. Then there exists ¥ € X such that A C N (7).
Let ¥ = y¢(A,) for some ¢t with 1 < ¢ < r. Then

[fi(A1),Z] = fir1(Ar). (23)

Since A C N(Z), fe41(A1) = b1 and hence f,(A;) € A.
Now consider Y(A2) and let ¥ = y,(A2) for some s with 1 < « < .
Then

[fs(A2)v :i':] - fs+1(A2)~

Since A C N(Z), fs+1(A2) = y* and thus Tyt ¢ E(5). Since A, is
independent, { f¢(A4,), %} cannot dominate y*, contradicting 23. Thus (viii)
holds.

(ix) Using a similar argument to the one we used in (viii), we can show
that B ¢ N(z) for any z € X.

(x) Suppose to the contrary that y*y~ € E(G). Then
ya, Cy~y* Cagzoz, Cagy

is a cycle longer than C, a contradiction. Thus (x) holds.

We now complete the proof of Theorem 37. By (x). y*y~ ¢ E(G).
Therefore there exists a vertex z € V (G) \ {y*, y~} such that

[vf.2] =y~ or [y7.2] -y
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In either case z € X to dominate zg. Suppose [y*,2] — y~. Then A ¢
N(z) since A, is independent, contradicting (viii). Suppose [y~.2] — y™.
Then B C N (2) since Bs is independent, contradicting (ix).

This completes the proof. ]

Combining Theorem 35, Corollary 36 and Theorem 37. we have the
following;:

Theorem 38 (Wojcicka’s Theorem) If G is a connected, 3-~-critical
graph with § (G) > 2, then G is hamaltonian.
Wojcicka’s Theorem can be restated (using Corollary 2.8) as:

Any 2-connected, 3-y-critical graph is hamiltonian.
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